Academic literature on the topic 'Soil textures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soil textures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Soil textures"
Dil, Matthew, Maren Oelbermann, and Wei Xue. "An evaluation of biochar pre-conditioned with urea ammonium nitrate on maize (Zea mays L.) production and soil biochemical characteristics." Canadian Journal of Soil Science 94, no. 4 (August 2014): 551–62. http://dx.doi.org/10.4141/cjss-2014-010.
Full textGUERRA, N., R. S. OLIVEIRA JÚNIOR, J. CONSTANTIN, A. M. OLIVEIRA NETO, A. GEMELLI, D. M. PEREIRA JÚNIOR, and A. GUERRA. "Persistence of Biological Activity and Leaching Potential of Herbicides Aminocyclopyrachlor and Indaziflam in Soils with Different Textures1." Planta Daninha 34, no. 2 (June 2016): 345–56. http://dx.doi.org/10.1590/s0100-83582016340200016.
Full textBagarello, Vincenzo, Vito Ferro, and Giuseppe Giordano. "ESTIMATING SOIL PARTICLE-SIZE DISTRIBUTION FOR SICILIAN SOILS." Journal of Agricultural Engineering 40, no. 3 (September 30, 2009): 33. http://dx.doi.org/10.4081/jae.2009.3.33.
Full textChaichi, Mohammad Reza, Marcus Turcios, and Mina Rostamza. "The influence of surfactant and organic matter content on wetting pattern of different non-water repellent soils." Soil Research 54, no. 7 (2016): 880. http://dx.doi.org/10.1071/sr15153.
Full textZhao, Litong, D. M. Gray, and B. Toth. "Influence of soil texture on snowmelt infiltration into frozen soils." Canadian Journal of Soil Science 82, no. 1 (February 1, 2002): 75–83. http://dx.doi.org/10.4141/s00-093.
Full textWang, Haiyan, Ran Chen, Yuefan Sheng, Weitao Jiang, Rong Zhang, Xuesen Chen, Xiang Shen, Chengmiao Yin, and Zhiquan Mao. "Impact of Three Soil Textures on the Fungal Community Structure in Rhizosphere Soils of Malus hupehensis Rehd. Seedlings." HortScience 56, no. 5 (May 2021): 572–78. http://dx.doi.org/10.21273/hortsci15688-21.
Full textGregorich, E. G., M. R. Carter, D. A. Angers, and C. F. Drury. "Using a sequential density and particle-size fractionation to evaluate carbon and nitrogen storage in the profile of tilled and no-till soils in eastern Canada." Canadian Journal of Soil Science 89, no. 3 (May 2, 2009): 255–67. http://dx.doi.org/10.4141/cjss08034.
Full textPALTINEANU, Cristian, Horia DOMNARIU, Dora MARICA, Anca-Rovena LĂCĂTUȘU, Georgiana Adriana POPA, Iulia Adriana GRAFU, and Aurora Daniela NEAGOE. "FERTILIZERS` LEACHING FROM THE ROOT SYSTEM ZONE – A POTENTIAL ENVIRONMENTAL RISK FOR GROUNDWATER POLLUTION IN COARSE AND MEDIUM-TEXTURED SOILS." Carpathian Journal of Earth and Environmental Sciences 16, no. 1 (2021): 139–50. http://dx.doi.org/10.26471/cjees/2021/016/162.
Full textTafasca, Salma, Agnès Ducharne, and Christian Valentin. "Weak sensitivity of the terrestrial water budget to global soil texture maps in the ORCHIDEE land surface model." Hydrology and Earth System Sciences 24, no. 7 (July 24, 2020): 3753–74. http://dx.doi.org/10.5194/hess-24-3753-2020.
Full textLund, E. D., M. C. Wolcott, and G. P. Hanson. "Applying Nitrogen Site-Specifically Using Soil Electrical Conductivity Maps and Precision Agriculture Technology." Scientific World JOURNAL 1 (2001): 767–76. http://dx.doi.org/10.1100/tsw.2001.95.
Full textDissertations / Theses on the topic "Soil textures"
Sugihara, So. "Soil Microbial Dynamics in Tropical Agroecosystems under Different Land Managements and Soil Textures." Kyoto University, 2010. http://hdl.handle.net/2433/120471.
