Academic literature on the topic 'Soil temperature'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soil temperature.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Soil temperature"
HAYHOE, H. N., C. TARNOCAI, and L. M. DWYER. "SOIL MANAGEMENT AND VEGETATION EFFECTS ON MEASURED AND ESTIMATED SOIL THERMAL REGIMES IN CANADA." Canadian Journal of Soil Science 70, no. 1 (February 1, 1990): 61–71. http://dx.doi.org/10.4141/cjss90-007.
Full textDavenport, Joan R., and Carolyn DeMoranville. "Temperature Influences Nitrogen Release Rates in Cranberry Soils." HortScience 39, no. 1 (February 2004): 80–83. http://dx.doi.org/10.21273/hortsci.39.1.80.
Full textLugo-Camacho, Jorge L., Samuel J. Indorante, John M. Kabrick, and Miguel A. Muñoz. "Soil temperature variations between a Typic Fragiudults and a Typic Paleudults in the Ozark Highlands of Missouri." Journal of Agriculture of the University of Puerto Rico 105, no. 2 (August 19, 2022): 125–41. http://dx.doi.org/10.46429/jaupr.v105i2.20071.
Full textNichols, Dale S. "Temperature of upland and peatland soils in a north central Minnesota forest." Canadian Journal of Soil Science 78, no. 3 (August 1, 1998): 493–509. http://dx.doi.org/10.4141/s96-030.
Full textSkowera, Barbara, and Jakub Wojkowski. "RELATION OF SOIL TEMPERATURE WITH AIR TEMPERATURE AT THE JURASSIC RIVER VALLEY." Inżynieria Ekologiczna 18, no. 1 (February 1, 2017): 18–26. http://dx.doi.org/10.12912/23920629/65855.
Full textLiu, J., C. Geng, Y. Mu, Y. Zhang, and H. Wu. "Exchange of carbonyl sulfide (COS) between the atmosphere and various soils in China." Biogeosciences Discussions 6, no. 6 (November 12, 2009): 10557–82. http://dx.doi.org/10.5194/bgd-6-10557-2009.
Full textLiu, J., C. Geng, Y. Mu, Y. Zhang, Z. Xu, and H. Wu. "Exchange of carbonyl sulfide (COS) between the atmosphere and various soils in China." Biogeosciences 7, no. 2 (February 25, 2010): 753–62. http://dx.doi.org/10.5194/bg-7-753-2010.
Full textGuicharnaud, R., O. Arnalds, and G. I. Paton. "Short term changes of microbial processes in Icelandic soils to increasing temperatures." Biogeosciences 7, no. 2 (February 17, 2010): 671–82. http://dx.doi.org/10.5194/bg-7-671-2010.
Full textYLI-HALLA, M., and D. MOKMA. "Soil temperature regimes in Finland." Agricultural and Food Science 7, no. 4 (January 4, 1998): 507–12. http://dx.doi.org/10.23986/afsci.5606.
Full textAkter, M., MA Miah, MM Hassan, MN Mobin, and MA Baten. "Textural Influence on Surface and Subsurface Soil Temperatures under Various Conditions." Journal of Environmental Science and Natural Resources 8, no. 2 (February 29, 2016): 147–51. http://dx.doi.org/10.3329/jesnr.v8i2.26882.
Full textDissertations / Theses on the topic "Soil temperature"
Alvenäs, Gunnel. "Evaporation, soil moisture and soil temperature of bare and cropped soils /." Uppsala : Swedish Univ. of Agricultural Sciences (Sveriges lantbruksuniv.), 1999. http://epsilon.slu.se/avh/1999/91-576-5714-9.pdf.
Full textFranks, Carol Dawn. "Temperature, moisture and albedo properties of Arizona soils." Thesis, The University of Arizona, 1985. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1985_263_sip1_w.pdf&type=application/pdf.
Full textChang, Chao-Ting. "Soil water availability regulates soil respiration temperature dependence in Mediterranean forests." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/406082.
