To see the other types of publications on this topic, follow the link: Soils Plastic properties.

Dissertations / Theses on the topic 'Soils Plastic properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 24 dissertations / theses for your research on the topic 'Soils Plastic properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Collins, Steve Alan. "Development and implementation of a hypoelastic constitutive theory to model the behavior of sand." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/21282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

TOUFIGH, MOHAMMAD MOHSEN. "BEHAVIOR OF UNSATURATED SOIL AND ITS INFLUENCE ON SOIL - SOIL INTERACTION AT AN INTERFACE." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184224.

Full text
Abstract:
The interface failure between caps and natural soil in trenches containing buried low level nuclear waste material was investigated in this study. The Casa Grande Highway Farm (CGHF) soil was used for the entire investigation. This soil is described as being a silty sand with approximately 23% by weight passing sieve No. 200. Other preliminary testing was performed on the same soil. Isotropically consolidated drained (CID) tests were performed on the laboratory compacted samples at different degree of saturation including fully saturated specimens. Suction pressure was measured in the laboratory by adopting pressure plate extractor and compared with determined effective suction in triaxial testing. A generalized failure equation, in term of strength parameters and suction pressure, was defined for all degrees of saturation. The consideration of unsaturated soil sets the current modified model apart from previous bounding surface which only allows use of fully saturated cohesive soil. The saturated material constants associated with the model are identified. These new constants are obtained from a generalized failure equation. The model was then verified by comparing predictions with other laboratory tests which are not used in the calibration. Generally a good agreement between the model and test results was found for stress-strain, stress path and volumetric strain response at different degrees of saturation. Extensive interface tests were performed in the conventional direct shear machine with some modification. Similar to trench cap soil and natural soil in the field, the test specimens were prepared at different degrees of saturation and density (compaction effort). Comparisons were made for the effects of magnitude of normal load, degree of saturation, density, compaction effort, moisture migration and dissimilar bodies density. An interface element and the modified bounding surface model and elasticity model was used in a finite element program to predict the interface response for the laboratory results and actual field problems. Material parameters related to the interface were identified and good predictions were observed for the interface behavior.
APA, Harvard, Vancouver, ISO, and other styles
3

Southworth, Roger Kevin 1961. "SPATIAL VARIATION MODELING OF REGULARLY SPACED SOIL PROPERTY DATA IN ONE DIMENSION (TIME SERIES ANALYSIS)." Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mohamed, Abdel-Mohsen Onsy. "Performance of an anisotropic clay under variable stresses." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75342.

Full text
Abstract:
In the true triaxial test procedure used for testing laboratory-prepared kaolinite clay samples, undrained (with constant mean stress) strength tests were conducted to study the yield and failure of the clays. The principle concern focussed around the influence of orientation of particle bedding plane on the development of yield and failure characteristics of the clay. As the true triaxial cell permits variations of the three principal stresses, it was possible to study the soil response in any chosen quadrant of the principal space.<br>As a consequence to what is mentioned above, two types of consolidated undrained true triaxial tests were conducted in this study. In the first type, specimens were trimmed from the block sample with 90, 60, 30 and 0 degree orientation angles of particle's bedding planes; these angles were measured with respect to the direction of the major principal stress axis. For each degree of inclination, specimens were tested with three confining pressures 207, 276 and 345 kPa, and for each value of confining pressure, the loading path was varied from compression to tension.<br>The degree of dissociation between the stress and strain increment vectors was seen to depend on both initial and stress induced anisotropy.<br>Most important of all, a constitutive relationship for anisotropic kaolinite clay was derived on the basis of the observed experimental behaviour of soil samples under loading.<br>Additionally, anisotropy is characterized by a double transformation technique. The first transformation accounts for the directional dependency whilst the second transformation concerns itself with anisotropy of the base vectors. The relative joint invariant principle is used to calculate the degree of dissociation during the loading process. The variation of the dissociation angle during the loading process can be considered as a measure of the evolution of the resultant anisotropy. The model has shown to provide viable predictions of the stress-strain relationships obtained from true triaxial tests on an anisotropic kaolinite clay for: (a) different inclinations of particle's bedding planes, (b) different stress paths in one sector, (c) different stress paths in other sectors, and (d) the failure surfaces for different inclinations of particle's bedding planes in the octahedral plane. (Abstract shortened with permission of author.)
APA, Harvard, Vancouver, ISO, and other styles
5

Nanda, Atul. "Finite element analysis of elastic-plastic anisotropic soils." Diss., Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/53650.

Full text
Abstract:
Elastic-plastic stress·strain models are developed for initially anisotropic soils. The models are developed for both total stress (undrained) analyses and for effective stress (drained) analyses. For anlsotroplc undralned coheslve soils under monotonic loading an elastic-plastic isotropic-hardening model is developed. For complex loading conditions the model is extended using multisurface plasticity. For effective stress analyses of soils, the Cam-Clay model concepts are generalized for initially anisotropic soils. Both isotropic and anisotropic hardening are used in the model. The behavior of the models is investigated under several loading conditions and some comparisons are made with experimental triaxial data. A nonlinear three-dimensional finite element program is developed in which the models are implemented. An updated Lagrangian large displacement analysis is also included. The constitutive models developed are used to investigate the influence of initial anisotropy on the bearing capacity, deformation and pore pressure development under footings in both plane-strain and three dimensional conditions. It is found that for the range of anisotropy encountered in the field, the deformation and bearing capacity are significantly different.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
6

GALAGODA, HERATH MAHINDA. "NONLINEAR ANALYSIS OF POROUS SOIL MEDIA AND APPLICATION (PORE PRESSURE, TIME INTEGRATION, FINITE ELEMENTS)." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183913.

Full text
Abstract:
The behavior of porous media subjected to any arbitrary loading is a complex phenomenon due to the coupled nature of the problem. Proper understanding of this coupled behavior is essential in dealing with many of the geotechnical engineering problems. A very general three-dimensional formulation of such a coupled problem was first reported by Biot; however, a two-dimensional idealization of the theory is used here with extension to nonlinear material behavior. A finite element computer code is developed to analyze the response of coupled systems subjected to both static and dynamic excitations. The code can also be used to solve problems involving only solid media by suppressing the presence of fluid. The generalized anisotropic hardening model is implemented into the finite element procedure to characterize nonlinear material behavior throughout the realm of its deformation process. Both drained and undrained conditions are considered in order to verify the performance of the model in capturing material behavior. Three different materials are considered for this purpose. The predictions obtained using the anisotropic model for both drained and undrained condition yield satisfactory comparison with observed behavior. The finite element procedure is verified by solving several problems involving undrained, consolidation and dynamic responses of coupled system. Good agreements are found between numerical and analytical results. Further verification of the computer code and the material model is performed by solving two boundary value problems. For this purpose, a laboratory pressuremeter test subjected to quasi-static loading condition and a building foundation system subjected to rapid earthquake excitation were analyzed. The results of this research have provided an improved understanding of coupled behavior of porous media. The procedure developed here can be effectively used under a wide range of loading conditions varying from very slow quasi-static to very rapid earthquake excitations.
APA, Harvard, Vancouver, ISO, and other styles
7

HASHMI, QUAZI SARWAR EHSAN. "NONASSOCIATIVE PLASTICITY MODEL FOR COHESIONLESS MATERIALS AND ITS IMPLEMENTATION IN SOIL-STRUCTURE INTERACTION." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184024.

Full text
Abstract:
A constitutive model based on rate-independent elastoplasticity concepts is developed and used to simulate the behavior of geologic materials under arbitrary three-dimensional stress paths. The model accounts for various factors such as friction, stress path and stress history that influence the behavior of geologic materials. A hierarchical approach is adopted whereby models of progressively increasing sophistication are developed from a basic isotropic-hardening associative model. Nonassociativeness is introduced as correction or perturbation to the basic model. Deviation of normality of the plastic strain increments to the yield surface F is captured through nonassociativeness. The plastic potential Q is obtained by applying a correction to F. This simplified approach restricts the number of extra parameters required to define the plastic potential Q. The material constants associated with the model are identified, and they are evaluated for three different sands (Leighton Buzzard, Munich and McCormick Ranch). The model is then verified by comparing predictions with laboratory tests from which the constants were found, and typical tests not used for finding the constants. The effect of varying initial density of a material on the stress-strain and volumetric response is investigated. An empirical relation is proposed, whereby one parameter is modified based on the initial density, such that improved predictions can be obtained without increasing the total number of parameters. Implementation of the nonassociative model in a finite element program to solve boundary value problems leads to a nonsymmetric stiffness matrix. Besides, using a nonsymmetric solver, three numerical schemes are investigated. The idea of the schemes is to modify the stiffness matrix such that a symmetric equation solver can be used. Prediction of stress-strain, volumetric response and CPU time for different schemes are compared with the predictions obtained using the nonsymmetric solver. The nonsymmetric equation solver used less CPU time and the solutions were more accurate. Based on the above findings, a soil-footing system is analyzed using the finite element techniques. The associative and nonassociative models are used to predict the behavior. For the nonassociative model, solution is obtained by using a nonsymmetric solver. Results obtained from both models are compared with a model footing test performed in the laboratory.
APA, Harvard, Vancouver, ISO, and other styles
8

Nagaraj, H. B. "Prediction Of Engineering Properties Of Fine-Grained Soils From Their Index Properties." Thesis, Indian Institute of Science, 2000. https://etd.iisc.ac.in/handle/2005/209.