Full text0048
新制・課程博士
博士(農学)
甲第15428号
農博第1813号
新制||農||979(附属図書館)
学位論文||H22||N4527(農学部図書室)
27906
京都大学大学院農学研究科地域環境科学専攻
(主査)教授 舟川 晋也, 教授 縄田 栄治, 教授 間藤 徹
学位規則第4条第1項該当
Green, Donald F. (Donald Frederick) 1969. "Haptic simulation of naturally occuring textures and soil properties." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9599.
Full textIncludes bibliographical references (p. 69-71).
Methods for developing realistic haptic (force feedback) simulations of soils and rocks are presented. Mathematical models of the dynamics of a virtual probe mechanically interacting with a virtual object are developed to provide the basis for analysis and simulation. The models then incorporate stochastic inputs in order to provide the haptic simulations with a more natural, less synthetic feel. The stochastic input parameters are derived by analyzing actual force data sensed while probing a subject media with the haptic display itself; in this case used as a force controlled manipulator. A method for sensing friction properties of rigid, textured surfaces and using the data collected to drive a realistic haptic texture simulation is presented. Static friction coefficients and surface height deviations a e sensed by directly stroking the surface under examination with a probe fitted on the end of a PHANToM haptic display device. Test surfaces range from pieces of sandpaper of varying coarseness to acetate. A simulation of the texture may then be rendered using the mechanical model of textured surface-probe interaction augmented by statistical variation of the friction properties of the surface. An algorithm is presented for adding texture properties to three-dimensional object models. The method is based on determining surface normals of the virtual object and assigning statistically varying friction properties and surface height deviations to area patches on the object's surface using the methods described above. Finally, a dynamic model of probe/soil interaction is used to render a haptic simulation of loose grained soils such as sand. Certain friction properties are again statistically varied in order to improve the realism of haptic display user's experience.
by Donald F. Green.
S.M.
Johnson, Anthony. "Aqueous & non-aqueous phase tracer migration through differing soil textures." Thesis, University of Plymouth, 2004. http://hdl.handle.net/10026.1/2212.
Full textYusoff, Wan Abdullah bin Wan. "Effect of zeolites on soil characteristics, leaching and surface pollutant losses form soils of contrasting textures." Thesis, Lancaster University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531713.
Full textLi, Meiling 1988. "Response of taro [Colocasia esculenta (L.) Schott] growth, yield, and corm quality to varying water regimes and soil textures /." Botucatu, 2019. http://hdl.handle.net/11449/180858.
Full textCoorientador: Angélica Cristina Fernandes Deus
Banca: Dirceu Maximino Fernandes
Banca: João Carlos Cury Saad
Banca: Gabriela Granghelli Gonçalves
Banca: Laís Lorena Queiroz Moreira
Resumo: A irrigação é uma prática agrícola importante para o cultivo do inhame, entretanto, há poucos resultados experimentais focados no Brasil, e não há informações sobre a necessidade de água para essa cultura sob diferentes texturas de solo no estado de São Paulo. Objetivou-se com o presente trabalho avaliar o desenvolvimento, biomassa e qualidade dos tubérculos do inhame sob diferentes lâminas de irrigação e texturas de solo. O experimento foi conduzido de 2016 a 2017 com duas colheitas em casa de vegetação na Universidade Estadual Paulista (FCA/UNESP), Botucatu. Estudou-se cinco lâminas de irrigação: 20%, 60%, 100% (controle), 140% e 180% da necessidade de água da cultura (ETc), e três texturas de solo: solo de textura argilosa (CS), solo de textura média (SCL) e solo de textura arenosa (SS). Os resultados mostraram que a altura da planta, diâmetro do pecíolo, número de folhas, área foliar, peso fresco/seco da parte aérea, da raiz e do tubérculo, número e diamêtro de tubérculo do inhame foram menores em 20% e 60% ETc e maiores em 140% and 180% ETc quando comparado com 100% ETc. SS apresentou maior número de folhas em todas as lâminas de irrigação, enquanto a área foliar para SS foi maior que SCL e CS em 20% ETc. Para a primeira colheita, SCL apresentou maior peso fresco/seco da raiz, e SS apresentou maior peso seco do tubérculo do que os outros dois solos. A maior eficiência no uso da água (WUE) e índice de colheita (HI) foram detectados em 20% ETc. Para a segunda safra, SS apr... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Irrigation is an important agricultural practice for the cultivation of taro, however, there are few experimental results focus on this practice in Brazil, and there is no information on water requirement for this crop under different soil textures in São Paulo State. Therefore, the objective of this work was to evaluate the development, biomass and corm quality of taro under varying water regimes and soil textures. The experiment was conducted from 2016 to 2017 with two harvests, in a greenhouse of Agronomical Sciences College, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil. The five irrigation levels were 20%, 60%, 100%, 140%, and 180% of crop water requirement (ETc), with 100% ETc as the control. And three soil textures: clay soil (CS), sandy clay loam soil (SCL) and sandy soil (SS) were used. Results showed that plant height, petiole diameter, leaf number and area, above-ground, root, and corm fresh/dry weight, corm number and diameter of taro were lower at 20% and 60% ETc, and higher at 140% ETc and 180% ETc when compared with 100% ETc. SS exhibited higher leaf number at all water regimes, whereas leaf area for SS was higher than SCL and CS at 20% ETc. For the first harvest, SCL showed higher root fresh/dry weight, and SS exhibited higher corm dry weight than the other two soils. The highest water-use efficiency (WUE) and index (HI) were detected at 20% ETc. For the second harvest, SS showed higher root and corm fresh weight, corm number and diameter. Th... (Complete abstract click electronic access below)
Doutor
Harrison-Kirk, T. "The effects of drying and rewetting cycles on carbon and nitrogen dynamics in soils of differing textures and organic matter contents." Lincoln University, 2008. http://hdl.handle.net/10182/656.
Full textRana, Nadeem Ahmed. "A laboratory study on bioremediation of a diesel-contaminated fine-textured soil." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0001/MQ44253.pdf.
Full textHowell, C. L. (Carolyn Louise). "Comparison of different methods by means of which water holding capacity of soil is determined and the prediction of water holding capacity from soil texture in coarse-textured soil." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49890.
Full textENGLISH ABSTRACT: Irrigation scheduling is one of the most important cultural practices in irrigated vineyards. Water holding capacity of soil is arguably therefore one of the most important characteristics of a soil as it determines how much water can be made available to the plant. The measurement of water holding capacity of soils is time consuming and costly. In situ determinations are often impractical to determine. For routine determinations, water holding capacity is therefore determined on disturbed samples. Such a method for example is the rubber ring method. A great deal of criticism surrounds this rubber ring method and results are often questioned. The objectives of this study were therefore to determine what the relationship was between undisturbed and disturbed samples and to determine whether compacted samples could give a more accurate representation of the water holding capacity of soil. Soil textural factors influencing the volumetric water content of undisturbed, rubber ring and compacted samples at 5, 10 and 100 kPa were investigated. In addition, soil textural properties influencing water holding capacity of the respective samples between 5 and 100 kPa and 10 and 100 kPa were investigated. The final objective of the study was to develop simple models to predict the volumetric water content and water holding capacity of soil. Undisturbed and disturbed soil samples were taken at various localities to ensure a wide range of textures. Water holding capacity of undisturbed and disturbed samples was determined at ARC Infruitec-Nietvoorbij using the standard air pressure and ceramic plate technique and the routine rubber ring method respectively. Soil samples were also compacted to a bulk density of approximately 1.5 g.cm-3 as a further treatment for determination of water holding capacity using the air pressure and ceramic plate technique. To investigate aspects of soil texture that could possibly influence volumetric water content of the soil, correlations were done between different texture components and volumetric