Full textLas variaciones de la respiración del ecosistema y del suelo son principalmente impulsadas por la temperatura y la precipitación, pero la importancia de la temperatura y la precipitación puede variar a lo largo del tiempo y el espacio. En las escalas temporales diurnas a anuales, la respiración del ecosistema y del suelo generalmente aumenta con la temperatura media anual, pero se ha demostrado que la humedad del suelo muy baja o muy alta disminuye la respuesta a la temperatura de la respiración. Por lo tanto, en ecosistemas con escasez de agua, como la región mediterránea, donde el patrón estacional se caracteriza por sequías significativas en verano, es probable que los patrones de precipitación jueguen un papel particularmente importante en la regulación de la respiración del ecosistema y del suelo. En esta tesis, intento reducir las incertidumbres del intercambio de ecosistemas netos terrestres en la región mediterránea midiendo la interacción entre los factores ambientales y la respiración del suelo a escalas temporales cortas (diurnas) y medias (estacionales). Se utilizaron tres experimentos in situ para investigar cómo la respiración del suelo responde a las variaciones y manejo del ambiente. En conjunto, estos tres estudios dieron una imagen consistente de cómo la humedad del suelo afecta fuertemente la dinámica y la magnitud de la respiración del suelo en los bosques mediterráneos. Los resultados dilucidaron un umbral claro de humedad del suelo; Cuando la humedad del suelo está por encima de este umbral, la temperatura del suelo es el principal impulsor de la respiración del suelo, mientras que la humedad del suelo está por debajo de este umbral, la respiración del suelo está desacoplada de la temperatura del suelo y controlada por la humedad del suelo. Esto sugiere que la humedad del suelo modificó, al menos en los ecosistemas mediterráneos, la sensibilidad a la temperatura de la respiración a través de la respuesta tipo umbral.
Burns, Nancy Rosalind. "Soil organic matter stability and the temperature sensitivity of soil respiration." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/9922.
Full textHartley, Iain P. "The response of soil respiration to temperature." Thesis, University of York, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434021.
Full textAttalla, Daniela, and Wu Jennifer Tannfelt. "Automated Greenhouse : Temperature and soil moisture control." Thesis, KTH, Maskinkonstruktion (Inst.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184599.
Full textI denna tes byggdes ett automatiserat växthus med syftet att undersöka dess bevattningssystems pålitlighet samt om ett önskat temperaturspann kan bibehållas. Microkontrollern för att bygga detta automatiserade växthus var en Arduino UNO. Detta projekt använder sig av två olika sensorer, en jordfuktsensor och en temperatursensor. Sensorerna kontrollerar en värmefläkt och en pump. Värmefläkten används för att ändra temperaturen och pumpen för att vattna plantan. Bevattningssystemet och temperaturstyrningen har testats både separat och tillsammans. Resultatet visar att temperaturen kan bibehållas inom det önskade spannet. Resultaten från jordfuktsensorn var ojämna och därför tolkats som opålitliga.
Al-Ali, Abdullah Mubarak Abdulmohsen. "Temperature effects on fine-grained soil erodibility." Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/32514.
Full textCivil Engineering
Stacey Tucker
Recent climate changes may affect the stability of our infrastructure in many ways. This study investigated the effects of fine-grained soil temperature on erosion rate. If climate change is shown to affect the erodibility of soils the impacts must be identified to monitor the stability of existing infrastructure, improve design of levees and structures founded in erosive environments, and to prevent sediment loss and stream meanders. Fine-grained soil erosion is complicated by the dynamic linkage of multiple parameters, including physical, biological and geochemical properties. This study held constant all parameters that influence fine-grained soil erodibility while only varying soil temperature in order to study the effects it has on erodibility. This study also confirmed previous findings that water temperature affects soil erodibility. The main objective of this study was to investigate the effects of fine-grained soil temperature on erosion rate. This study also instrumented a turbidity sensor to reliably map soil erosion. Based on this research, the conclusion was made that an increase in soil temperature increases soil erosion rate. The turbidity sensor was a valuable tool for comparing soil erosion. Future studies should investigate the effects soil temperatures below room temperature, the magnitude of temperature increase or decrease, and the effects of cyclic heating and cooling on fine grained soil erodibility.
Mampana, Reedah Makgwadi. "Cropping system effects on soil water, soil temperature and dryland maize productivity." Diss., University of Pretoria, 2014. http://hdl.handle.net/2263/43165.
Full textDissertation (MScAgric)--University of Pretoria, 2014.
lk2014
Plant Production and Soil Science
MScAgric
Unrestricted
Chen, Ying 1957. "Soil thermal regime resulting from reduced tillage systems." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41106.
Full textChanges in soil bulk density, soil surface reflectance and soil temperature changes with depth and time were studied theoretically and experimental as a function of variable soil properties, soil surface state, crop cover and atmospheric conditions.
A field experiment was carried out on sandy and clayey soils with each plot being subjected to a consistent tillage and fertilizer history of either conventional ploughing, reduced energy disking or zero tillage, and fresh dairy manure or manufactured inorganic fertilizer. The measured results and the quantitative models assist hopefully in identifying how soil management affects the soil thermal regime and in making cultivation management decisions.