Full text
Abstract:
Prediction as a tool in engineering has been used in taking right judgement in many of the professional activities. This being the fact, the role and significance of prediction in geotechnical practice needs no emphasis. Bulk of all man made structures are either made of soil or are resting on natural soil, involving large quantities of soil. Thus, it is often necessary for the geotechnical engineer to quickly characterize the soil and determine their engineering properties, so as to assess the suitability of the soil for any specific purpose. Obtaining these properties requires undisturbed samples, which involves time and money, and also elaborate laboratory procedures. Thus, it is desirable to find simpler and quicker methods of testing, using the data of which the engineering properties can be predicted satisfactorily especially so, for preliminary design purposes. Most often this can be achieved from simple tests known as inferential tests, and the engineering properties namely, compressibility, swell/collapse, hydraulic conductivity, strength and compaction characteristics can be obtained from empirical/semi-empirical correlations. The index tests namely the Atterberg limits form the most important inferential soil tests with very wide universal acceptance. These tests are relatively simple to perform and have provided a basis for explaining most engineering properties of soils in geotechnical practice. In this direction, this investigation has been carried out to correlate the engineering properties with the simple index properties and their indices, namely, the liquid limit, plastic limit, shrinkage limit, plasticity index and shrinkage index (liquid limit - shrinkage limit). Any good correlation in the prediction of engineering properties with the index properties will enhance the use of simple test for prediction purposes. This thesis is an attempt towards this direction. It is often necessary to identify the basic mechanisms controlling the engineering properties from a micro-mechanistic point of view and correlate with the index properties, thereby facilitating prediction of engineering properties better. Though attempts have been made in the past to predict the engineering properties of soils from the index properties/indic­es, they are not quite satisfactory. This thesis is an attempt to predict the engineering properties of fine-grained soils from the index properties taking into consideration the mechanisms controlling them. Since, the index properties are used for prediction of engineering properties, the existing methods of determining the same have been examined carefully and critically. It's satisfactory determination is found important because other indices namely plasticity index, Ip and shrinkage index, Is = (wL - ws), are determined based on it. Also the liquid limit is one of the important and widely used parameter in various existing correlations. In this direction, two new methods of determining the liquid limit have been developed, namely (i) absorption water content and liquid limit of soils and (ii) liquid limit from equilibrium water content under Ko-stress. In the absorption water content method, the water absorbed by an oven dried soil pat at equilibrium gives a good correlation with the liquid limit of soils. Here, the water holding capacity at equilibrium goes well with the mechanism of liquid limit, which is also the water holding capacity of a soil at a particular small but measurable shear strength. A good relationship is found to exit between the absorption water content, wA and the liquid limit, wL, and it is given as : WA = 0.92 wL (i) In the second method, namely, the liquid limit from equilibrium water content under K0-stress, which is the equilibrium water content under a Ko stress of 0.9 kPa is found to be equal to the liquid limit obtained from the cone penetration method of determining the liquid limit It is found that this method of determining the liquid limit overcomes the limitations of the conventional methods of determining the liquid limit, also easy to determine with a simple apparatus and has good repeatability. Determination of plastic limit of the soils by the rolling thread method often poses a problem especially when the soil is less plastic. Hence, to overcome this problem, a new method has been proposed to predict the plasticity index in terms of the flow index. The relationship between the plasticity index and the flow index by the cone penetration cup method is found to be better than by the percussion cup method. Since, the cone penetration method of the liquid limit determination is more popular than the percussion cup method, the flow index from the cone method is recommended to determine the plasticity index from the correlation as given below: (/p)c = 0.74 Ifc (ii) Thus, the plastic limit can be determined with the plasticity index, thereby dispensing with the determination of plastic limit by the thread method. The determination of consolidation characteristics form an important aspect in the design of foundations and other earth retaining structures. The determination of consolidation characteristics namely the compression index, the coefficient of consolidation and the coefficient of secondary compression is time consuming. So, researchers have resorted to correlating the compressibility behaviour with simple index properties. While attempts have been made in the past to correlate the compressibility behaviour with various index properties individually, all the important properties affecting the compressibility behaviour has not been considered together in any single study to examine which of the index property/properties of the soils correlates better with the compressibility behaviour, especially with the same set of test results. Number of existing correlations with the liquid limit alone as a primary index property correlating with the compression index have limitations in that they do not consider the plasticity characteristics of the soils fully. The index parameter, shrinkage index, Is has a better correlation with the compression index, Cc and also the coefficient of volume change, mv than plasticity index. Coefficient of consolidation, Cv has also shown to correlate well with shrinkage index than the plasticity index. Even the coefficient of secondary compression, Cαε has shown to have a better correlation with shrinkage index than the plasticity index. However, liquid limit has a poor correlation with all the compressibility characteristics. The correlation of Cc and Cv with shrinkage index, Is is as given below: Cc = 0.007 (Is + 18) (iii) Cv = 3x10-2 (Is)-3.54 (in m2/sec) Further, to reduce the testing time of conventional consolidation test in order to obtain the compressibility characteristics, a new method known as rapid method of consolidation has been proposed, which is very effective in enormously reducing the time of consolidation without sacrificing the accuracy of the end results. The time required in the rapid method of consolidation testing could be as low as 4 to 5 hours to complete the whole test as compared to 1 to 2 weeks as the case may be by the conventional consolidation test. Using any curve fitting procedure the degree of consolidation, U for any pressure increment can be found out. Thus, the effective pressure at that stage can be calculated and further the pressure incremented without further delay. This procedure is repeated for every pressure increment with a load increment ratio of unity till the desired pressure level is reached. Even for a highly compressible soil like BC soil with a liquid limit of 73.5 %, the consolidation test could be completed within 5 hours by the rapid method, without any sacrifice of the accuracy of the results as compared to 7 days by the conventional method to reach a pressure of 800 kPa. Hydraulic conductivity is one of the basic engineering properties of soils. Of late hydraulic conductivity of fine-grained soils has assumed greater importance in waste disposal facilities. From the present investigation it is found that hydraulic conductivity with water for each pair of soils having nearly the same liquid limit but different plasticity properties is found to be vastly different, but found to correlate well with shrinkage index. A method to predict the hydraulic conductivity of fine -grained soils as a function of void ratio is proposed with the use of shrinkage index as given below: k = C [ ] (in m/sec) (v) 1 + e C = 2.5 x 10-4 (/s)-5.89 and n = 4 (vi) It has also been brought out that as the dielectric constant of the pore fluid decreases; there is a drastic increase in the intrinsic permeability of soil. These changes are attributed to the significant reduction in the thickness of diffuse double layer, which in turn is mainly dependent on the dielectric constant of the pore fluid. The quantification of the change in the hydraulic conductivity with the change in the pore fluids of extreme dielectric constant, i.e., from water to carbon tetrachloride could be expressed in terms of the volume of water held in the diffuse double layer and the same has a good correlation with shrinkage index. With the advancement in the knowledge of the engineering behaviour of fine-grained soils, there is an increasing trend toward larger involvement of fine-grained soils in earth structures and foundations. Though extensive work has been done in the past to understand the swelling behaviour of expansive soils and the mechanisms involved therein, it is yet not satisfactory. From the literature it can be seen that lot of work has been done to correlate the swell potential with various physical properties. The simple means of identifying the swelling type of soils is by means of free swell tests with the ratio of free swell with carbon tetrachloride to the free swell of water. The same has found to correlate well with the percent swell/collapse of the ten soils used in the present investigation. However, it was found that shrinkage index has a better correlation with the swell/collapse behaviour of fine-grained soils, compared to the liquid limit or the plasticity index. In this study, it is also shown that neither the liquid limit nor the plasticity index can qualitatively describe the swell/collapse behaviour of fine-grained soils. This has been attributed primarily to two different mechanisms governing montmorillonitic and kaolinitic soils separately. Even swelling pressure has shown to have a good correlation with shrinkage index. It is found that the compression index of the samples consolidated from the swollen condition correlates well with the shrinkage index. Laboratory determination of the compaction characteristics are very much important for use in earth work constructions. It is found that only the plastic limit bears a good correlation with the compaction characteristics namely optimum moisture content and maximum dry unit weight. This conclusion is also supported by the data from the literature. The correlations are given as: OMC = 0.92 wp (in percent) (viii) and ydmax = 0.23 (93.3 - wp) (inkN/m3) (ix) Liquid limit, plasticity index and shrinkage index do not bear any correlation with the compaction characteristics. It is quite possible that, the plastic limit, which is the optimum water content of a saturated soil at which it behaves as a plastic material, and thus can be moulded to any shape, thereby the soil can be compacted or moulded to the densest possible state at that water content. Hence, possibly the good correlation. A simple method to predict the compaction curve is proposed based on the plastic limit of the soils. Of all the important engineering properties, both volume change (compressibility and swelling) and hydraulic conductivity have good correlation with the shrinkage index. However, the compaction characteristics correlate well with the plastic limit. Herein, an hypothesis is proposed to possibly explain why shrinkage index has shown to be a better parameter to correlate with most of the engineering properties with the exception of the compaction characteristics. The liquid limit is a parameter which takes part of the plasticity characteristics of a soil. Recently it has been well brought out that shrinkage limit is primarily a function of how the varying grain sizes are distributed in a soil. Thus, shrinkage limit takes care of the gradation of the soil fractions in it. Thus, by considering the shrinkage index, which is the difference of the liquid limit water content on one end and shrinkage limit water content on the other end, the primary physical properties of the soils namely the plasticity and the grain size distribution are considered. This possibly explains the good correlation of shrinkage index with the engineering properties of fine-grained soils. However, compaction being a moulding of the soils into a compact state, it has a good correlation with the plastic limit, which is the optimum water content of a saturated soil at which it behaves as a plastic material, and thus can be moulded to any shape, thereby the soil can be compacted or moulded to the densest possible state at that water content. Hence, the good correlation. As the present investigation gives the correlative equations to predict the engineering properties of fine-grained soils from the appropriate index properties, which are obtained from simple and quick laboratory tests, it is hoped that this will go a long way in being a handy tool for a practicing geotechnical engineer in the preliminary assessment of fine-grained soils and thereby take appropriate judgement in various aspects of geotechnical constructions with it.
APA, Harvard, Vancouver, ISO, and other styles
9