water content of undisturbed, rubber ring and compacted samples at 5, 10 and 100 kPa. In order to determine the effect of texture on water holding capacity of the soil, correlations were drawn between texture components and water holding capacity of undisturbed, rubber ring and compacted samples between matric potential ranges 5 and 100 kPa and 10 and 100 kPa. The results from this study were used to develop models to predict volumetric soil water content and water holding capacity of soils for a range of soils. Volumetric water content of rubber ring samples at 5 kPa was more than the volumetric water content of undisturbed samples at 5 kPa. The volumetric water content of rubber ring samples at 5 kPa and the volumetric water content of undisturbed samples at 5 kPa was correlated by 87%. Volumetric water content of compacted samples at 5 kPa had a 85% degree of correlation with the volumetric water content of undisturbed samples. At 10 kPa, the correlation between volumetric water content determined using rubber ring samples and undisturbed samples was 77%. This was identical to the correlation between volumetric water content of compacted samples at 10 kPa and undisturbed samples. At 100 kPa, most of the rubber ring samples' volumetric water content fell below the 1:1 line of volumetric water content of undisturbed samples. The volumetric water content of all the compacted samples was higher than that of the undisturbed samples. Water holding capacity of all the rubber ring samples between 5 and 100 kPa was greater than the water holding capacity of the undisturbed samples between 5 and 100 kPa. Rubber ring samples therefore generally overestimated the water holding capacity of the soil. The water holding capacity of most of the rubber ring samples between 10 and 100 kPa was greater than the water holding capacity of the undisturbed samples. In contrast, the water holding capacity of compacted samples between 5 and 100 kPa was less than the water holding capacity of undisturbed samples between 5 and 100 kPa. Water holding capacity of compacted samples was therefore underestimated. The results from this study confirmed that the influence of clay and silt content on volumetric water content of undisturbed, rubber ring and compacted samples increased as the suction on the respective samples is increased. The influence of fine sand content on volumetric water content of undisturbed, rubber ring and compacted samples decreased with an increase in matric potential to 100 kPa. Medium sand content of undisturbed, rubber ring and compacted samples had the greatest influence of all the textural components on the volumetric water content of the respective samples at 5 kPa and 10 kPa. Water holding capacity of undisturbed, rubber ring and compacted samples between 5 and 100 kPa was greatly influenced by the fine sand content of the samples. Medium sand content of the samples also had an influence on the water holding capacity thereof. To predict the volumetric water content of undisturbed samples at 5, 10 and 100 kPa, the independent variables were fine sand content, square root of medium sand content and In of medium sand content. In the case of models to predict the volumetric water content of rubber ring samples at 5, 10 and 100 kPa, the same variables were used as independent variables. Additional variables such as silt content, the In of silt content, square root of clay plus silt content and the medium sand content. To predict the volumetric water content of compacted samples at 5, 10 and 100 kPa the terms used were silt content, clay plus silt content, the e-clay plus silt content. medium sand content and the square root of medium sand content. The models to predict volumetric water content of rubber ring samples gave the best correlation with the actual volumetric water content of rubber ring samples. The final models to predict the water holding capacity of all the samples between 5 and 100 kPa and 10 and 100 kPa used only fine and medium sand parameters as independent variables. Soil textural components do play an important role in determining the volumetric water content of undisturbed, rubber ring and compacted samples at 5, 10 and 100 kPa. The magnitude of the water holding capacity between 5 and 100 kPa and 10 and 100 kPa is also influenced by soil texture. The models developed to predict the volumetric water content of samples at 5, 10 and 100 kPa and the magnitude of the water holding capacity between 5 and 100 kPa and 10 and 100 kPa could be very useful. Both time and money can potentially be saved. Models that can be highly recommended are the models generated for the undisturbed samples. These are: At 5 kPa, VWCu = 0.47259 - 0.04712 medium sando.s At 10 kPa, VWCu = 0.41292 - 0.04221 medium sandos At 100 kPa, VWCu = 0.48080 - 0.00254 fine sand - 0.0865 In medium sand Between 5 and 100 kPa, WHCu = -29.523 + 3.394 fine sand Between 10 and 100 kPa, WHCu = -891.794 + 232.326 In fine sand + 38.006 In medium sand
