Academic literature on the topic 'Solar energy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solar energy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solar energy"
BENEA, Bogdan Cornel. "BIODIESEL PRODUCTION USING SOLAR ENERGY." SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 19, no. 1 (July 31, 2017): 253–56. http://dx.doi.org/10.19062/2247-3173.2017.19.1.28.
Full textFarangiz, Muxamadiyeva, and Xolmurodov Maxmatkarim Pattayevich. "INCREASING THE ENERGY EFFICIENCY OF BUILDINGS USING SOLAR ENERGY." International Journal of Advance Scientific Research 03, no. 06 (June 1, 2023): 342–45. http://dx.doi.org/10.37547/ijasr-03-06-55.
Full textEsmailie, Fateme, Mohammad Aminy, and Hossein Ghadamian. "Energy Intensity Diagnostics Contributed to Solar Dryers Energy Challenges." Journal of Clean Energy Technologies 3, no. 5 (2015): 388–92. http://dx.doi.org/10.7763/jocet.2015.v3.229.
Full textBhandari, Sabita. "Financial Feasibility of Solar Energy for Sustainable Energy Management." International Journal of Science and Research (IJSR) 12, no. 11 (November 5, 2023): 419–25. http://dx.doi.org/10.21275/sr231104220006.
Full textAlkilani, Fouad, Ouassini Nemraoui, and Fareed Ismail. "Performance evaluation of solar still integrated with thermoelectric heat pump system." AIMS Energy 11, no. 1 (2023): 47–63. http://dx.doi.org/10.3934/energy.2023003.
Full textAlhousni, Fadhil Khadoum, Firas Basim Ismail, Paul C. Okonkwo, Hassan Mohamed, Bright O. Okonkwo, and Omar A. Al-Shahri. "A review of PV solar energy system operations and applications in Dhofar Oman." AIMS Energy 10, no. 4 (2022): 858–84. http://dx.doi.org/10.3934/energy.2022039.
Full textx, Deepika. "Water Desalination Using Renewable Solar Energy." International Journal of Scientific Engineering and Research 5, no. 12 (December 27, 2017): 53–57. https://doi.org/10.70729/ijser171984.
Full textM George, Jomu, and Steffy Tresa Loui. "Electric Vehicle Operating on Solar Energy." International Journal of Science and Research (IJSR) 13, no. 7 (July 5, 2024): 434–36. http://dx.doi.org/10.21275/sr24704110501.
Full textKumar, Laveet, Jahanzaib Soomro, Hafeez Khoharo, and Mamdouh El Haj Assad. "A comprehensive review of solar thermal desalination technologies for freshwater production." AIMS Energy 11, no. 2 (2023): 293–318. http://dx.doi.org/10.3934/energy.2023016.
Full textFelizardo Guimarães de Oliveira, Martinho, and Roni Mayer Lomba. "ENERGIA SOLAR NA COMUNIDADE RURAL DE SANTA MARIA DO CURUÇÁ." Capim Dourado: Diálogos em Extensão 7, no. 2 (August 30, 2024): 166–94. http://dx.doi.org/10.20873/energy.
Full textDissertations / Theses on the topic "Solar energy"
Золотова, Світлана Григорівна, Светлана Григорьевна Золотова, Svitlana Hryhorivna Zolotova, and T. V. Konoplenko. "Energy producing: solar energy." Thesis, Видавництво СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/13440.
Full textBafana, Ramzi, and Zain Zulfiqar. "Solar Energy." Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2079.
Full textRamzi: +46723231353, +966561993488 Zain:
Yeremenko, А. "Solar energy is an energy alternative source." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/62568.
Full textMaples, David William. "The Solar Energy Tracker." Thesis, University of Canterbury. Electrical and Computer Engineering, 2008. http://hdl.handle.net/10092/4420.
Full textParand, Foroutan. "Solar energy utilisation and evacuated tubular solar collectors." Thesis, Brunel University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292989.
Full textBortolini, Marco. "Design, control and management of renewable energy plants and technologies." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3422587.