Nagaraj, H. B. "Prediction Of Engineering Properties Of Fine-Grained Soils From Their Index Properties." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/209.

Full text
Abstract:
Prediction as a tool in engineering has been used in taking right judgement in many of the professional activities. This being the fact, the role and significance of prediction in geotechnical practice needs no emphasis. Bulk of all man made structures are either made of soil or are resting on natural soil, involving large quantities of soil. Thus, it is often necessary for the geotechnical engineer to quickly characterize the soil and determine their engineering properties, so as to assess the suitability of the soil for any specific purpose. Obtaining these properties requires undisturbed samples, which involves time and money, and also elaborate laboratory procedures. Thus, it is desirable to find simpler and quicker methods of testing, using the data of which the engineering properties can be predicted satisfactorily especially so, for preliminary design purposes. Most often this can be achieved from simple tests known as inferential tests, and the engineering properties namely, compressibility, swell/collapse, hydraulic conductivity, strength and compaction characteristics can be obtained from empirical/semi-empirical correlations. The index tests namely the Atterberg limits form the most important inferential soil tests with very wide universal acceptance. These tests are relatively simple to perform and have provided a basis for explaining most engineering properties of soils in geotechnical practice. In this direction, this investigation has been carried out to correlate the engineering properties with the simple index properties and their indices, namely, the liquid limit, plastic limit, shrinkage limit, plasticity index and shrinkage index (liquid limit - shrinkage limit). Any good correlation in the prediction of engineering properties with the index properties will enhance the use of simple test for prediction purposes. This thesis is an attempt towards this direction. It is often necessary to identify the basic mechanisms controlling the engineering properties from a micro-mechanistic point of view and correlate with the index properties, thereby facilitating prediction of engineering properties better. Though attempts have been made in the past to predict the engineering properties of soils from the index properties/indic­es, they are not quite satisfactory. This thesis is an attempt to predict the engineering properties of fine-grained soils from the index properties taking into consideration the mechanisms controlling them. Since, the index properties are used for prediction of engineering properties, the existing methods of determining the same have been examined carefully and critically. It's satisfactory determination is found important because other indices namely plasticity index, Ip and shrinkage index, Is = (wL - ws), are determined based on it. Also the liquid limit is one of the important and widely used parameter in various existing correlations. In this direction, two new methods of determining the liquid limit have been developed, namely (i) absorption water content and liquid limit of soils and (ii) liquid limit from equilibrium water content under Ko-stress. In the absorption water content method, the water absorbed by an oven dried soil pat at equilibrium gives a good correlation with the liquid limit of soils. Here, the water holding capacity at equilibrium goes well with the mechanism of liquid limit, which is also the water holding capacity of a soil at a particular small but measurable shear strength. A good relationship is found to exit between the absorption water content, wA and the liquid limit, wL, and it is given as : WA = 0.92 wL (i) In the second method, namely, the liquid limit from equilibrium water content under K0-stress, which is the equilibrium water content under a Ko stress of 0.9 kPa is found to be equal to the liquid limit obtained from the cone penetration method of determining the liquid limit It is found that this method of determining the liquid limit overcomes the limitations of the conventional methods of determining the liquid limit, also easy to determine with a simple apparatus and has good repeatability. Determination of plastic limit of the soils by the rolling thread method often poses a problem especially when the soil is less plastic. Hence, to overcome this problem, a new method has been proposed to predict the plasticity index in terms of the flow index. The relationship between the plasticity index and the flow index by the cone penetration cup method is found to be better than by the percussion cup method. Since, the cone penetration method of the liquid limit determination is more popular than the percussion cup method, the flow index from the cone method is recommended to determine the plasticity index from the correlation as given below: (/p)c = 0.74 Ifc (ii) Thus, the plastic limit can be determined with the plasticity index, thereby dispensing with the determination of plastic limit by the thread method. The determination of consolidation characteristics form an important aspect in the design of foundations and other earth retaining structures. The determination of consolidation characteristics namely the compression index, the coefficient of consolidation and the coefficient of secondary compression is time consuming. So, researchers have resorted to correlating the compressibility behaviour with simple index properties. While attempts have been made in the past to correlate the compressibility behaviour with various index properties individually, all the important properties affecting the compressibility behaviour has not been considered together in any single study to examine which of the index property/properties of the soils correlates better with the compressibility behaviour, especially with the same set of test results. Number of existing correlations with the liquid limit alone as a primary index property correlating with the compression index have limitations in that they do not consider the plasticity characteristics of the soils fully. The index parameter, shrinkage index, Is has a better correlation with the compression index, Cc and also the coefficient of volume change, mv than plasticity index. Coefficient of consolidation, Cv has also shown to correlate well with shrinkage index than the plasticity index. Even the coefficient of secondary compression, Cαε has shown to have a better correlation with shrinkage index than the plasticity index. However, liquid limit has a poor correlation with all the compressibility characteristics. The correlation of Cc and Cv with shrinkage index, Is is as given below: Cc = 0.007 (Is + 18) (iii) Cv = 3x10-2 (Is)-3.54 (in m2/sec) Further, to reduce the testing time of conventional consolidation test in order to obtain the compressibility characteristics, a new method known as rapid method of consolidation has been proposed, which is very effective in enormously reducing the time of consolidation without sacrificing the accuracy of the end results. The time required in the rapid method of consolidation testing could be as low as 4 to 5 hours to complete the whole test as compared to 1 to 2 weeks as the case may be by the conventional consolidation test. Using any curve fitting procedure the degree of consolidation, U for any pressure increment can be found out. Thus, the effective pressure at that stage can be calculated and further the pressure incremented without further delay. This procedure is repeated for every pressure increment with a load increment ratio of unity till the desired pressure level is reached. Even for a highly compressible soil like BC soil with a liquid limit of 73.5 %, the consolidation test could be completed within 5 hours by the rapid method, without any sacrifice of the accuracy of the results as compared to 7 days by the conventional method to reach a pressure of 800 kPa. Hydraulic conductivity is one of the basic engineering properties of soils. Of late hydraulic conductivity of fine-grained soils has assumed greater importance in waste disposal facilities. From the present investigation it is found that hydraulic conductivity with water for each pair of soils having nearly the same liquid limit but different plasticity properties is found to be vastly different, but found to correlate well with shrinkage index. A method to predict the hydraulic conductivity of fine -grained soils as a function of void ratio is proposed with the use of shrinkage index as given below: k = C [ ] (in m/sec) (v) 1 + e C = 2.5 x 10-4 (/s)-5.89 and n = 4 (vi) It has also been brought out that as the dielectric constant of the pore fluid decreases; there is a drastic increase in the intrinsic permeability of soil. These changes are attributed to the significant reduction in the thickness of diffuse double layer, which in turn is mainly dependent on the dielectric constant of the pore fluid. The quantification of the change in the hydraulic conductivity with the change in the pore fluids of extreme dielectric constant, i.e., from water to carbon tetrachloride could be expressed in terms of the volume of water held in the diffuse double layer and the same has a good correlation with shrinkage index. With the advancement in the knowledge of the engineering behaviour of fine-grained soils, there is an increasing trend toward larger involvement of fine-grained soils in earth structures and foundations. Though extensive work has been done in the past to understand the swelling behaviour of expansive soils and the mechanisms involved therein, it is yet not satisfactory. From the literature it can be seen that lot of work has been done to correlate the swell potential with various physical properties. The simple means of identifying the swelling type of soils is by means of free swell tests with the ratio of free swell with carbon tetrachloride to the free swell of water. The same has found to correlate well with the percent swell/collapse of the ten soils used in the present investigation. However, it was found that shrinkage index has a better correlation with the swell/collapse behaviour of fine-grained soils, compared to the liquid limit or the plasticity index. In this study, it is also shown that neither the liquid limit nor the plasticity index can qualitatively describe the swell/collapse behaviour of fine-grained soils. This has been attributed primarily to two different mechanisms governing montmorillonitic and kaolinitic soils separately. Even swelling pressure has shown to have a good correlation with shrinkage index. It is found that the compression index of the samples consolidated from the swollen condition correlates well with the shrinkage index. Laboratory determination of the compaction characteristics are very much important for use in earth work constructions. It is found that only the plastic limit bears a good correlation with the compaction characteristics namely optimum moisture content and maximum dry unit weight. This conclusion is also supported by the data from the literature. The correlations are given as: OMC = 0.92 wp (in percent) (viii) and ydmax = 0.23 (93.3 - wp) (inkN/m3) (ix) Liquid limit, plasticity index and shrinkage index do not bear any correlation with the compaction characteristics. It is quite possible that, the plastic limit, which is the optimum water content of a saturated soil at which it behaves as a plastic material, and thus can be moulded to any shape, thereby the soil can be compacted or moulded to the densest possible state at that water content. Hence, possibly the good correlation. A simple method to predict the compaction curve is proposed based on the plastic limit of the soils. Of all the important engineering properties, both volume change (compressibility and swelling) and hydraulic conductivity have good correlation with the shrinkage index. However, the compaction characteristics correlate well with the plastic limit. Herein, an hypothesis is proposed to possibly explain why shrinkage index has shown to be a better parameter to correlate with most of the engineering properties with the exception of the compaction characteristics. The liquid limit is a parameter which takes part of the plasticity characteristics of a soil. Recently it has been well brought out that shrinkage limit is primarily a function of how the varying grain sizes are distributed in a soil. Thus, shrinkage limit takes care of the gradation of the soil fractions in it. Thus, by considering the shrinkage index, which is the difference of the liquid limit water content on one end and shrinkage limit water content on the other end, the primary physical properties of the soils namely the plasticity and the grain size distribution are considered. This possibly explains the good correlation of shrinkage index with the engineering properties of fine-grained soils. However, compaction being a moulding of the soils into a compact state, it has a good correlation with the plastic limit, which is the optimum water content of a saturated soil at which it behaves as a plastic material, and thus can be moulded to any shape, thereby the soil can be compacted or moulded to the densest possible state at that water content. Hence, the good correlation. As the present investigation gives the correlative equations to predict the engineering properties of fine-grained soils from the appropriate index properties, which are obtained from simple and quick laboratory tests, it is hoped that this will go a long way in being a handy tool for a practicing geotechnical engineer in the preliminary assessment of fine-grained soils and thereby take appropriate judgement in various aspects of geotechnical constructions with it.
APA, Harvard, Vancouver, ISO, and other styles
10