AFRIKAANSE OPSOMMING: Besproeiingskedulering is een van die belangrikste wingerdverbouingspraktyke. Waterhouvermoë bepaal hoeveel water beskikbaar gestel kan word aan die plant en daarom is dit een van die belangrikste eienskappe van 'n grond. Die meting van waterhouvermoë van grond is tydsaam en duur. Boonop is in situ bepalings dikwels onprakties om te bepaal. Waterhouvermoë word dus bepaal op versteurde monsters vir roetine ontledings. 'n Voorbeeld van so 'n metode is die rubberring metode. Daar bestaan groot kritiek teenoor hierdie rubberring metode en resultate word dikwels betwyfel deur die landboubedryf. Die doel van hierdie studie was dus om te bepaal wat die verwantskap is tussen onversteurde monsters en rubberring monsters asook om te bepaal of gekompakteerde monsters 'n meer akkurate aanduiding sou gee as onversteurde monsters van die waterhouvermoë van die grond. Grondtekstuur faktore wat die volumetriese waterinhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters by 5, 10 and 100 kPa beïnvloed, was ondersoek. Grondtekstuur faktore wat waterhouvermoë van die onderskeie monsters tussen 5 en 100 kPa en tussen 10 en 100 kPa beïnvloed, was ook ondersoek. Die finale doelwit van die studie was om eenvoudige modelle te ontwikkel vir die voorspelling van volumetriese waterinhoud en waterhouvermoë van grond. Onversteurde grond monsters en grond vir versteurde monsters is by verskeie lokaliteite geneem om 'n wye reeks teksture te verkry. Waterhouvermoë van onversteurde monsters is bepaal by LNR Infruitec- Nietvoorbij met die standaard drukplaat tegniek. Waterhouvermoë van versteurde grond is bepaal met die roetine rubberring metode van LNR Infruitec-Nietvoorbij. Grond was ook gekompakteer tot 'n bulkdigtheid van ongeveer 1.5 g.cm-3 en daarna is die waterhouvermoë bepaal by die LNR Infruitec- Nietvoorbij met die standaard drukplaat tegniek. Om aspekte van grondtekstuur, wat moontlik die volumetriese waterinhoud van grond kan beïnvloed te ondersoek, is korrelasies tussen verskeie tekstuur komponente en die volumetriese waterinhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters by 5, 10 en 100 kPa bepaal. Om te bepaal watter tekstuur komponente waterhouvermoë van die grond kan bepaal, is korrelasies getrek tussen tekstuur komponente en waterhouvermoë van onversteurde monsters, rubberring monsters en gekompakteerde monsters tussen 5 en 100 kPa en tussen 10 en 100 kPa. Die data is verwerk met die SAS uitgawe 6.12 (SAS, 1990) om modelle vir die voorspelling van volumetriese waterinhoud en waterhouvermoë van grond met behulp van maklik kwantifiseerbare grondtekstuur veranderlikes te ontwikkel. Die volumetriese waterinhoud van rubberring monsters by 5 kPa was meer as die volumetriese waterinhoud van onversteurde monsters by 5 kPa. Die volumetriese waterinhoud van rubberring monsters by 5 kPa en die volumetriese waterinhoud van onversteurde monsters by 5 kPa is gekorreleerd met 87%. Die volumetriese waterinhoud van gekompakteerde monsters by 5 kPa het 'n korrelasie van 85% met volumetriese waterinhoud van onversteurde monsters getoon. By 10 kPa, was die graad van korrelasie tussen volumetriese waterinhoud bepaal met rubberring monsters en onversteurde monsters, 77%. Dit was omtrent dieselfde as die graad van korrelasie tussen volumetriese waterinhoud van gekompakteerde monsters en onversteurde monsters by 10 kPa. By 100 kPa het die meeste van die rubberring monsters se volumetriese waterinhoud onderkant die 1:1 lyn van die volumetriese waterinhoud by 100 kPa van al die onversteurde monsters. Die volumetriese waterinhoud van al die gekompakteerde monsters was hoër as die van die onversteurde monsters. Die waterhouvermoë van al die rubberring monsters tussen 5 en 100 kPa was groter as die van die onversteurde monsters tussen 5 en 100 kPa. Die rubberring monsters het dus oor die algemeen die grootte van die