Full textOggigiorno, ed in misura crescente nei prossimi decenni, la disponibilità e facilità di accesso alle fonti energetiche rappresenta un fattore determinante per lo sviluppo mondiale ed il progresso di popoli e nazioni. Parallelamente a ciò, il progressivo sfruttamento delle risorse naturali, unito all’aumento dell’impatto delle attività antropiche sull’ecosistema terrestre e sul clima, impongono a comunità ed istituzioni, ad ogni livello, un ripensamento e l’attuazione di differenti strategie per garantire lo sviluppo sociale ed economico attraverso il ricorso ad approcci basati sul concetto di sviluppo sostenibile. In questo contesto, le fonti energetiche rinnovabili, i.e. solare, eolica, idroelettrica, da biomasse, geotermica, ecc., assumono certamente un ruolo determinante per coniugare progresso ed attenzione alle tematiche ambientali. La presente Tesi di Dottorato si incentra su queste tematiche approfondendo strategie, metodi ed approcci innovativi per l’efficace progettazione, controllo e gestione di impianti e tecnologie per le energie rinnovabili. Nel dettaglio, lo scenario d’insieme delle fonti energetiche è analizzato con logica di sistema ed orientamento all’ottimizzazione globale proponendo studi e modelli che evidenzino l’importanza ed il potenziale delle principali risorse, rinnovabili e non, come elementi di un grande mosaico, i.e. il mix energetico globale, nel quale le potenzialità economiche ed ambientali di ogni risorsa sono enfatizzate minimizzando, nel contempo, gli impatti negativi e le rispettive debolezze. Tra le possibili fonti rinnovabili, la fonte solare assume primaria importanza per disponibilità, diffusione ed impatto potenziale. La presente Tesi di Dottorato analizza, in dettaglio, questa risorsa energetica presentando modelli, metodi ed impianti sviluppati per accrescere l’incidenza di questa risorsa nel mix energetico. Gli elementi ed aspetti fondamentali, insieme ad approcci innovativi per la stima delle componenti della radiazione solare, sono presentati nell’elaborato. Successivamente, l’innovativo settore della concentrazione solare è analizzato, in dettaglio, anche attraverso l’illustrazione delle scelte progettuali, lo sviluppo e la campagna sperimentale preliminare di un concentratore solare fotovoltaico/termico (PV/T) a lenti di Fresnel ed inseguimento biassiale. Nel seguito, vengono approfondite possibili strategie per l’inseguimento biassiale ed algoritmi di controllo, implementati in una piattaforma semi-automatizzata sviluppata in ambiente di programmazione grafica LabViewTM. L’ultima sezione propone, infine, un approccio per la progettazione di un simulatore solare, un dispositivo spesso adottato nei test di ottica solare. In conclusione, la presente Tesi di Dottorato, descrive una molteplicità di strategie orientate alla diffusione delle energie rinnovabili, con attenzione alle performance ed all’impatto potenziale che esse hanno verso il raggiungimento dell’obiettivo ambizioso di un sostenibile living planet.
Varella, Fabiana Karla de Oliveira Martins. "Estimativa do indice de nacionalização dos sistemas fotovoltaicos no Brasil." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263003.
Full textTese (doutorado) -Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-12T18:30:16Z (GMT). No. of bitstreams: 1 Varella_FabianaKarladeOliveiraMartins_D.pdf: 2814812 bytes, checksum: 2b3d8b0306df42b90c009281f0150f0d (MD5) Previous issue date: 2009
Resumo: A Lei nº 10.438/02 estabeleceu o Programa de Incentivo às Fontes Alternativas de Energia Elétrica - PROINFA, único programa nacional a estimular as fontes renováveis alternativas, com o intuito de aumentar a participação da energia elétrica produzida por empreendimentos a partir das fontes eólica, pequenas centrais hidrelétricas - PCHs e biomassa no sistema interligado nacional. Posteriormente, o PROINFA foi revisado pela Lei nº 10.762/03 e alterou em sua regulamentação a obrigatoriedade de um índice mínimo de nacionalização de serviços e equipamentos, que em sua primeira etapa passou a corresponder a 60% do custo total da construção dos projetos contemplados. A energia solar fotovoltaica não foi contemplada pelo Programa, e o objetivo desta tese é estimar o índice de nacionalização para cada um dos três sistemas fotovoltaicos selecionados para estudo (sistema de bombeamento de água, sistema de eletrificação rural e sistema conectado à rede elétrica). Para elaboração desse cálculo foi efetuada uma adaptação da metodologia utilizada pelo PROINFA e considerados somente os custos dos principais equipamentos e não dos serviços. Os resultados obtidos permitiram concluir que os sistemas de bombeamento de água e de eletrificação rural são sistemas que 5% e 35%, respectivamente, dos seus equipamentos já são disponibilizados pela indústria nacional. mesmo não ocorre com os sistemas fotovoltaicos conectados à rede elétrica, que atualmente tem 100% dos seus principais equipamentos importados