Salahuddin, Mohammed 1959. "Dilatancy effects on the constitutive modeling of granular soils." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276825.

Full text
Abstract:
Unique features of behavior of granular materials make constitutive modeling of these materials a challenge that has not yet been answered completely. Because volume changes are so important for the type of behavior exhibited by frictional materials, it is important to correctly incorporate them in constitutive models, both in terms of their rate of development and their magnitude. In this study a number of consolidated drained triaxial tests are performed to find those features of sand behavior that can be considered "material parameters" and can be used for constitutive modeling of granular soils. Special attention is given to those features of material behavior that are related to dilatancy. A number of published experimental data are also analyzed and useful trends of soil behavior are found.
APA, Harvard, Vancouver, ISO, and other styles
11

SOMASUNDARAM, SUJITHAN. "CONSTITUTIVE MODELLING FOR ANISOTROPIC HARDENING BEHAVIOR WITH APPLICATIONS TO COHESIONLESS SOILS (INDUCED, KINEMATIC, NON-ASSOCIATIVENESS)." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/188165.

Full text
Abstract:
A constitutive model based on rate-independent elastoplasticity concepts is developed to simulate the behavior of geologic materials under arbitrary three-dimensional stress paths, stress reversals and cyclic loading. The model accounts for the various factors such as friction, stress path, stress history, induced anisotropy and initial anisotropy that influence the behavior of geologic materials. A hierarchical approach is adapted whereby models of progressively increasing sophistication are developed from a basic isotropic-hardening associative model. The influence of the above factors is captured by modifying the basic model for anisotropic (kinematic) hardening and deviation from normality (nonassociativeness). Both anisotropic hardening and deviation from normality are incorporated by introducing into the formulation a second order tensor whose evolution is governed by the level of induced anisotropy in the material. In the stress-space this formulation may be interpreted as a translating potential surface Q that moves in a fixed field of isotropic yield surfaces. The location of the translating surface in the stress-space, at any stage of the deformation, is given by the 'induced anisotropy' tensor. A measure to represent the level of induced anisotropy in the material is defined. The validity of this representation is investigated based on a series of special stress path tests in the cubical triaxial device on samples of Leighton Buzzard sand. The significant parameters of the models are defined and determined for three sands based on results of conventional laboratory test results. The model is verified with respect to laboratory multiaxial test data under various paths of loading, unloading, reloading and cyclic loading.
APA, Harvard, Vancouver, ISO, and other styles
12

To, Chiu-yin, and 杜昭彥. "A unified elasto-plastic model for saturated loosely compacted completely decomposed granite." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40203554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Evans, T. Matthew. "Microscale Physical and Numerical Investigations of Shear Banding in Granular Soils." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7576.

Full text
Abstract:
Under loading conditions found in many geotechnical structures, it is common to observe failure in zones of high localized strain called shear bands. Existing models predict these localizations, but provide little insight into the micromechanics within the shear bands. This research captures the variation in microstructure inside and outside of shear bands that were formed in laboratory plane strain and two-dimensional discrete element method (DEM) biaxial compression experiments. Plane strain compression tests were conducted on dry specimens of Ottawa 20-30 sand to calibrate the device, assess global response repeatability, and develop a procedure to quantitatively define the onset of localization. A new methodology was employed to quantify and correct for the additional stresses imparted by the confining membrane in the vicinity of the shear band. Unsheared and sheared specimens of varying dilatancy were solidified using a two-stage resin impregnation procedure. DEM tests were performed using an innovative servo-controlled flexible lateral confinement algorithm to provide additional insights into laboratory results. The solidified specimens were sectioned and the resulting surfaces prepared for microstructure observation using bright field microscopy and morphological analysis. Local void ratio distributions and their statistical properties were determined and compared. Microstructural parameters for subregions in a grid pattern and along predefined inclined zones were also calculated. Virtual surfaces parallel to the shear band were identified and their roughnesses assessed. Similar calculations were performed on the DEM simulations at varying strain levels to characterize the evolution of microstructure with increasing strain. The various observations showed that the mean, standard deviation, and entropy of the local void ratio distributions all increased with increasing strain levels, particularly within regions of high local strains. These results indicate that disorder increases within a shear band and that the soil within the shear band does not adhere to the classical concept of critical state, but reaches a terminal void ratio that is largely a function of initial void ratio. Furthermore, there appears to be a transition zone between the far field and the fully formed shear block, as opposed to an abrupt delineation as traditionally inferred.
APA, Harvard, Vancouver, ISO, and other styles
14

Jradi, Layal. "Study of the influence of fine particles on the properties of liquefaction of sands." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1053/document.