waterhouvermoë oorskry. Die waterhouvermoë van die meeste van die rubberring monsters tussen 10 en 100 kPa was groter as die waterhouvermoë van die onversteurde monsters. Die waterhouvermoë van gekompakteerde monsters tussen 5 en 100 kPa was minder as die waterhouvermoë van die onversteurde monsters tussen 5 en 100 kPa. Die waterhouvermoë van gekompakteerde grondmonsters is dus onderskat. Die resultate van hierdie studie het die invloed van klei- en slik- inhoud op die volumetriese waterinhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters bevestig. Die invloed van klei en sand op die volumetriese waterinhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters het toegeneem soos die matriks potensiaal op die onderskeie monsters toegeneem het. Die invloed van fynsand op die volumetriese waterinhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters was die grootste by 5 kPa en het afgeneem tot by 100 kPa. Die mediumsand inhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters het van al die tekstuur komponente die grootste invloed op die volumetriese waterinhoud van al die monsters by 5 kPa en 10 kPa gehad. Die waterhouvermoë van onversteurde monsters, rubberring monsters en gekompakteerde monsters tussen 5 en 100 kPa is grootliks beinvloed deur die fynsand inhoud van die monsters. Die mediumsand inhoud van die monsters het ook 'n invloed gehad op die waterhouvermoë daarvan. Om die volumetriese waterinhoud van onversteurde monsters by 5, 10 en 100 kPa te voorspel, is onafhanklike veranderlikes soos fynsand inhoud, vierkantswortel van mediumsand inhoud en In van mediumsand inhoud bepaal. In die geval van modelle om die volumetriese waterinhoud van rubberring monsters by 5, 10 en 100 kPa te voorspel, is dieselfde veranderlikes gebruik as onafhanklike veranderlikes. Addisionele veranderlikes soos slik inhoud, In van slik inhoud, die vierkantswortel van die klei plus slik inhoud en die mediumsand inhoud is ook gebruik. Om die volumetriese waterinhoud van gekompakteerde monsters by 5, 10 en 100 kPa te voorspel, is die terme slik inhoud, klei plus slik inhoud, e-klei plus slik inhoud, mediumsand inhoud en vierkantswortel van mediumsand inhoud gebruik. Die modelle om volumetriese waterinhoud van rubberring samples te voorspel het die akkuraatste voorspellings gegee. Die finale modelle, om waterhouvermoë van alle monsters tussen 5 en 100 kPa en tussen 10 en 100 kPa te bepaal, het slegs fyn en mediumsand as onafhanklike veranderlikes gebruik. Grondtekstuur komponente speel dus 'n belangrike rol in die volumetriese waterinhoud van onversteurde monsters, rubberring monsters en gekompakteerde monsters by 5, 10 en 100 kPa. Die grootte van die waterhouvermoë tussen 5 en 100 kPa en tussen 10 en 100 kPa is ook beinvloed deur die grondtekstuur. Die modelle wat ontwikkel is om die volumetriese waterinhoud van monsters by 5, 10 en 100 kPa en die grootte van die waterhouvermoë tussen 5 en 100 kPa en tussen 10 and 100 kPa te voorspel, kan baie waardevol wees. Tyd en geld kan potensieel bespaar word. Die modelle wat hoogs aanbevole is, is die modelle vir onversteurde monsters. Die modele is: By 5 kPa, VWlo = 0.47259 - 0.04712 rnedlumsand?" By 10 kPa, VWlo = 0.41292 - 0.04221 mediumsando.s By 100 kPa, VWlo = 0.48080 - 0.00254 fynsand - 0.0865 In mediumsand Tussen 5 en 100 kPa, WHVo = -29.523 + 3.394 fynsand Tussen 10 en 100 kPa, WHVo = -891.794 + 232.326 In fynsand + 38.006 In mediumsand
Zhang, Xudong. "Wavelet-domain hyperspectral soil texture classification." Master's thesis, Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-04012004-142420.
Full textZinn, Yuri Lopes. "Textural, mineralogical and structural controls on soil organic carbon retention in the Brazilian Cerrados." Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1131381122.
Full textBooks on the topic "Soil textures"
1958-, Ulmer-Scholle D. S., and American Association of Petroleum Geologists., eds. A color guide to the petrography of carbonate rocks: Grains, textures, porosity, diagenesis. Tulsa, Ok: American Association of Petroleum Geologists, 2003.
Find full textOldemburg, Cristina. Terra brasileira: Cores, formas e texturas = The land of Brazil : colors, shapes and textures. Rio de Janeiro, Brazil]: Camera Books, 2010.
Find full textDupigny, Lesley-Ann. An analysis of textural variability in a forest soil: Final draft of Bachelor of Science thesis. [Toronto: Scarborough Campus, University of Toronto, 1989.