Abstract: The Law nº 10.438/02 established the Program of Incentives for Alternative Electric Power Sources - PROINFA, which is the only national program aimed to foster alternative renewable energy sources and to increase the share of electric energy production from enterprises based on wind power, small hydropower plants and biomass in the interconnected national power grid. PROINFA was later modified by the Law nº 10.762/03 which revised the regulation imposing a minimum nationalization index of services and equipment that in its first stage corresponded to 60% of the total cost of the selected projects. Solar photovoltaic power was not included in PROINFA and because of that the objective of this thesis is to estimate the nationalization index of each of the following photovoltaic systems selected for the study: water pumping PV system, rural electrification PV system and grid-connected PV system. In order to carry out the calculations, the methodology used at PROINFA was adapted and only the costs of the key equipment, not the services, were considered. The results led to the conclusion that the water pumping and the rural electrification systems are those in which 5% and 35%, respectively, equipment is already made available by the national industry. The same is not verified for the grid-connected PV systems in which 100% of the key equipment is imported
Doutorado
Doutor em Planejamento de Sistemas Energéticos
Mattos, Sérgio Ricardo de [UNESP]. "Análise do rendimento térmico do aquecedor solar parabólico cilíndrico." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/99302.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Este aquecedor solar foi construído em uma estrutura metálica, que tem um revestimento de polietileno reflexivo parabólico cilíndrico, onde no foco da parábola passa uma serpentina com sete tubos em cobre de 9,5 mm e o projeto foi desenvolvido para obter temperaturas mais elevadas do que os aquecedores planos. O objetivo desta dissertação foi atingir temperaturas mais altas na fase líquida. As temperaturas alcançadas foram obtidas utilizando uma densidade de potência solar que variou entre (1.000±10) W/m2, nas vazões de: 66, 54, 42, 30, 27, 24, 21, 18, 15, 12 e 9 litros por hora. A máxima temperatura atingida utilizando-se a vazão de nove litros por hora foi de 71°C, permitindo uma diferença de temperatura, em relação a temperatura ambiente de 43°C. A máxima vazão utilizada no aquecedor solar parabólico cilíndrico foi de 66 litros por hora e obteve-se uma temperatura de 38°C, sendo a diferença em relação à temperatura ambiente de 6°C. Assim com o desenvolvimento do aquecedor solar parabólico cilíndrico obtiveram-se temperaturas maiores em uma área de captação menor, do que em aquecedor convencionais planos e com rendimentos superiores a 70% em sua maior faixa de operação
This solar heater is constructed of a metallic structure, which has a polyethylene coating reflective parabolic cylindrical, where the focus of the parable is a serpentine seven copper pipes of 9.5 mm and the project was designed to obtain higher temperatures than the heaters plans and the objective of this thesis was to reach higher temperatures in the liquid phase. The temperatures reached were obtained using a solar power density ranged from (1000±10) W/m2, the flow rates: 66, 54, 42, 30, 27, 24, 21, 18, 15, 12 and 9 liters per hour. The maximum temperature reached by using the flow of nine liters per hour was 71°C, allowing a temperature difference in relation to ambient temperature of 43°C. The maximum flow rate used in the cylindrical parabolic solar heater was 66 liters per hour and obtained a temperature of 38°C, and the difference in the ambient temperature of 6°C. So with the development of a cylindrical parabolic solar heater temperatures were obtained in a larger area smaller than in conventional heating plans and with performance up to 70% on the higher range of operation
Yang, Sun. "Solar Energy Control System Design." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-141489.
Full textHofker, Gerrit. "Desiccant cooling with solar energy." Thesis, De Montfort University, 2001. http://hdl.handle.net/2086/4274.
Full textBooks on the topic "Solar energy"
Goel, Malti, V. S. Verma, and Neha Goel Tripathi. Solar Energy. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2099-8.
Full textMoukhtar, Ibrahim, Adel Z. El Dein, Adel A. Elbaset, and Yasunori Mitani. Solar Energy. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61307-5.
Full textWalker, Andy. Solar Energy. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118842973.
Full textTyagi, Himanshu, Prodyut R. Chakraborty, Satvasheel Powar, and Avinash Kumar Agarwal, eds. Solar Energy. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0675-8.
Full textNiskern, Diana. Solar energy. Washington, D.C. (10 First St., S.E., Washington 20540): Science Reference Section, Science and Technology Division, Library of Congress, 1992.
Find full textBook chapters on the topic "Solar energy"
Myers, Daryl R. "Solar Radiation solar radiation for Solar Energy Utilization solar radiation for solar energy utilization." In Solar Energy, 584–607. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_450.
Full textGueymard, Christian A. "Solar Radiation solar radiation Spectrum solar radiation spectrum." In Solar Energy, 608–33. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_445.
Full textOliveti, G., L. Marletta, N. Arcuri, M. De Simone, R. Bruno, and G. Evola. "Solar Energy." In Building Refurbishment for Energy Performance, 159–214. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03074-6_4.
Full textGhosh, Tushar K., and Mark A. Prelas. "Solar Energy." In Energy Resources and Systems, 79–156. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1402-1_2.
Full textBostan, Ion, Adrian Gheorghe, Valeriu Dulgheru, Ion Sobor, Viorel Bostan, and Anatolie Sochirean. "Solar Energy." In Resilient Energy Systems, 47–164. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4189-8_3.
Full text(Stathis) Michaelides, Efstathios E. "Solar Energy." In Green Energy and Technology, 195–230. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20951-2_7.
Full textJoseph, Alain, and Gordon Wilkie. "Solar Energy." In Encyclopedia of Quality of Life and Well-Being Research, 6214–16. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-0753-5_2808.
Full textPapadopoulou, Elena V. M. "Solar Energy." In Energy Management in Buildings Using Photovoltaics, 33–41. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2383-5_4.
Full textBrown, Charles E. "Solar Energy." In World Energy Resources, 167–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56342-3_9.
Full textNowzari, Raheleh. "Solar Energy." In The Palgrave Encyclopedia of Global Security Studies, 1–4. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-74336-3_513-1.
Full textConference papers on the topic "Solar energy"
Deutch, John. "Solar Energy Prospects." In Optics and Photonics for Advanced Energy Technology. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/energy.2009.tha1.
Full textBarnhardt, Ardeth. "Solar Economics." In Optics and Photonics for Advanced Energy Technology. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/energy.2009.wd1.
Full textChalfoun, Nader V. "House Energy Doctor’s Level III Building Energy Audits as Pedagogy and Outreach." In American Solar Energy Society National Solar Conference 2016. Freiburg, Germany: International Solar Energy Society, 2016. http://dx.doi.org/10.18086/solar.2016.01.02.
Full textBaldo, Marc. "Luminescent Solar Concentrators." In Optics and Photonics for Advanced Energy Technology. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/energy.2009.thd4.
Full textComis, David L. "Maryland Net Zero Energy Schools Program." In American Solar Energy Society National Solar Conference 2016. Freiburg, Germany: International Solar Energy Society, 2016. http://dx.doi.org/10.18086/solar.2016.01.04.
Full textYoung, William. "Applying Solar Energy to Food Trucks." In American Solar Energy Society National Solar Conference 2017. Freiburg, Germany: International Solar Energy Society, 2017. http://dx.doi.org/10.18086/solar.2017.05.01.
Full textPearce, Joshua, and Andrew Lau. "Net Energy Analysis for Sustainable Energy Production From Silicon Based Solar Cells." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1051.
Full textClemens, J. "True Sustainability With Low Embodied Energy." In ASES SOLAR 2021. Freiburg, Germany: International Solar Energy Society, 2021. http://dx.doi.org/10.18086/solar.2021.01.08.
Full textEsram, Trishan, Philip T. Krein, Brian T. Kuhn, Robert S. Balog, and Patrick L. Chapman. "Power Electronics Needs for Achieving Grid-Parity Solar Energy Costs." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781075.
Full textBobyl, Alexander, Linda Boudjemila, Vladislav Malyshkin, Vasiliy Rud', Maksim Diuldin, and Alexsey Cheremisin. "Solar Energy." In DTMIS '20: International Scientific Conference - Digital Transformation on Manufacturing, Infrastructure and Service. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3446434.3446529.
Full textReports on the topic "Solar energy"
Nielson, Gregory N., Paul James Resnick, David S. Epp, Vipin P. Gupta, Jonathan W. Wittwer, Leslie Mary Phinney, and Uma Krishnamoorthy. MEMS solar energy harvesting. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/926374.
Full textGoulet, Suzanne. Solar Energy Extension Project. Office of Scientific and Technical Information (OSTI), September 2024. http://dx.doi.org/10.2172/2439392.
Full textFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), January 1987. http://dx.doi.org/10.2172/6369309.
Full textFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/6020364.
Full textFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/6020379.
Full textFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/6022834.
Full textFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5118367.
Full textWeiss, Werner, and Monika Spörk-Dür. Solar Heat Worldwide 2024. IEA SHC, June 2024. http://dx.doi.org/10.18777/ieashc-shww-2024-0001.
Full textBohorquez Colombo, Angel. Solar Thermal Energy: Let the sunshine in! A renewable source for industrial processes. Inter-American Development Bank, June 2013. http://dx.doi.org/10.18235/0008275.
Full textRenk, K., Y. Jacques, C. Felts, and A. Chovit. Holographic Solar Energy Concentrators for Solar Thermal Rocket Engines. Fort Belvoir, VA: Defense Technical Information Center, May 1988. http://dx.doi.org/10.21236/ada198807.
Full text