Full text
Abstract:
Au cours des 50 dernières années, l’étude du phénomène de liquéfaction de sols sableux saturés ont fait l'objet de nombreuses recherches en laboratoire. La plupart de ces recherches antérieures se sont concentrées sur la liquéfaction de sables propres, en supposant que la présence de fines limite le développement de la surpression interstitielle et donc le risque de liquéfaction. Cependant, les sables sableux naturels se trouvent généralement dans la nature sous la forme d'un mélange de sable et de fines et, l’influence de ces fines sur le risque de liquéfaction de ce type de matériau n'est toujours pas claire. En effet, on trouve des résultats contradictoires, dans la littérature, sur l'effet des particules fines sur le phénomène de liquéfaction des sables. Dans ce contexte, l’objectif principal de ce travail expérimental est de clarifier et de quantifier l’influence des particules fines présentes au sein d’une matrice sableuse sur l’initiation et le développement du phénomène de liquéfaction. On s’est intéressé, en particulier, à la nature des particules fines (plastique/non-plastique), à leur proportion au sein de la matrice, à l’état de compacité de la matrice et à l’état de contrainte initial (état de consolidation). A cet effet, à l'aide d'un nouveau dispositif triaxial servo-hydraulique, une série d'essais monotones et cycliques ont été effectués afin de clarifier cet effet. Les résultats expérimentaux montrent que l'augmentation de la proportion de fines non plastiques augmente la résistance à la liquéfaction du mélange sous chargements monotone et cyclique. Par contre, cette tendance est inversée pour les mélanges qui contiennent des fines plastiques. Enfin, une comparaison a été établie entre le comportement de ces sols sous cisaillement monotone et cyclique non drainé en termes d'évaluation du déclenchement du phénomène d'instabilité et d'autres paramètres mécaniques<br>Since the last 50 years, the study of the phenomenon of liquefaction of saturated sandy soils has been a topic of extensive laboratory research. Most of the earlier research has focused on the liquefaction of clean sands assuming that the presence of fines resists the development of pore water pressure as well as the risk of liquefaction. However, natural sand is found in nature under the form of a mixture of sand and fines and, the influence of these fines on the liquefaction risk of this type of material is still unclear. In fact, we could find contradictory results in the literature review of the effect of fine particles on the sand liquefaction phenomenon. In this context, the main objective of this study is to clarify and quantify the influence of fine particles (plastic and non-plastic) present in a sandy matrix on the initiation and development of the liquefaction phenomenon .We’ve focused, in particular, on the nature of fine particles (plastic/non-plastic), their proportion in the matrix, the matrix compactness condition and initial stress state (state consolidation). For this purpose, with the aid of a new triaxial servo-hydraulic device, a series of monotonic and cyclic tests were done in order to clarify this effect. Experimental results show that the increase in non-plastic fines increases the resistance to liquefaction of the mixture under both monotonic and cyclic loading. However, this trend is reversed for the mixtures containing plastic fines. Finally a comparison has been established between the behavior of these soils under undrained monotonic and cyclic shearing in terms of evaluation of the initiation of instability phenomenon and other mechanical parameters
APA, Harvard, Vancouver, ISO, and other styles
15

Lasledj, Abdelmadjid. "Traitement des sols argileux à la chaux : processus physico-chimique et propriétés géotechniques." Thesis, Orléans, 2009. http://www.theses.fr/2009ORLE2044/document.

Full text
Abstract:
Le traitement des sols à la chaux est une technique ancienne et efficace dans les travaux de génie civil. Dans l'objectif du « zéro emprunt/zéro déchet » dans les travaux de terrassement routier, cette étude démontre que quelles que soient la plasticité et la médiocrité des propriétés hydromécaniques des sols argileux, le traitement à la chaux s'avère efficace. Les résultats expérimentaux concernant un sol argileux extrêmement plastique et gonflant montrent que les propriétés géotechniques s'améliorent avec le traitement à la chaux : le gonflement est éliminé, la plasticité réduite fortement et la résistance mécanique augmentée. Le suivi du processus physico-chimique de la réaction chaux–argile a permis de déterminer les quantités de chaux nécessaires aux changements instantanés ou/et durables du comportement hydromécanique des sols argileux traités. L'échange cationique poursuivi par la réaction pouzzolanique induisent dans les sols traités des modifications minéralogiques, texturales et structurales. Des hydrates calciques nouveaux sont formés grâce à la consommation de la chaux et des argiles. Ces hydrates tapissent les bords des particules argileuses et constituent une couche qui enrobent et assurent le lien entre les particules. Ces changements sont ainsi à l'origine des améliorations des propriétés géotechniques des sols traités. Les travaux de recherche réalisés démontrent que le processus et la cinétique des réactions chaux– argile dépendent du cation échangeable, de la quantité de chaux disponible, de la température de maturation et de la structure de l'argile : smectite, illite ou kaolinite<br>Lime treatment techniques have largely been developed across the word mainly in civil engineering works. The context of sustainable development implies to improve the rate of reuse of clay soils in the earthworks. This study demonstrates that whatever the plasticity and poor hydromechanical properties of clay soils, the lime treatment is effective. Experimental results on highly plastic clay soil show that all geotechnical properties progress with the lime treatment: the swelling is eliminated, the plasticity is reduced greatly and the strength increases. Monitoring the physicochemical lime-clay reaction allowe to determine the quantities of lime required for short term and/or long term changes in the hydromechanical behaviour of treated clay soils. The cation exchange pursued by the pozzolanic reactions induced mineralogical, textural and structural changes in the treated soil. New hydrates are formed through the consumption of lime and clay. These hydrates contour the edges of clay particles and formed a layer which coat and provide the link between particles. These changes are well behind improvements in geotechnical properties of treated soil. The research conducted in this thesis shows that the process and the kinetics of lime-clay reactions depend on the exchangeable cation, the amount of lime available, to the curing temperature and the structure of the clay smectite, illite and kaolinite
APA, Harvard, Vancouver, ISO, and other styles
16

Brault, Dominique 1972. "The optical properties of paper and polyethylene mulches and their effect on growth and development of head lettuce (Lactuca sativa L.), on microclimate modification and weed control in organic soil /." Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21517.

Full text
Abstract:
Lettuce plants (Lactuca sativa L. var. Ithaca) were transplanted on different beige and black paper mulches and on a coextruded white/black polyethylene mulch in organic soil in 1997 and 1998. Non-weeded and weeded control plots were also used. Plant mortality in 1997 for plants grown on bare soil was 10 to 15% greater than that of mulched plants. Head weight was found to be 3.6 times (1997) and 12 times (1998) greater for lettuce grown on mulch compared with a weeded control. The transmission, reflection and absorption of light of the white/black polyethylene mulch and black paper mulch remained stable over the course of the experiment while those of the other papers changed over time. Paper mulch decomposition occurred during the experiment. Although, black paper mulch was the only mulch that gave complete control of weed growth, weed populations present under the beige papers were too small in terms of the size and number of weeds to cause lettuce yield reduction.
APA, Harvard, Vancouver, ISO, and other styles
17

Umberg, David 1987. "Dynamic properties of soils with non-plastic fines." Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-05-5854.

Full text
Abstract:
The results from an experimental study on the dynamic properties of sand with nonplastic silt are presented. Combined resonant column and torsional shear equipment is used to evaluate the effects of confining pressure, shearing strain, frequency, and number of cycles of loading on the dynamic properties of silty sand. The goal of this study is to determine if relationships in the literature for sands and gravels are accurate for predicting the shear modulus and material damping characteristics of soil with nonplastic fines or if the incorporation of a fines content parameter improves predictions. This goal was primarily accomplished by reconstituting and testing samples of an alluvial deposit from Dillon Dam, Dillon, Colorado according to predetermined gradation curves with variable amounts of non-plastic fines. Among the findings of this investigation are: (1) soil parameters such as Cu and D50 can be related to dynamic properties of soils with up to 25% fines, (2) the effects of non-plastic fines on the small-strain dynamic properties of soils are not very pronounced for soils with less than 25% fines, and (3) an increase in the amount of non-plastic fines in uniform soils or soils with more than 25% fines generally results in lower values of small-strain shear modulus, higher values of small-strain material damping, and more linear G/Gmax - log([gamma]) and D - log([gamma]) curves. The effect of non-contacting, larger granular particles in a finer soil matrix is also investigated along with the impact of removing larger particles from laboratory samples.<br>text
APA, Harvard, Vancouver, ISO, and other styles
18

Samantasinghar, Subhashree. "Geo-engineering properties of lime treated plastic soils." Thesis, 2014. http://ethesis.nitrkl.ac.in/6523/1/e-9.pdf.

Full text
Abstract:
For a long time, we are facing problems like failures of small and big structures. The biggest problem behind this is swelling soils. This is very unstable soil. Its property varies from hard to soft and dry to wet. It exhibits swelling and shrinkage with different water content. As a result, many structures usually face excessive settlement and differential movements, which causes damage to foundation systems and other structural elements. We are aware about this situation for a long time, but unable to make improvements due to absence of technologies till now. Through physico-chemical modifications, lime can control the plasticity, swelling and shrinkage of soil effectively. Also, lime can stabilize soil through cementation which increases strength and stiffness remarkably. In this work the plasticity characteristics, swell shrinkage properties, compaction characteristics and strength properties of plastic soils with a wide plasticity range treated with lime has been evaluated experimentally. Based on the unconfined compressive strength the optimum lime content of soils has been found out. For this purpose, commercial high plastic clay (i.e. bentonite) having liquid limit of 340% is mixed with different proportions to a residual soil having liquid limit 34% and four different soils were synthesized over a wide range of plasticity. The physical properties of raw soils were found out. The four soils were amended with different lime content and the index properties as well as engineering properties have been studied by conducting relevant experiments conforming to Indian standard code of practice. Based on the experimental results it is observed that the liquid limit and plasticity reduces as lime content increases, swell and shrink characteristics decreases with lime content. Also, lime has a significant effect on strength.
APA, Harvard, Vancouver, ISO, and other styles
19

Butler-Brown, Jason J. "Cyclic triaxial testing of low- to moderate-plasticity silts." Thesis, 2002. http://hdl.handle.net/1957/31795.