Find full textBaumgartl, Thomas. Spannungsverteilung in unterschiedlich texturierten Böden und ihre Bedeutung für die Bodenstabilität. Kiel: Vertrieb, Institut für Pflanzenernährung und Bodenkunde der Christian-Albrechts-Universität zu Kiel, 1991.
Find full textAndrén, Olof. Spatial variation of soil physical and chemical properties in an arable field with high clay content. Uppsala: Sveriges lantbruksuniversitet, Institutionen för ekologi och miljövård, 1990.
Find full textProne, André. L'analyse texturale et microstructurale des sols: Exemple pédologique du nord-est de la Thaïlande. Aix-en-Provence: Publications de l'Université de Provence, 2003.
Find full textFranco, E. P. Cardoso. Aplicação de métodos de análise multivariante no teste da uniformidade, intrapédones e interpédones, do material originario do solo. Lisboa: Ministério do Planeamento e da Administração do Território, Secretaria de Estado da Ciência e Tecnologia, 1994.
Find full textAlban, David H. Growth patterns of red pine on fine-textured soils. [Saint Paul, Minn.]: U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station, 1987.
Find full textAlban, David H. Growth patterns of red pine on fine-textured soils. St. Paul, Minn: U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station, 1987.
Find full textAlban, David H. Growth patterns of red pine on fine-textured soils. St. Paul, Minn: U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station, 1987.
Find full textBook chapters on the topic "Soil textures"
Muerth, Markus, and Ralf Ludwig. "Soil Textures." In Regional Assessment of Global Change Impacts, 75–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-16751-0_8.
Full textThakur, Tejinder, Deepak Mori, Priyanka Sharma, Shashwat Kapoor, and Kala Venkata Uday. "Interface Behavior Between Soil and Different Surface Textures." In Lecture Notes in Civil Engineering, 353–64. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6086-6_28.
Full textZhong, Xiaochun, Junchan Wang, Liu Tao, Chengming Sun, Zhemin Li, and Shengping Liu. "Growth and Spectral Characteristics of Grassland in Response to Different Soil Textures." In Computer and Computing Technologies in Agriculture XI, 31–44. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06179-1_4.
Full textRosolem, Ciro A., Antonio P. Mallarino, and Thiago A. R. Nogueira. "Considerations for Unharvested Plant Potassium." In Improving Potassium Recommendations for Agricultural Crops, 147–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59197-7_6.
Full textBell, Michael J., Antonio P. Mallarino, Jeff Volenec, Sylvie Brouder, and David W. Franzen. "Considerations for Selecting Potassium Placement Methods in Soil." In Improving Potassium Recommendations for Agricultural Crops, 341–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59197-7_12.
Full textXu, Yongfu, and Ling Cao. "Soil Mechanics of Unsaturated Soils with Fractal-Texture." In Engineering Geology for Society and Territory - Volume 6, 519–23. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09060-3_92.
Full textBieganowski, Andrzej, and Magdalena Ryżak. "Soil Texture: Measurement Methods." In Encyclopedia of Agrophysics, 791–94. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3585-1_157.
Full textKrupenikov, Igori Arcadie, Boris P. Boincean, and David Dent. "Soil Texture and Structure." In The Black Earth, 19–25. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0159-5_3.
Full textKhatti, Jitendra, N. P. Kaushik, J. K. Sharma, and K. S. Grover. "Modified Textural Soil Classification." In Lecture Notes in Civil Engineering, 1093–112. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6086-6_88.
Full textVerrecchia, Eric P., and Luca Trombino. "The Organization of Soil Fragments." In A Visual Atlas for Soil Micromorphologists, 19–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67806-7_2.
Full textConference papers on the topic "Soil textures"
Bo, Qian, Lu Qifeng, Yang Suying, and Wang Zhenhui. "Relationship between Infrared Emissivity and Desert Soil Textures." In The International Conference on Remote Sensing,Environment and Transportation Engineering. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/rsete.2013.192.
Full textJay D Jabro, Robert G Evans, Yunseup Kim, and William M Iversen. "In-Situ Soil-Water Retention and Field Water Capacity Measurements in Two Contrasting Soil Textures." In 2008 Providence, Rhode Island, June 29 - July 2, 2008. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2008. http://dx.doi.org/10.13031/2013.25148.