Soil bulk density for each fertilizer type can be predicted quantitatively from input tillage energy in a linear fashion. The reflectance of the soil surface was estimated as an integrated form of the individual reflectance and the area fractions of the soil surface components, with a soil roughness correction term. This model can cover various surface situations under different schemes of soil management. A simulation model for soil temperature was developed, which can be applied to bare soil, partially crop-covered soil and completely crop-covered soil. The models can also be used as submodels or be linked to other existing models.
Adu-Gyamfi, Kwame. "Laboratory calibration of soil moisture, resistivity, and temperature probe - Capacitance probe." Ohio : Ohio University, 2001. http://www.ohiolink.edu/etd/view.cgi?ohiou1173385776.
Full textBooks on the topic "Soil temperature"
Stathers, Robert John. Forest soil temperature manual. [Victoria, B.C.]: Canada/BC Economic & Regional Development Agreement, 1990.
Find full textStathers, Robert John. Forest soil temperature manual. Victoria, B.C: Ministry of Forests, Research Branch, 1990.
Find full textCurtis, C. S. Soil temperature bibliography with abstracts. Lincoln, NE: High Plains Climate Center, Dept. of Agricultural Meteorology, University of Nebraska, 1995.
Find full textHanks, R. J. Applied soil physics: Soil water and temperature applications. 2nd ed. New York: Springer-Verlag, 1992.
Find full textHussein, J. Soil temperatures in Zimbabwe. [Harare]: Dept. [of] Land Management, Faculty of Agriculture, University of Zimbabwe, 1986.
Find full textHughes, Paul A. Water tables, soil temperatures, and morphological characteristics in selected Maine soils. Orono, Me: Dept. of Plant, Soil, and Environmental Sciences, University of Maine, 1993.
Find full textFranco, E. P. Cardoso. Os regimes, térmico e de humidade, nos solos da república popular de Angola. Lisboa: Ministério do Planeamento e da Administração do Território, Secretaria de Estado da Ciência e Tecnologia, Instituto de Investigação Científica Tropical, 1993.
Find full textFranco, E. P. Cardoso. Contribuição para o estudo do pedoclima no arquipélago da Madeira. [Lisbon]: Secretaria Regional da Economia, Instituto de Investigação Científica Tropical, 1990.
Find full textVose, James M. A soil temperature model for closed canopied forest stands. Asheville, N.C: Southeastern Forest Experiment Station, 1991.
Find full textVose, James M. A soil temperature model for closed canopied forest stands. Asheville, N.C: U.S. Dept. of Agriculture, Forest Service, Southeastern Forest Experiment Station, 1991.
Find full textBook chapters on the topic "Soil temperature"
Novak, Michael D. "Soil Temperature." In Agronomy Monographs, 105–29. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2015. http://dx.doi.org/10.2134/agronmonogr47.c6.
Full textJeffrey, David W. "Soil atmosphere and soil temperature." In Soil~Plant Relationships, 129–35. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-011-6076-6_9.
Full textOchsner, Tyson E. "Measuring Soil Temperature." In Soil Science Step-by-Step Field Analysis, 235–51. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015. http://dx.doi.org/10.2136/2008.soilsciencestepbystep.c18.
Full textVillalobos, Francisco J., Luca Testi, Luciano Mateos, and Elias Fereres. "Soil Temperature and Soil Heat Flux." In Principles of Agronomy for Sustainable Agriculture, 69–77. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46116-8_6.
Full textNovák, Viliam, and Hana Hlaváčiková. "Soil Temperature and Heat Transport in Soils." In Applied Soil Hydrology, 303–18. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01806-1_20.
Full textBuchan, Graeme D. "Temperature Effects in Soil." In Encyclopedia of Agrophysics, 891–95. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3585-1_170.
Full textRaney, F. C., and Yoshiaki Mihara. "Water and Soil Temperature." In Irrigation of Agricultural Lands, 1024–36. Madison, WI, USA: American Society of Agronomy, 2015. http://dx.doi.org/10.2134/agronmonogr11.c58.
Full textMukherjee, Swapna. "Soil Air and Temperature." In Current Topics in Soil Science, 105–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92669-4_10.
Full textHanks, R. J. "Soil Heat Flow and Temperature." In Applied Soil Physics, 139–59. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2938-4_5.
Full textGläser, Eberhard. "High temperature thermal treatment of contaminated soil." In Contaminated Soil ’88, 827–37. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2807-7_130.
Full textConference papers on the topic "Soil temperature"
Nakayama, C., H. Arima, T. Katsumata, H. Aizawa, and S. Komuro. "Temperature response measurement of soil." In 2007 International Conference on Control, Automation and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iccas.2007.4406721.
Full textVitkova, Justina. "SOIL TEMPERATURE REGIME IN TOP SOIL LAYER WITH BIOCHAR AMENDMENT." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/32/s13.068.
Full textMa, Hongzhang, and Qinhuo Liu. "The Analysis of the Difference between Infrared Soil Temperature and L Band Effective Soil Temperature." In 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping (M2RSM). IEEE, 2011. http://dx.doi.org/10.1109/m2rsm.2011.5697425.
Full textTian, Hongwei, Linmao Ye, and Haibo Chen. "Study on effect of soil temperature on FDR soil moisture sensor in frozen soil." In Third International Conference on Photonics and Image in Agriculture Engineering (PIAGENG 2013), edited by Honghua Tan. SPIE, 2013. http://dx.doi.org/10.1117/12.2019726.
Full textClaverie, Etienne, Jeremie Lecoeur, Veronique Letort, and Paul-Henry Cournede. "Modeling soil temperature to predict emergence." In 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA). IEEE, 2016. http://dx.doi.org/10.1109/fspma.2016.7818285.
Full textPopiel, C. O., Janusz Wojtkowiak, and B. Biernacka. "MEASUREMENTS OF TEMPERATURE DISTRIBUTIONS IN SOIL." In Thermal Sciences 2000. Proceedings of the International Thermal Science Seminar Bled. Connecticut: Begellhouse, 2000. http://dx.doi.org/10.1615/ichmt.2000.thersieprocvol2.40.
Full textPopiel, C. O., and B. Biernacka. "MEASUREMENTS OF TEMPERATURE DISTRIBUTIONS IN SOIL." In Thermal Sciences 2000. Proceedings of the International Thermal Science Seminar Bled. Connecticut: Begellhouse, 2000. http://dx.doi.org/10.1615/ichmt.2000.thersieprocvol2thersieprocvol1.210.
Full textHolmes, T., and T. Jackson. "Soil temperature error propagation in passive microwave retrieval of soil moisture." In 2010 11th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2010). IEEE, 2010. http://dx.doi.org/10.1109/microrad.2010.5559589.
Full textLiu, Cuihong, Wentao Ren, Benhua Zhang, and Changyi Lv. "The application of soil temperature measurement by LM35 temperature sensors." In Mechanical Engineering and Information Technology (EMEIT). IEEE, 2011. http://dx.doi.org/10.1109/emeit.2011.6023459.
Full textXiao, Suguang, Muhannad T. Suleiman, and John S. McCartney. "Shear Behavior of Silty Soil and Soil-Structure Interface under Temperature Effects." In Geo-Congress 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413272.399.
Full textReports on the topic "Soil temperature"
Frankenstein, Susan. FASST Soil Moisture, Soil Temperature: Original Versus New. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada483823.
Full textMontz, A., V. R. Kotamarthi, and H. Bellout. Soil carbon response to rising temperature. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1051236.
Full textVas, Dragos, Elizabeth Corriveau, Lindsay Gaimaro, and Robyn Barbato. Challenges and limitations of using autonomous instrumentation for measuring in situ soil respiration in a subarctic boreal forest in Alaska, USA. Engineer Research and Development Center (U.S.), December 2023. http://dx.doi.org/10.21079/11681/48018.
Full textLui, Rui, Cheng Zhu, John Schmalzel, Daniel Offenbacker, Yusuf Mehta, Benjamin Barrowes, Danney Glaser, and Wade Lein. Experimental and numerical analyses of soil electrical resistivity under subfreezing conditions. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48430.
Full textGonzalez, Logan, Christopher Baker, Stacey Doherty, and Robyn Barbato. Ecological modeling of microbial community composition under variable temperatures. Engineer Research and Development Center (U.S.), February 2024. http://dx.doi.org/10.21079/11681/48184.
Full textCook, David, and Adam Theisen. SWATS: Diurnal Trends in the Soil Temperature Report. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1366762.
Full textCook, David R. Soil Water and Temperature System (SWATS) Instrument Handbook. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1251383.
Full textCook, David R. Soil Temperature and Moisture Profile (STAMP) System Handbook. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1332724.
Full textVanderGheynst, Jean, Michael Raviv, Jim Stapleton, and Dror Minz. Effect of Combined Solarization and in Solum Compost Decomposition on Soil Health. United States Department of Agriculture, October 2013. http://dx.doi.org/10.32747/2013.7594388.bard.
Full textVose, James M., and Wayne T. Swank. A Soil Temperature Model for Closed Canopied Forest Stands. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, 1991. http://dx.doi.org/10.2737/se-rp-281.
Full text