Full text
Abstract:
This project report presents a laboratory investigation of the dynamic behavior of saturated alluvial silty soils from sites in Oregon and Washington. The focus of the study was to document the liquefaction susceptibility, post cyclic strength, and volumetric strain behavior of the silt soils based on cyclic, undrained triaxial compression testing. A cyclic triaxial testing apparatus with computer control and data acquisition was assembled, calibrated, and used to perform undrained cyclic triaxial testing and post cyclic testing on undisturbed and reconstituted specimens. The results of this investigation are compared with the undrained cyclic triaxial testing data on silty soils published by others. The influence, of grain-size distribution, plasticity index, and overconsolidation ratio (OCR) on the dynamic behavior was identified. Several cyclic resistance curves were prepared that show the cyclic resistance for the silts for OCR values of 1 to 2.5. The cyclic resistance curves observed in the laboratory likely overestimate the in-situ cyclic resistance of the material due to sample disturbance during sampling, transport, and testing. It was observed that OCR has a significant influence on the cyclic resistance of silt soils. Cyclic resistance was observed to increase with increasing plasticity and percent passing the U.S. Standard Number 200 Sieve and percent finer than 2 ��m. It was observed that excess pore pressure measurements recorded at the transducer for fine-grained soils subjected to rapid loading may not accurately represent the actual pore pressures of the soil. Therefore, it is proposed that strain criteria be used, rather than excess pore pressure generation, to define initial liquefaction for fine-grained soils. Post cyclic undrained strength test data shows that the silts are dilative under compressive loading in the triaxial apparatus. Peak strengths were not observed due to the dilative nature of the silty soil tested. Therefore, post cyclic undrained strengths were strain based. The strain based strengths were compared with relationships developed by Baziar and Dobry (1995) and Ishihara (1993) and were found to have a higher residual strength than the sandy soils. Unusually high S[subscript u]/p' ratios were also recorded for the silt soils. This observation highlights the need to obtain post-cyclic strength at a consistent strain. The post cyclic volumetric strain data was compared with the findings of Ishihara and Yoshimine (1992). Plots of volumetric strain versus maximum axial strain were created. These plots were then used to establish a relationship between post cyclic volumetric strain and the factor of safety against liquefaction. The volumetric strain behavior of the silt was observed to be very similar to sand at relative densities of 40 to 80 percent.<br>Graduation date: 2003
APA, Harvard, Vancouver, ISO, and other styles
20

Rauch, H. P. "The significance of Poisson's ratio in the determination of stress and settlement in soils." Thesis, 2015. http://hdl.handle.net/10539/18148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Raji, M. "Endochronic Constitutive Model for Sands and Its Application to Geotechnical Problems." Thesis, 2013. http://etd.iisc.ac.in/handle/2005/3467.

Full text
Abstract:
The introductions of large digital computers in the field of engineering have rendered possible the solution of a wide variety of problems without the need to violate the equilibrium and compatibility. The major requirement for such analysis is a good constitutive model that represents the stress strain behaviour of the materials in an accurate way. Nowadays for most of the geotechnical engineering applications the elastoplastic models like Mohr Coulomb model are widely used. All the existing constitutive models which represent the plastic behaviour of soil are developed from the fundamentals of classical theory of plasticity. The classical theory of plasticity is always associated with the concept of yield surface and potential surface to represent the plastic behaviour. The definition of yield surface depends on the location of the yield point. But in practical sense it is very difficult to find out the exact yield point for a material. The expression for yield and potential surfaces are simply mathematical expressions formulated for computational efficiency. Experimentally it is very difficult to find out the yield surface in the case of three dimensional stress spaces. The classical theory of plasticity is developed based on the mechanical process. It is believed that a theory which violates the thermodynamic principle is not able to represent the material behaviour accurately. the initial stage and combined to give the final state of stress. It was proved that the equation proposed by Wu and Wang (1983) can be used to represent the triaxial behaviour of sand very well. The dilation and densification behaviour can be predicted very well with the endochronic constitutive equations. The principal aim of this work is to implement the endochronic constitutive equation in the FLAC3D model library like any other constitutive model and validate it with the triaxial test data. After implementation and validation, the application of the particular constitutive model is extended to some practical geotechnical engineering problems like the stresses and displacements around an underground opening such as tunnels, surface settlement due to shallow tunneling, stress distribution below the footing, settlement analysis of footing on various foundation beds such as sand, clay and sand overlying clay bed, lateral displacement of the secant pile wall due to excavation and the force developed in the horizontal support etc. All the three problems validate the model with the analytical, experimental and field data respectively. The equation proposed by Wu and Wang (1983) is used for the present study. In order to validate the equation proposed by Wu and Wang (1983), MatLab programming is used. The hydrostatic, deviatoric and volumetric behaviour is obtained separately using the concerned equations. The equation is coded in the MatLab and analysis is done for a triaxial element test. Both drained and undrained analyses were done in order to study the behaviour. The pore pressure developed is captured separately with the equation proposed by Geoffrey et al (1975). The results obtained from the analysis of the MatLab were compared with that of the experimental results. The analysis shows that the equation captures the least plastic behaviour well for the triaxial element test. The dilation and densification behaviour obtained using the respective equation shows that it matches well with the experimental results. A parametric study is also conducted in MatLab to see how the parameters affect the stress strain and volumetric behaviour of the sand. The parametric study conducted with the MatLab shows that most of the parameters involved in the equation affect the plastic part of the stress strain curve rather than the initial elastic part. User defined constitutive model was written in visual C++ and compiled as DLL (Dynamic Link Library) files that will be loaded whenever it is needed in FLAC3D. In visual C++, header and source files were written by incorporating the constitutive equation proposed by Wu and Wang (1983), defining the variables and other functions etc, and a dynamic link library is created, which is then integrated into the 3D finite difference code FLAC3D using the CPPUDM module to simulate the stress strain behaviour of the materials. CPPUDM module is an additional option in FLAC3D to implement the user defined constitutive models. The visual C++ code was written in the form of incremental stress strain relationship. The model acts like any other constitutive model in the FLAC3D model library and can be loaded whenever it is required. For the validation of the model in FLAC3D, the data for the MatLab simulation were used. Both drained and undrained tests were simulated with the model. The results obtained from the analysis shows that by suitably selecting the parameters the model can simulate the stress strain behaviour of sand very well. The volumetric and deviatoric behaviour were observed and is matching well with the experimental data. In the case of the undrained test the pore pressure generation is well captured by the equation proposed by Geoffrey et al (1975). In urban areas the construction of shallow tunnels results in excessive settlements of the ground surface and thereby causes damage to the existing above ground structures. In order to minimize the settlements and to reduce the impact due to that, a prior analysis of the displacements and stresses around the opening is very important. Nowadays numerical analysis is widely used for the analysis of such structures. The most important requirement of such analysis is a constitutive model that can represent the unloading behaviour