Full textJiang Peifu, Tingwu Lei, Zhai Chunjuan, and Liu Han. "The Interactive Effects of Emitters and Soil Textures on Soil Water Movement under the Negatively Pressurized Irrigation System." In 2005 Tampa, FL July 17-20, 2005. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2005. http://dx.doi.org/10.13031/2013.19048.
Full textAcar, Emrullah, and Mehmet Sirac Ozerdem. "The texture feature extraction of Mardin agricultural field images by HOG algorithms and soil moisture estimation based on the image textures." In 2015 23th Signal Processing and Communications Applications Conference (SIU). IEEE, 2015. http://dx.doi.org/10.1109/siu.2015.7129912.
Full textDanila, Vaidotas, and Saulius Vasarevičius. "Theoretical Evaluation of Heavy Metals Migration and Sorption in Soil." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.015.
Full textSingh, Shikha, Sindhu Jagadamma, Junyi Liang, Gangsheng Wang, and Melanie Mayes. "SENSITIVITY OF MICROBIAL PROCESSING OF SOIL CARBON TO SOIL MOISTURE IN DIFFERENTLY-TEXTURED SOILS." In 67th Annual Southeastern GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018se-312541.
Full textBeavers, J. A., and R. G. Worthingham. "The Influence of Soil Chemistry on SCC of Underground Pipelines." In 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27146.
Full textKremniou, Aliaksander, and Nikolai Vishniakov. "Anisotropy of the Strength Properties of Clays of the North of Belarus." In The 13th Baltic Sea Region Geotechnical Conference. Vilnius Gediminas Technical University, 2016. http://dx.doi.org/10.3846/13bsgc.2016.015.
Full textГолодная, О. М., and Е. А. Жарикова. "FEATURES OF TEXURE OF SOILS OF THE KHANKAISKIY NATURE RESERVE." In Геосистемы Северо-Восточной Азии. Crossref, 2021. http://dx.doi.org/10.35735/tig.2021.41.82.013.
Full textAydin, Elena. "DETERMINATION OF POROSITY OF SOILS WITH DIFFERENT SOIL TEXTURE USING TWO DIFFERENT PYCNOMETERS." In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/3.2/s13.017.
Full textReports on the topic "Soil textures"
Wells, Aaron, Tracy Christopherson, Gerald Frost, Matthew Macander, Susan Ives, Robert McNown, and Erin Johnson. Ecological land survey and soils inventory for Katmai National Park and Preserve, 2016–2017. National Park Service, September 2021. http://dx.doi.org/10.36967/nrr-2287466.
Full textAlban, David H., Donald H. Prettyman, and Gary J. Brand. Growth patterns of red pine on fine-textured soils. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station, 1987. http://dx.doi.org/10.2737/nc-rp-280.
Full textCotterman, Kayla, and Nawa Pradhan. Development of an automatic soil texture extraction routine using combined SSURGO and STATSGO2 dataset. Coastal and Hydraulics Laboratory (U.S.), December 2017. http://dx.doi.org/10.21079/11681/25794.
Full textEbel, Brian A., and John R. Nimmo. Hydraulic Property and Soil Textural Classification Measurements for Rainier Mesa, Nevada Test Site, Nevada. Office of Scientific and Technical Information (OSTI), December 2009. http://dx.doi.org/10.2172/972215.
Full textvan Egmond, F. M., S. van der Veeke, M. Knotters, R. I. Koomans, D. J. J. Walvoort, and J. Limburg. Mapping soil texture with a gamma-ray spectrometer : comparison between UAV and proximal measurements and traditional sampling : validation study. Wageningen: Statutory Research Tasks Unit for Nature & the Environment, 2018. http://dx.doi.org/10.18174/466037.
Full textHeller, P. R., G. W. Gee, and D. A. Myers. Moisture and textural variations in unsaturated soils/sediments near the Hanford Wye barricade. Office of Scientific and Technical Information (OSTI), March 1985. http://dx.doi.org/10.2172/5915054.
Full textBalsiger, Carol. Three basic stoneware glazes for cone six oxidation which may be changed in color or texture by the addition of common materials such as sand, clay soil, crushed gravel, or metal filings. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.559.
Full text