around the tunnel opening of sand very well. Here the endochronic constitutive model implemented in the FLAC3D model library is used to evaluate the stresses and displacements around the tunnel. In the analysis the tunnel is simulated as a cylindrical hole in an infinite medium with the in situ stress. The stresses at the springing line was observed and compared with the analytical solution. The results show that the results are matching well with the analytical results. The comparison of the results with that obtained using the Mohr Coulomb model is also done to see how the model differs from a widely used plastic model. By slightly adjusting the parameters the results obtained from both the models are in well agreement. The strain softening effect which is predominant around an underground opening due to the loosening of soil mass is well captured by the endochronic model compared to the Mohr Coulomb model. The settlement analysis shows that the model is almost in close agreement with the closed form solution proposed by Oteo & Sagaseta (1982) and the results obtained with the Mohr Coulomb model. The settlement trough formed for various shapes is wider and deeper than the Mohr Coulomb model. The vertical stress distribution around the opening of the tunnel is studied with varying the shape of the openings using the proposed constitutive model. The results obtained were compared with that of the Mohr Coulomb model. The slightly higher values in the case of endochronic model are basically due to its plastic nature. The displacement and stresses in the axial direction (along the excavation) is observed with the model. In the case of shallow tunnel the surface get influenced by the loosening of the soil mass which necessitates the use of the support system. The study shows that the model can be used for the simulation of underground opening like tunnel and will capture the behaviour well. Footings are structures used to support the buildings constructed above the ground. The settlement analysis of footings is very important when we consider the stability of the structures supported by it. The vertical stress distribution below the footing is studied using the endochronic constitutive model and compared with the analytical solution proposed by Boussinesq (1885). In the elastic range the model shows matching results with the Boussinesq’s solution. The settlement analysis of footing on various foundation beds such as sand, clay and sand overlying the clay bed were studied using the endochronic constitutive model implemented in the FLAC3D model library. The experimental data conducted in our lab (Sireesh (2006)) was used for the study. The results show that with the chosen parameters the results obtained with the endochronic model are in good agreement with the experimental data. The Mohr Coulomb model over predicts the results. This shows higher modulus value for the Mohr Coulomb model. By conducting the parametric study it was seen that by reducing the value of modulus for the Mohr Coulomb model, the results are in good agreement with the experimental value. The displacement and stress contours obtained for the two models were compared. By analyzing the displacement contours it is seen that the Mohr Coulomb model shows uniform settlement. In the case of endochronic model uniform settlement is observed for about 5% settlement that is in the elastic range. After a certain strain level the displacement contours are tilted more towards one side showing the rotational failure. Here the endochronic model captures the anisotropic behaviour associated with the materials like sand at higher strain level. This result is a concrete evidence that the model can capture the realistic behaviour very well compared to any other model. Even though the model developed is for sand its application can be extended to clay also. The size and shape of the footing is varied to study its effect on the pressure settlement curve. The analysis is done with square shape of 150mm side and circular shape of 150mm diameter. As there is not much variation in the area of influence, the shape has little influence on the pressure settlement curve. As the size of the footing increases the settlement increases for a given pressure. A parametric study is conducted by varying the modulus value used. The study shows that as the modulus value increases, the settlement reduces for a given bearing pressure. The endochronic model analysed with the lower modulus value shows that the model predicts the perfectly plastic behaviour, here the settlement increases for low value of bearing pressure. The application of endochronic model for the simulation of complex geotechnical engineering problems like footings is highly explored in the study. Nowadays most of the infrastructure facilities are concentrated towards the underground space. The excavation and construction of such structures in the urban areas results in damage to the existing above ground structures if the construction is done in close proximity to the structures. In the present study a staged excavation of an underground construction for the Bangalore metro project is simulated with the endochronic constitutive model. In the Bangalore metro project the excavation for the underground station is done at the cricket stadium site. At the site there are two major buildings such as the six storied Hindustan Aeronautical Limited building and 100 years old BSNL masonry building. To minimize the impact on these structures were a major concern during the construction of the work. A robust support system consists of secant pile walls, soldier piles and horizontal struts are installed at the site. The OSV method known as the Onsite Visualization and monitoring is conducted to minimize the damage to the existing structures and the accidents at the construction site. Sensors are connected to LEDs which show change in color when the displacements and forces cross the triggered value. The field instrumentation is done with inclinometers, tilt meters and strain gauges connected to the sensors to observe the lateral deformation of the secant pile wall, tilt of the HAL building and the forces developed in the horizontal struts. The monitoring of field data is done for a period of five months from July to November. From the analysis of the field observed data it is clear that the support system provided were strong enough to resist the forces due to unloading. The lateral deformation of the secant pile wall and the forces developed in the strut were numerically analysed using the endochronic constitutive model and the results were compared with the field monitored data. The results show that the model captures the behaviour very close to the field data for a slightly higher modulus than that reported in the geotechnical report (BMRC report). This may be due to the fact that the value of modulus calculated experimentally might have some error. The analysis with the Mohr Coulomb model shows that the model over predicts the results very close to the surface of the excavation. This indicates that the influence of load is more on that particular depth for the Mohr Coulomb model. But the stiffness of the lateral support system is uniform throughout the depth; the endochronic model predicts the result more accurately than the Mohr Coulomb model. The strut forces developed in the horizontal support system is observed using the two models. The strut forces in the field is affected by so many factors such as the temperature variation, stages of excavation and other live loads acting on the site, so an exact comparison with the field data is quite difficult. The analysis shows that even though it is difficult to simulate the exact three dimensional nature of the problem in the present study the endochronic constitutive model captures the behaviour very well. The results obtained shows that the endochronic constitutive model implemented in the FLAC3D model library provides a very promising solution like any other constitutive model. As the theory is based on the irreversible law of thermodynamics and the formulation of the constitutive equation are based on the internal energy concept it can represent the material behaviour in accordance with the laws of continuum mechanics. The anisotropic behaviour of soil at higher strain level is well represented through the footing problem. The endochronic constitutive model is a very simple one to simulate the stress strain behaviour of the materials without the concept of yield surface; the parameters used in the equation can be obtained directly from a single triaxial stress strain plot. This study highlights the importance of a model without the concept of yield surface to capture the stress strain behaviour of any materials. Since the model is of completely plastic nature it has its own uniqueness in capturing the material behaviour due to loading and unloading.
APA, Harvard, Vancouver, ISO, and other styles
22

Raji, M. "Endochronic Constitutive Model for Sands and Its Application to Geotechnical Problems." Thesis, 2013. http://etd.iisc.ernet.in/2005/3467.

Full text
Abstract:
The introductions of large digital computers in the field of engineering have rendered possible the solution of a wide variety of problems without the need to violate the equilibrium and compatibility. The major requirement for such analysis is a good constitutive model that represents the stress strain behaviour of the materials in an accurate way. Nowadays for most of the geotechnical engineering applications the elastoplastic models like Mohr Coulomb model are widely used. All the existing constitutive models which represent the plastic behaviour of soil are developed from the fundamentals of classical theory of plasticity. The classical theory of plasticity is always associated with the concept of yield surface and potential surface to represent the plastic behaviour. The definition of yield surface depends on the location of the yield point. But in practical sense it is very difficult to find out the exact yield point for a material. The expression for yield and potential surfaces are simply mathematical expressions formulated for computational efficiency. Experimentally it is very difficult to find out the yield surface in the case of three dimensional stress spaces. The classical theory of plasticity is developed based on the mechanical process. It is believed that a theory which violates the thermodynamic principle is not able to represent the material behaviour accurately. the initial stage and combined to give the final state of stress. It was proved that the equation proposed by Wu and Wang (1983) can be used to represent the triaxial behaviour of sand very well. The dilation and densification behaviour can be predicted very well with the endochronic constitutive equations. The principal aim of this work is to implement the endochronic constitutive equation in the FLAC3D model library like any other constitutive model and validate it with the triaxial test data. After implementation and validation, the application of the particular constitutive model is extended to some practical geotechnical engineering problems like the stresses and displacements around an underground opening such as tunnels, surface settlement due to shallow tunneling, stress distribution below the footing, settlement analysis of footing on various foundation beds such as sand, clay and sand overlying clay bed, lateral displacement of the secant pile wall due to excavation and the force developed in the horizontal support etc. All the three problems validate the model with the analytical, experimental and field data respectively. The equation proposed by Wu and Wang (1983) is used for the present study. In order to validate the equation proposed by Wu and Wang (1983), MatLab programming is used. The hydrostatic, deviatoric and volumetric behaviour is obtained separately using the concerned equations. The equation is coded in the MatLab and analysis is done for a triaxial element test. Both drained and undrained analyses were done in order to study the behaviour. The pore pressure developed is captured separately with the equation proposed by Geoffrey et al (1975). The results obtained from the analysis of the MatLab were compared with that of the experimental results. The analysis shows that the equation captures the least plastic behaviour well for the triaxial element test. The dilation and densification behaviour obtained using the respective equation shows that it matches well with the experimental results. A parametric study is also conducted in MatLab to see how the parameters affect the stress strain and volumetric behaviour of the sand. The parametric study conducted with the MatLab shows that most of the parameters involved in the equation affect the plastic part of the stress strain curve rather than the initial elastic part. User defined constitutive model was written in visual C++ and compiled as DLL (Dynamic Link Library) files that will be loaded whenever it is needed in FLAC3D. In visual C++, header and source files were written by incorporating the constitutive equation proposed by Wu and Wang (1983), defining the variables and other functions etc, and a dynamic link library is created, which is then integrated into the 3D finite difference code FLAC3D using the CPPUDM module to simulate the stress strain behaviour of the materials. CPPUDM module is an additional option in FLAC3D to implement the user defined constitutive models. The visual C++ code was written in the form of incremental stress strain relationship. The model acts like any other constitutive model in the FLAC3D model library and can be loaded whenever it is required. For the validation of the model in FLAC3D, the data for the MatLab simulation were used. Both drained and undrained tests were simulated with the model. The results obtained from the analysis shows that by suitably selecting the parameters the model can simulate the stress strain behaviour of sand very well. The volumetric and deviatoric behaviour were observed and is matching well with the experimental data. In the case of the undrained test the pore pressure generation is well captured by the equation proposed by Geoffrey et al (1975). In urban areas the construction of shallow tunnels results in excessive settlements of the ground surface and thereby causes damage to the existing above ground structures. In order to minimize the settlements and to reduce the impact due to that, a prior analysis of the displacements and stresses around the opening is very important. Nowadays numerical analysis is widely used for the analysis of such structures. The most important requirement of such analysis is a constitutive model that can represent the unloading behaviour around the tunnel opening of sand very well. Here the endochronic constitutive model implemented in the FLAC3D model library is used to evaluate the stresses and displacements around the tunnel. In the analysis the tunnel is simulated as a cylindrical hole in an infinite medium with the in situ stress. The stresses at the springing line was observed and compared with the analytical solution. The results show that the results are matching well with the analytical results. The comparison of the results with that obtained using the Mohr Coulomb model is also done to see how the model differs from a widely used plastic model. By slightly adjusting the parameters the results obtained from both the models are in well agreement. The strain softening effect which is predominant around an underground opening due to the loosening of soil mass is well captured by the endochronic model compared to the Mohr Coulomb model. The settlement analysis shows that the model is almost in close agreement with the closed form solution proposed by Oteo & Sagaseta (1982) and the results obtained with the Mohr Coulomb model. The settlement trough formed for various shapes is wider and deeper than the Mohr Coulomb model. The vertical stress distribution around the opening of the tunnel is studied with varying the shape of the openings using the proposed constitutive model. The results obtained were compared with that of the Mohr Coulomb model. The slightly higher values in the case of endochronic model are basically due to its plastic nature. The displacement and stresses in the axial direction (along the excavation) is observed with the model. In the case of shallow tunnel the surface get influenced by the loosening of the soil mass which necessitates the use of the support system. The study shows that the model can be used for the simulation of underground opening like tunnel and will capture the behaviour well. Footings are structures used to support the buildings constructed above the ground. The settlement analysis of footings is very important when we consider the stability of the structures supported by it. The vertical stress distribution below the footing is studied using the endochronic constitutive model and compared with the analytical solution proposed by Boussinesq (1885). In the elastic range the model shows matching results with the Boussinesq’s solution. The settlement analysis of footing on various foundation beds such as sand, clay and sand overlying the clay bed were studied using the endochronic constitutive model implemented in the FLAC3D model library. The experimental data conducted in our lab (Sireesh (2006)) was used for the study. The results show that with the chosen parameters the results obtained with the endochronic model are in good agreement with the experimental data. The Mohr Coulomb model over predicts the results. This shows higher modulus value for the Mohr Coulomb model. By conducting the parametric study it was seen that by reducing the value of modulus for the Mohr Coulomb model, the results are in good agreement with the experimental value. The displacement and stress contours obtained for the two models were compared. By analyzing the displacement contours it is seen that the Mohr Coulomb model shows uniform settlement. In the case of endochronic model uniform settlement is observed for about 5% settlement that is in the elastic range. After a certain strain level the displacement contours are tilted more towards one side showing the rotational failure. Here the endochronic model captures the anisotropic behaviour associated with the materials like sand at higher strain level. This result is a concrete evidence that the model can capture the realistic behaviour very well compared to any other model. Even though the model developed is for sand its application can be extended to clay also. The size and shape of the footing is varied to study its effect on the pressure settlement curve. The analysis is done with square shape of 150mm side and circular shape of 150mm diameter. As there is not much variation in the area of influence, the shape has little influence on the pressure settlement curve. As the size of the footing increases the settlement increases for a given pressure. A parametric study is conducted by varying the modulus value used. The study shows that as the modulus value increases, the settlement reduces for a given bearing pressure. The endochronic model analysed with the lower modulus value shows that the model predicts the perfectly plastic behaviour, here the settlement increases for low value of bearing pressure. The application of endochronic model for the simulation of complex geotechnical engineering problems like footings is highly explored in the study. Nowadays most of the infrastructure facilities are concentrated towards the underground space. The excavation and construction of such structures in the urban areas results in damage to the existing above ground structures if the construction is done in close proximity to the structures. In the present study a staged excavation of an underground construction for the Bangalore metro project is simulated with the endochronic constitutive model. In the Bangalore metro project the excavation for the underground station is done at the cricket stadium site. At the site there are two major buildings such as the six storied Hindustan Aeronautical Limited building and 100 years old BSNL masonry building. To minimize the impact on these structures were a major concern during the construction of the work. A robust support system consists of secant pile walls, soldier piles and horizontal struts are installed at the site. The OSV method known as the Onsite Visualization and monitoring is conducted to minimize the damage to the existing structures and the accidents at the construction site. Sensors are connected to LEDs which show change in color when the displacements and forces cross the triggered value. The field instrumentation is done with inclinometers, tilt meters and strain gauges connected to the sensors to observe the lateral deformation of the secant pile wall, tilt of the HAL building and the forces developed in the horizontal struts. The monitoring of field data is done for a period of five months from July to November. From the analysis of the field observed data it is clear that the support system provided were strong enough to resist the forces due to unloading. The lateral deformation of the secant pile wall and the forces developed in the strut were numerically analysed using the endochronic constitutive model and the results were compared with the field monitored data. The results show that the model captures the behaviour very close to the field data for a slightly higher modulus than that reported in the geotechnical report (BMRC report). This may be due to the fact that the value of modulus calculated experimentally might have some error. The analysis with the Mohr Coulomb model shows that the model over predicts the results very close to the surface of the excavation. This indicates that the influence of load is more on that particular depth for the Mohr Coulomb model. But the stiffness of the lateral support system is uniform throughout the depth; the endochronic model predicts the result more accurately than the Mohr Coulomb model. The strut forces developed in the horizontal support system is observed using the two models. The strut forces in the field is affected by so many factors such as the temperature variation, stages of excavation and other live loads acting on the site, so an exact comparison with the field data is quite difficult. The analysis shows that even though it is difficult to simulate the exact three dimensional nature of the problem in the present study the endochronic constitutive model captures the behaviour very well. The results obtained shows that the endochronic constitutive model implemented in the FLAC3D model library provides a very promising solution like any other constitutive model. As the theory is based on the irreversible law of thermodynamics and the formulation of the constitutive equation are based on the internal energy concept it can represent the material behaviour in accordance with the laws of continuum mechanics. The anisotropic behaviour of soil at higher strain level is well represented through the footing problem. The endochronic constitutive model is a very simple one to simulate the stress strain behaviour of the materials without the concept of yield surface; the parameters used in the equation can be obtained directly from a single triaxial stress strain plot. This study highlights the importance of a model without the concept of yield surface to capture the stress strain behaviour of any materials. Since the model is of completely plastic nature it has its own uniqueness in capturing the material behaviour due to loading and unloading.
APA, Harvard, Vancouver, ISO, and other styles
23

Kashyap, Rudrendra. "Effect of Saline Water on Geotechnical Properties of Low Plastic Soil and High Plastic Soil." Thesis, 2015. http://ethesis.nitrkl.ac.in/7256/1/2015_Effect_Kashyap.pdf.

Full text
Abstract:
In this research, the effect of water salinity on geotechnical properties of low plastic soil from Roukela and Bikaner clay was studied. In the Laboratory, several tests such as grain size distribution, specific gravity, Atterberg limits, standard proctor compaction test and modified proctor compaction test were done with distilled water and water of different concentration of NaCl. Results on Rourkela soil show that both liquid limit and plastic limit decreases with increase in salinity. Increase in salinity increases optimum moisture content and decreases maximum dry density. Results on Bikaner clay show that Liquid limit decreases with increase in salinity. There was not any significant effect on plastic limit of Bikaner clay when tested with salinity.
APA, Harvard, Vancouver, ISO, and other styles
24

Wei-CheChang and 張維哲. "The Influence of Soil Sampling on Dynamic Properties of Low Plastic Silty Sands." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/93688757872164729747.

Full text
Abstract:
碩士<br>國立成功大學<br>土木工程學系碩博士班<br>98<br>The soil strata in southwestern Taiwan are dominant in fine-grained low plasticity silt with high sensitivity. The soils are with features of high sensitivity, low strength and under-consolidated structure. The traditional soil sampling would lead to the disturbance of soil sample and the fine content of soil may lose during of sample storage. In this study, the Gel Push sampler is developed to mitigate the sample disturbance during the soil sampling. As compared to the traditional freezing method, Gel Push sampler features lower cost and can obtain high quality samples. This study employed the above two methods for sampling at Sinhua Township, Tainan County, and discussed the impacts of the two different methods on soil quality and liquefaction resistance stress. The results indicated that the traditional thin wall tube increased the relative density and liquefaction stress of sample due to friction of the tube during sampling. Besides the thin wall tube, the Gel Push sampler are added with high polymer liquid to reduce friction and disturbance during sampling, so that the conditions of samples are close to those if the field. Moreover, cutting boot device of the Gel Push sampler could increase the sampling rate for sensitive soil strata; the liquefaction resistance stress of original samples are higher than remolded samples; for post-liquefaction volumetric strain, the volume of original samples is smaller than remolded samples. In addition, this study summarized the soil conditions in soil strata in the southwestern area of Taiwan, it expects to provide the important information for design and construction in this area.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography