Dissertations / Theses on the topic 'Solar fuel production'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 49 dissertations / theses for your research on the topic 'Solar fuel production.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Cárdenas, Morcoso Drialys. "Advanced semiconductors for photo-electrocatalytic solar fuel production." Doctoral thesis, Universitat Jaume I, 2020. http://dx.doi.org/10.6035/14104.2020.679916.
Full textThe development and use of clean, sustainable and safe energy sources, in order to substitute the use of fossil fuels, is a current challenge of science and technology. Solar energy, the only viable alternative, can be converted and stored in the form of molecular bonds, mimicking the photosynthesis process in green plants, to obtain fuels or other added-value products. This process requires semiconductor materials that can efficiently harvest and transform solar into chemical energy. In the present doctoral thesis, the study of semiconductor materials for photo-electrocatalytic applications was addressed from different approaches. That includes: the modification of photoelectrodes with catalytic coatings, obtained from a metal-organic framework; the implementation of a new method for the understanding of the photoelectrodes operating mechanisms; the integration of electrocatalytic and photovoltaic devices from Earth-abundant materials; and, finally, the investigation of new systems with potential application in photo-electrocatalytic processes. (Signatura
Programa de Doctorat en Ciències
Ghamgosar, Pedram. "Advanced Metal Oxide Semiconductors for Solar Energy Harvesting and Solar Fuel Production." Licentiate thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64922.
Full textUddin, Azhar. "Solar fuels via two-step thermochemical redox cycles for power and fuel production." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/671139.
Full textEl aumento del CO2 antropogénico y el calentamiento global y el aumento de la demanda de energía primaria hace que se requieran medidas para la transición energética y la diversificación con energías renovables e infraestructuras existentes basadas en combustibles fósiles. Además de implementar medidas para la captura y el secuestro de carbono, también se necesita desarrollar métodos para la utilización de CO2. En ese sentido, los ciclos redox termoquímicos son particularmente interesantes para producir combustible sintético que, a su vez, pueden utilizarse para la producción de otras substancias químicas. La rotura de CO2 / H2O (CL) mediante una vía termoquímica de dos pasos está compuesta por dos reacciones redox con un óxido metálico. El primer paso es la reducción de los óxidos metálicos al perder oxígeno y crear vacantes en la red a una temperatura más alta y convertirse en óxido de metal de valencia más baja. Durante la etapa de oxidación, los gases reactivos CO2 / H2O reaccionan con el óxido metálico reducido formando CO y H2. Se ha investigado el uso de diferentes óxidos metálicos en función de su capacidad de transporte de oxígeno y sus propiedades para realizar ciclos redox continuos a distintos valores de temperatura y presión. Después de un examen cuidadoso, se ha seleccionado a la ceria para la división de CO2 / H2O a gran escala. En el presente trabajo, se investigan las divisiones termoquímicas de CO2 / H2O impulsadas por energía solar y la reducción de metano para la producción de gas de síntesis, con especial atención a su aplicación en reactores no estructurados. Se evalúa el uso de reactores de lecho móvil basado en flujo contracorriente y reactores de lecho fluidizado que funcionan en diferentes regímenes de fluidización. Es un reactor de lecho móvil tanto para la etapa de reducción como para la etapa de oxidación se obtienen altas selectividades de CO y H2 con volúmenes óptimos del reactor, mientras que en un reactor de lecho fluidizado el volumen requerido es mucho más alto, lo que lo hace inviable. Los modelos de reactor se han desarrollado en Aspen plus y se validan a partir de la literatura. Un análisis de sensibilidad ha revelado que la unidad CL depende en gran medida de la temperatura y la presión. El análisis se ha ampliado integrando la unidad desarrollada de CL como una unidad adicional a una central eléctrica de 100 MW con captura de carbono. La eficiencia de la planta se ha investigado considerando sólo la división de CO2, sólo la del H2O y la mezcla de CO2 y H2O como alimentación al reactor de oxidación de la unidad CL. El resultado es de una potencia máxima de 12.9 MW con una eficiencia de energía solar a eléctrica de 25.4%. Esta potencia adicional reduciría la pérdida de eficiencia debido a la captura de carbono de 11.3 a 6%. Para lograr esto, el reactor de reducción de la unidad CL debe funcionar a 1600 ° C y 10-7 bar de presión. Estas condiciones necesitarían un enorme campo solar y la operación, en ausencia de almacenamiento térmico, se limitaría a unas pocas horas durante el día. El análisis técnico-económico ha revelado que el coste nivelado de la electricidad es de 1321 $/MWh sin incluir incentivos ni impuestos sobre el carbono. Posteriormente, se ha considerado la reducción del metano como una alternativa a la reducción térmica. Al principio, se realizaron análisis termodinámicos de la unidad de CL impulsada por metano. A partir del análisis, se ha demostrado que la temperatura mínima requerida es de 900°C con 50% de exceso de metano para la reducción, lo que supone una eficiencia de la unidad CL de 62% con un rendimiento óptimo de CO y H2. La división de CO2/H2O en el reactor de oxidación a una mayor temperatura de salida beneficiaría considerablemente la eficiencia energética del ciclo redox CL completo. La variación de la relación H2/CO en la salida con respecto a los parámetros de entrada variables que incluyen la composición del gas al reactor de oxidación se ha estudiado con el fin de especificar las condiciones operativas idóneas. Posteriormente, la unidad CL impulsada por metano se ha integrado como una unidad adicional a una central eléctrica de 500 MW alimentada por oxígeno. Se ha investigado el rendimiento de un sistema con un ciclo combinado de gas natural convencional con o sin captura de carbono. Se ha obtenido una eficiencia de sistema y eficiencia energética de 50.7 y 47.4%, respectivamente. La eficiencia del sistema podría mejorarse a 61.5%, sujeto a la optimización del sistema. La evaluación tecno-económica ha revelado un coste de capital durante la noche de 2455 $/kW con un coste de ahorro de CO2 de 96.25 $/tonelada CO2 y un LCOE de 128.01 $/MWh. Sin embargo, con créditos de carbono de 6 $/tonelada CO2, el LCOE caería por debajo de 50 $/MWh.
Con l'aumento delle emissioni di CO2 antropogenica che contribuiscono al riscaldamento globale e l'incremento della domanda mondiale di energia primaria, sono richieste significative misure per favorire la diversificazione delle fonti e la transizione energetica tramite fonti rinnovabili a partire dalle infrastrutture esistenti basate su combustibili fossili. Prima ancora degli interventi per la cattura e il sequestro dell’anidride carbonica, anche l’utilizzo della CO2 rappresenta una misura necessaria al raggiungimento degli obiettivi di decarbonizzazione. In questo senso, i cicli redox termochimici hanno acquisito particolare interesse per la produzione di combustibile sintetico da utilizzare come intermedio nella produzione di altri prodotti chimici. La separazione chimica di CO2/H2O attraverso un ciclo termochimico – chemical looping splitting (CL) – in due fasi è composta da due reazioni redox con un ossido di metallo. La prima fase del ciclo avviene alla temperatura più elevata e consiste nella riduzione dell’ossido di metallo, che cede ossigeno creando vacanze nel reticolo e diventando ossido di metallo a bassa valenza. Durante la fase di ossidazione, i gas reagenti CO2/H2O reagiscono con l'ossido di metallo ridotto che forma CO e H2. Una mappatura dettagliata dei diversi ossidi di metallo è stata effettuata in base alla loro capacità di trasporto dell’ossigeno e alle proprietà nei cicli di ossido-riduzione a funzionamento continuo in condizioni di variazione di temperatura e pressione. Dopo un attento esame, l’ossido di Cerio - ceria - è stato selezionato per l'applicazione che può essere disponibile per la scissione CO2 / H2O su larga scala. In questo lavoro, sia la separazione termochimica di CO2/H2O alimentata tramite energia solare, sia i cicli con riduzione tramite metano, entrambi finalizzati all produzione di syngas sono stati studiati con particolare attenzione ai reattori non strutturati. Per il ciclo termochimico basato su energia solare, è stata effettuata la valutazione dei reattori a letto mobile a flusso in controcorrente e a letto fluido che operano in diversi regimi di fluidizzazione. Il reattore a letto mobile è stato individuato come il più performante sia per la riduzione che l’ossidazione, con elevate selettività verso CO e H2 e volumi ottimali del reattore, mentre una resa analoga con reattori a letto fluidizzato potrebbe essere ottenuta solo con volumi di reattore molto alti, rendendo questa scelta irrealizzabile nella pratica. I modelli di reattore sono stati sviluppati in Aspen plus e sono stati validati dalla letteratura. Un'analisi di sensitività ha rivelato che la performance dell'unità CL è in larga misura dipendente dalla temperatura e dalla pressione di riduzione. L'analisi è stata estesa integrando l'unità CL sviluppata come unità aggiuntiva di una centrale elettrica a ossicombustione da 100 MW con cattura di carbonio. L'efficienza dell'impianto è stata studiata considerando di alimentare il reattore di ossidazione dell'unità CL sia con CO2, sia con H2O, sia con una miscela di CO2 e H2O. I risultati indicano una potenza massima di 12,9 MW con un rendimento da solare a elettricità del 25,4% generabile grazie all’unità di CL. Questa potenza aggiuntiva ridurrebbe la perdita di efficienza dovuta alla cattura di carbonio dall'11,3 al 6%. Per ottenere ciò, il reattore di riduzione dell'unità CL deve operare a 1600 ° C con una pressione di 10-7 bar. Queste condizioni avrebbero bisogno di un enorme campo solare e l'operazione sarebbe limitata a poche ore durante il giorno senza l’integrazione di un accumulo termico. L'analisi tecno-economica ha rivelato che il costo livellato (levelizad cost) dell'elettricità era di 1321 $ / MWh, senza includere incentivi o tassazione sul carbonio. Successivamente, è stata considerata la riduzione della ceria con metano come alternativa alla riduzione termica. Inizialmente, sono state condotte analisi termodinamiche dell'unità CL con riduzione a metano. Dall'analisi è emerso che la temperatura minima richiesta era 900 °C per la riduzione con un eccesso di metano del 50%, che ha prodotto un'efficienza dell'unità CL del 62% con una resa ottimale di CO e H2. In questo caso, la scissione di CO2/H2O nel reattore di ossidazione consisteva nell'ossidazione completa esotermica della ceria, per cui una temperatura di uscita più elevata avrebbe notevolmente migliorato l'efficienza energetica del ciclo CL redox completo. La variazione del rapporto H2 / CO all'uscita rispetto ai vari parametri di input, compresa la composizione del gas inviato al reattore di ossidazione, è stata studiata per specificare le condizioni operative necessarie. Successivamente, l'unità CL a metano è stata integrata come unità aggiuntiva in una centrale elettrica a ossicombustione da 500 MW. Sono state studiate le prestazioni del sistema in una valutazione comparativa con un ciclo combinato convenzionale a gas naturale, un ciclo a ossicombustione con cattura di carbonio e l'impianto proposto. Sono stati ottenuti per l’impianto rispettivamente un rendimento del sistema e un'efficienza energetica del 50,7% e del 47,4%. L'efficienza del sistema potrebbe essere migliorata fino al 61,5% tramite l'ottimizzazione del recupero termico del sistema, valutata attraverso la pinch analysis del sistema. Una dettagliata valutazione tecno-economica ha rivelato un costo specifico del capitale di 2455 $ / kW (overnight cost), un costo livellato delle emissioni di CO2 evitate 96,25 $ / tonnellata di CO2, e un costo dell’elettricità (LCOE) di 128,01 $ / MWh. Tuttavia, considerando un incentivo di 6 $ / tonnellata di CO2 evitata, il LCOE scenderebbe sotto i 50 $ / MWh. L'unità CL a metano viene successivamente integrata come unità aggiuntiva in un impianto di poligenerazione che produce elettricità e dimetil-etere. I risultati hanno mostrato che l'impianto può produrre 103 MWe e 2,15 kg/s di DME con un’efficienza energetica ed exergetica del 50% e del 44% rispettivamente. L'investimento di capitale richiesto per l'impianto ammonta a 534 M$. Con un valoré per la carbon tax di $ 40 / tonnellata di CO2, il DME e l’elettricità raggiungerebbero la parità con gli attuali prezzi di mercato, pari a $18/GJ per il DME e $50/MWh per l’elettricità. I costi risultanti sono dovuti all'unità di separazione dell'aria richiesta per la centrale elettrica a ossicombustione e può essere ridotta sostituendo l'unità di separazione dell'aria con una tecnologia a membrana per la separazione dell'ossigeno. Poiché in letteratura non esiste un modello completo per cinetica dello stato solido che descriva la riduzione con metano della ceria, esso è stato ricavato per via sperimentale. Sono stati condotti esperimenti in un reattore tubolare orizzontale a letto fisso in un intervallo di temperatura di 900-1100 °C. E’ stata studiata la cinetica della scissione della CO2, essendo una reazione più complessa rispetto alla scissione dell'acqua, la cui cinetica è stata invece ottenuta dalla letteratura. In base all’analisi sperimentale condotta, il modello cinetico Avrami-Erofe'ev (AE3) è risultato essere il migliore per entrambe le reazioni, con le rispettive energie di attivazione ottenute rispettivamente come 283 kJ/mol e 59,68 kJ/mol. L'ordine della reazione è stato ricavato come relazione tra temperatura e concertazione dei reagenti. L'analisi è stata effettuata seguendo un approccio termodinamico, ma la reazione eterogenea dell'ossido di metallo e dei gas reagenti limita il raggiungimento dell'equilibrio durante la reazione e dipende sempre dal tipo di reattore scelto per x l'applicazione. Pertanto, un modello di reattore a letto mobile è stato sviluppato considerando la riduzione del metano ottenuta sperimentalmente e la cinetica di splitting della CO2 è stata incorporata per valutare i due impianti proposti: la centrale elettrica e l'impianto di poligenerazione. È stata osservata una riduzione del 20% nell'efficienza dell'unità CL. Tuttavia, grazie all’integrazione termica interna al sistema, l’efficienza termica dell'impianto complessivo è molto simile a quella raggiunta nell’analisi termodinamica, con un valore del 50,9%. Tuttavia, a differenza del layout termodinamico, non è disponibile calore in eccesso per migliorare ulteriormente l'efficienza del sistema. Oltre al riciclo e all'utilizzo della CO2, come criteri di valutazione della sostenibilità per il layout proposto sono stati analizzati anche l’occupazione del suolo terreno e il fabbisogno idrico. Sia il fabbisogno di terra che di acqua aumentano di 2,5 volte rispetto ad una centrale convenzionale a ciclo combinato a gas naturale. Inoltre, anche l’impianto di poligenerazione con produzione di energia elettrica e dimetil etere (DME) è stato studiato considerando un modello dell’unità CL basato sulla cinetica e ha rilevato che la produzione di DME scenderebbe da 2,15 kg/s a 1,48 kg/s e la potenza elettrica prodotta da 103 a 72 MW. Pertanto, la cinetica ha una forte influenza sulla prestazione complessiva del sistema, e considerarla nell’analisi porta a ridurre la produzione di energia e DME di circa il 30% con un aumento di costo del 30%. Complessivamente, l'integrazione dell'unità CL come unità aggiuntiva ad una centrale elettrica a ossicombustione risulta più adatta rispetto alla poligenerazione, considerando il prezzo di mercato attuale per le commodities prodotte.
Pridmore, Natalie Estelle. "Nickel based nanoalloys as reduction electrocatalysts for solar fuel production." Thesis, University of York, 2015. http://etheses.whiterose.ac.uk/11976/.
Full textWang, Lulu. "Advanced Redox Materials for Solar Fuel Production via Two-step Thermochemical Cycles." Thesis, Griffith University, 2017. http://hdl.handle.net/10072/366698.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
Li, Wei. "Understanding and Controlling Photoelectrode Surface for Solar Fuel Production and Beyond." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108121.
Full textAmong the existing strategies to direct solar energy harvesting and storage, solar fuel production by photoelectrocatalysis promises a comparatively simple, low-cost route. The science behind this process is straightforward: stable semiconductors absorb sunlight and use the energy to excite charges, which then drive redox reactions at the surface. Careful studies of the photoelectrode surface provide important considerations in building a high-performance photoelectrode. Specifically, I focused on controlling the surface band alignment of Cu2O photocathode|water for hydrogen evolution reaction. A ZnS buried heterojunction is formed to improve the photovoltage. Then I focused on understanding the influence of chemical species on surface kinetics and energetics for water oxidation reaction. Two hematite photoanodes with preferably exposed {001} and {012} facets were examined. Further, I systematically studied three different types of surfaces, bare hematite, hematite with a heterogenized Ir water oxidation catalyst (WOC), and a heterogeneous IrOx WOC. While both WOCs improve the performance of hematite by a large margin, their working mechanisms are found to be fundamentally different. I also focused on utilizing surface photoexcited species to control product selectivity. Selective CO production by photoelectrochemical methane oxidation is successfully demonstrated. Detailed experimental investigations revealed that a synergistic effect by adjacent Ti3+ sites is the key to CO formation
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Lui, Wan-yin, and 呂韻{21394e}. "A study on the performance of proton-exchange-membrane fuel cells and solar electrolysis for hydrogen production." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B26662425.
Full textBonk, Alexander [Verfasser], Ulrich F. [Akademischer Betreuer] Vogt, and Arne [Akademischer Betreuer] Cröll. "Synthesis, Modification and Characterization of Ceria based Ceramics for Solar Thermochemical Fuel Production." Freiburg : Universität, 2016. http://d-nb.info/1119900085/34.
Full textSjölander, Johan. "Production and harvesting of volatile jet fuel precursors from Synechocystis sp. PCC 6803." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-397851.
Full textRickard, Bradley James. "Solar and fuel oil heating in fingerling production, issues in growth modelling and financial feasibility." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ33263.pdf.
Full textFalter, Christoph [Verfasser], Robert [Akademischer Betreuer] Pitz-Paal, and Andreas [Akademischer Betreuer] Sizmann. "Efficiency potential of solar thermochemical reactor concepts with ecological and economic performance analysis of solar fuel production / Christoph Falter ; Robert Pitz-Paal, Andreas Sizmann." Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1162498889/34.
Full textMichalsky, Ronald. "Thermochemical production of ammonia using sunlight, air, water and biomass." Diss., Kansas State University, 2012. http://hdl.handle.net/2097/13823.
Full textDepartment of Chemical Engineering
Peter H. Pfromm
Approximately 45% of the global hydrogen production (from fossil fuels such as natural gas or coal totaling 2% of the global energy generation) is absorbed as feedstock in the synthesis of over 130 million metric tons ammonia (NH[subscript]3) annually. To achieve food security for a growing world population and to allow for additional uses of the nitrogen-fertilizer for production of bio-energy feedstock or as combustion fuel or H[subscript]2 carrier - demand for NH[subscript]3 is projected to increase. This work pursues the synthesis of ammonia at atmospheric pressure and without fossil fuel. Conceptually, concentrated solar radiation is utilized to transfer electrons from the lattice oxygen of a transition metal oxide to the metal ion. This yields a metallic reactant that provides the reducing power for the subsequent six-electron reductive cleavage of N[subscript]2 forming a transition metal nitride. In a second reaction, the generated lattice nitrogen is hydrogenated with hydrogen from H[subscript]2O to NH[subscript]3. This furnishes the transition metal oxide for perpetuated NH[subscript]3 synthesis. Theory and experimentation identified manganese nitride as a promising reactant with fast diffusion characteristics (8 ± 4 x 10[superscript]-9 cm[superscript]2 s [superscript]-1 apparent nitrogen diffusion constant at 750 degree C) and efficient liberation of 89 ± 1 mol% nitrogen via hydrolysis at 500 degree C. Opposed to only 2.9 ± 0.2 mol% NH[subscript]3 from manganese nitride, 60 ± 8 mol% of the nitrogen liberated from molybdenum nitride could be recovered as NH[subscript]3. Process simulation of a Mo-based NH[subscript]3 synthesis at 500-1200 degree C estimates economically attractive production under fairly conservative process and market conditions. To aid the prospective design of a Mn or Mo-based reactant, correlating the diffusion constants for the hydrolysis of seven nitrides with the average lattice nitrogen charge (9.96-68.83%, relative to an ideal ionic solid) indicates the utility of first-principle calculations for developing an atomic-scale understanding of the reaction mechanism in the future.
Call, Friedemann [Verfasser], Robert [Akademischer Betreuer] Pitz-Paal, and M. [Akademischer Betreuer] Schmücker. "Investigation of Ceria-Based Redox Materials for Thermochemical Solar Fuel Production / Friedemann Call ; Robert Pitz-Paal, M. Schmücker." Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1128731193/34.
Full textSporar, Daniel. "Sputter Deposition of Iron Oxide and Tin Oxide Based Films and the Fabrication of Metal Alloy Based Electrodes for Solar Hydrogen Production." Connect to Online Resource-OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=toledo1183481021.
Full textTypescript. "Submitted as partial fulfillment of the requirements for The Master of Science degree in Chemical Engineering." Bibliography: leaves 72-77.
Woolerton, Thomas William. "Development of enzymatic H2 production and CO2 reduction systems." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:393741ac-94b1-4d56-b680-d9a434db77e2.
Full textPrice, Ralph J. "Modeling Three Reacting Flow Systems with Modern Computational Fluid Dynamics." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1810.pdf.
Full textBERNARDI, JUNIOR PAULO. "Alternativas para a producao de hidrogenio na regioes brasileiras visando a geracao de energia eltrica distribuida." reponame:Repositório Institucional do IPEN, 2009. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9460.
Full textMade available in DSpace on 2014-10-09T13:56:30Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Walker, Devin Mason. "Catalytic Tri-reforming of Biomass-Derived Syngas to Produce Desired H2:CO Ratios for Fuel Applications." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4250.
Full textMarepally, Bhanu Chandra. "Production of Solar Fuels using CO2." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1062.
Full textIn view of the recent alarming rate of depletion of fossil fuel reserves and the drastic rise in the CO2 levels in the atmosphere leading to global warming and severe climate changes, tapping into all kinds of renewable energy sources has been among the top priorities in the research fields across the globe. One of the many such pathways is CO2 reduction to fuels using renewable energies, more commonly referred as photo-electro-catalytic (PEC) cells. Experimental tests were carried out on various types of catalysts in both the gas and liquid phase cells (lab-designed) to understand the different selectivity, productivity and the reaction products obtained. For the studies on the EC reduction of CO2 in gas phase cell, a series of electrodes (based on Cu, Fe, Pt and Cu/Fe metal nanoparticles – NPs - deposited on carbon nanotubes – CNTs - or carbon black and then placed at the interface between a Nafion membrane and a gas-diffusion-layer) were prepared. Under gas phase, the formation of ≥C1 products (such as ethanol, acetone and isopropanol) were observed, the highest being for Fe and closely followed by Pt, evidencing that also non-noble metals can be used as efficient catalysts under these conditions. To enhance the net fuels, a different set of electrodes were also prepared based on substituted Zeolitic Imidazolate (SIM-1) type MOF coatings (MOF-based Fe-CNTs, Pt-CNTs and Cu/Fe-CNTs) and Pt-MOF showed improved fuels. Moving to the studies on the EC reduction of CO2 in liquid phase cell, a similar set of electrodes were prepared (metal NPs of Cu, Fe, Pt, Ru and Co deposited on CNTs or carbon black). For liquid phase conditions, in terms of net C-products, catalytic electrodes based on Pt topped the class, closely followed by Ru and Cu, while Fe got the lowest position. The probable underlying reaction mechanism was also provided. In order to improve further the performances, varied sized metal NPs (Ru, Fe, Pt and Cu) have been synthesized using different techniques: (i) impregnation (ImR) route to achieve NPs in the size range of 10-50 nm; (ii) organometallic (OM) approach to synthesize uniform and ultrafine NPs in the size range of 1-5 nm (i.e., Fe NPs were synthesized through a novel synthesis route to attain 1-3 nm NPs); (iii) Nanowire (NW) top-down approach to obtain ultrafine copper metal NPs in the size range of 2-3.8 nm. The enhancements in the fuel productivity were found to be 5-30 times higher for the smaller metal NPs over the larger metal NPs and moreover, with reduced metal loading from 10 to 1-2 wt %. A different set of electrodes based on nano-foams (Cu NF and Fe NF on Cu foil, Fe foil, Al foil, Inconel foil and Al grid/mesh) prepared via electro-deposition were also investigated, to further improve CO2 to fuels conversion. After, optimization of deposition and voltage using cyclic voltammetry, the fuels improved by 2-10 times over the highest net fuels achieved using metal NPs doped CNT electrodes
Ros, Figueras Carles. "Stable and efficient photoelectrodes for solar fuels production." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668193.
Full textZhang, Jinqiang. "Development of nanostructured photocatalysts for solar fuels production." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2021. https://ro.ecu.edu.au/theses/2403.
Full textIrtem, Ibrahim Erdem. "Production of Solar Fuels by Photoelectrochemical Conversion of Carbon Dioxide." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/404018.
Full textLa conversión de CO2 en productos de valor añadido con energías renovables resulta interesante para mitigar las emisiones de este. La conversión foto/electroquímica es atractiva por su eficiencia energética y su enorme potencial para aplicaciones industriales. La producción de ácido fórmico (HCOOH) a partir de la reducción de CO2 aparece como una vía alternativa para su comercialización. Sin embargo, se requieren catalizadores estables y selectivos que trabajen a bajo sobre potencial. Además, el diseño de la celda es crítico para mejorar el transporte de masa de CO2 y obtener elevadas eficiencias de conversión. En este trabajo se estudió en un primer lugar el diseño y la comprensión de los parámetros operativos de una celda de flujo electroquímica: caudales y potenciales de electrodo. Para la reducción de CO2 sobre el cátodo, se emplearon dos electrodos diferentes de difusión de gas preparados por electrodeposición: Sn-GDE y Cu-GDE. Se estableció un valor de operación óptimo para controlar la selectividad a HCOOH. Se estudió también la reacción complementaria en el ánodo (evolución de O2), empleando nanopartículas de óxido de Mn-Co para reemplazar el elevado coste del catalizador de óxido de Ir-Ta. Finalmente, se montó una celda fotoelectroquímica de flujo que permitió la inclusión de TiO2 nanorods como fotoánodo. El voltaje total de la celda se redujo alrededor 1/3 alcanzando una eficiencia energética del 70 %. El rendimiento de conversión de energía solar a combustible (STF) fue de 0,25%. Los resultados demuestran que se puede lograr una eficiencia optimizada del sistema con un fotoánodo que tiene una buena estabilidad y un cátodo que favorece la transferencia de masa de CO2. La celda de flujo fotoelectroquímica desarrollada en este trabajo permite almacenar energía de fuentes de electricidad intermitentes (eólica y/o solar) de una manera sostenible, con el consiguiente avance en una economía circular de CO2.
Haeussler, Anita. "Solar fuels production by CO2 and H2O splitting via thermochemical processes." Thesis, Perpignan, 2021. https://theses-public.univ-perp.fr/2021PERP0003.pdf.
Full textThis study is focused on the development of thermochemical H2O and CO2 splitting processes using non-stoichiometric metal oxides and concentrated solar energy to produce solar fuels. The redox process is composed of two distinct reactions: first, a thermal reduction at high temperature of the metal oxide with creation of oxygen vacancies in the crystallographic structure, resulting in released oxygen; second, the re-oxidation of the metal oxide by H2O and/or CO2, leading to H2 and/or CO production. Ceria and perovskite materials have been investigated as reactive oxides for thermochemical cycles. To increase the thermochemical process efficiency, different aspects were investigated, such as chemical composition and morphology of the metal oxide, operating parameters, and solar reactor configuration. The redox activities, kinetics and thermodynamics of different perovskite materials were first experimentally investigated for two-step thermochemical cycles. Then, the thermochemical performances of various reactive materials shaped as porous structures or particulate media were investigated in solar reactors (monolithic or packed-bed configurations) able to perform two-step thermochemical cycles. A detailed parametric study was performed to determine fuel production rates and yields. The highest CO production rate (9.9 mL/min/g) was achieved with ceria reticulated foams. Finally, a solar membrane reactor was developed for isothermal and continuous production of CO (or H2) by CO2 (or H2O) splitting with a reactive and oxygen-permeable membrane. The highest CO production rate reached 0.133 µmol/cm2/s at 1550 °C using a perovskite-coated ceria membrane
Chuayboon, Srirat. "Solar fuels production from thermochemical gasification and reforming of carbonaceous feedstocks." Thesis, Perpignan, 2019. http://www.theses.fr/2019PERP0019.
Full textThe investigated solar thermochemical processes consist of the thermochemical conversion of solid and gaseous carbonaceous feedstocks into syngas as well as metal oxides reduction into metal commodities utilizing concentrated solar energy to drive endothermic chemical reactions, thereby enabling intermittent solar energy storage into solar fuels and avoiding CO2 emissions. This work aims to experimentally investigate three key solar thermochemical conversion approaches regarding biomass gasification, chemical looping reforming of methane, and carbothermal reduction of ZnO and MgO. Solar gasification and solar chemical looping reforming allowed valorizing wood biomass and methane into syngas, while solar carbothermal reduction was applied to produce Zn and Mg from ZnO and MgO. Such solar thermochemical processes were performed in 1.5 kWth prototype solar chemical reactors, utilizing highly concentrated sunlight provided by a solar concentrator at PROMES laboratory, Odeillo, France. The impact of controlling parameters of each process on the reaction mechanism, conversion, yields, and process performance, during on-sun testing was investigated and evaluated thoroughly. Such processes were proved to significantly improve the chemical conversion, syngas yields, energy efficiency, with solar energy storage into transportable fuels, thereby outperforming the conventional processes. Moreover, their feasibility, reliability, and robustness in converting both methane and biomass feedstocks to syngas as well as producing Mg and Zn metals in batch and continuous operation under vacuum and atmospheric conditions during on-sun operation were successfully demonstrated
Basu, Alex. "Relation between hydrogen production and photosynthesis in the green algae Chlamydomonas reinhardtii." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-242624.
Full textTorella, Joseph Peter. "Synthetic biology approaches to bio-based chemical production." Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13088835.
Full textSheline, William Robert. "Concentrated solar chemistry: design stage theoretical thermodynamic analysis of an iron-ethylene production process." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/51757.
Full textLeveque, Gael. "Production de combustibles solaires synthétiques par cycles thermochimiques de dissociation de l'eau et du CO2." Thesis, Perpignan, 2014. http://www.theses.fr/2014PERP1211.
Full textThis PhD thesis focuses on the study of the CO2 and H2O reduction into CO and H2 using thermochemical cycles. These cycles use metal redox pairs for stepwise reduction at lower temperature. The first step consists of the endothermic high temperature reduction of the metal oxide (>1200°C) using concentrated solar energy. The second step, operated at a lower temperature (<1200°C), uses the reduced specie to reduce CO2 or H2O, yielding CO or H2 and regenerating the metal oxide. The CO and H2 mixture (syngas), produced using solar energy, can then be converted into liquid fuel using a conventional Fischer-Tropsch catalytic process. The study considers more specifically the volatile oxide cycles, ZnO/Zn and SnO2/SnO, for which the reduced specie is obtained in gaseous phase at the reaction temperature, and is then condensed as nanoparticles. First, means and methods for studying the kinetics of reduction reactions at high temperatures were developed, namely an inverse method based on the online analysis of O2 production in a solar reactor and a solar-driven thermogravimeter. In addition, the study of reduced pressure operation and the use of a carbonaceous reducer were considered as efficient means to decrease the operating temperature and to promote a fast reaction. The impact of reduced pressure was quantified for SnO2 and ZnO reduction. A study of the evolution of the morphology and chemistry of the SnO powder during the second oxidation step was then conducted, emphasizing the importance of SnO disproportionation on the powder reactivity
Zanoni, Naubert. "Análise da viabilidade da implantação de um sistema híbrido para geração de energia elétrica." reponame:Repositório Institucional da UCS, 2018. https://repositorio.ucs.br/11338/3827.
Full textHybrid systems consist of two or more electricity generating sources, usually one or more conventional sources and one or more renewable sources, and aim to promote fuel economy and obtain a reliable source of energy supply, off-grid or grid-connected to the distribution network. This work aims to evaluate through the HOMER software the technical, economic and environmental feasibility of implementing a hybrid electricity generation system. This system consists of a biogas generator, biodiesel generator and solar energy capture. The entire system is located in the municipality of Serafina Corrêa where there is a high concentration of swine farmers that, through the treatment of pig waste, can lead to the production of biogas to be used as fuel for electric power generation. Several configurations were evaluated under economic and environmental aspect. The optimum configuration of the hybrid system structure is composed of electric generation from photovoltaic panels with 172,4 kW, 55 kW biogas generator and 110 kW inverter. In this scenario, the initial capital amounts to R$ 1.150.055,00, net present value of R$ 1.150.004,00 and the cost of energy (COE) is R$ 0.22. The payback defined by the software is 7.1 years, proving to be economically viable. In this context, the HOMER software presents itself as an important decision-making tool, being configured as an evaluation method for the best scenario for the installation of hybrid systems.
Wiechen, Mathias [Verfasser]. "Mixed Manganese Oxides as Biomimetic Water-Oxidation Catalysts - promising Materials for the Production of Solar Fuels by Artificial Photosynthesis / Mathias Wiechen." Kiel : Universitätsbibliothek Kiel, 2013. http://d-nb.info/1036242900/34.
Full textGunawan, Gan Philipe. "Concentrated Solar Thermal Plant for Future Fuels Production : Process Modeling and Techno-economic Analysis of Syngasoline, Syndiesel, Ethanol and Methanol Production Using Thermochemical Cycle based on Metal Oxide." Thesis, KTH, Kraft- och värmeteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235512.
Full textRogers, Hannah Mallalieu. "Labile Ligand Variation in Polyazine-Bridged Ruthenium/Rhodium Supramolecular Complexes Providing New Insight into Solar Hydrogen Production from Water." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/64364.
Full textPh. D.
Mendes, Marinho Stéphanie. "Combustible solaire : caractérisation du mécanisme de transfert de charge dans des molécules photocatalytiques, vers la production de l'énergie par photosynthèse artificielle." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS299/document.
Full textDeveloppment of environment-friendly sources of energy is one of the stakes major for our societies. To hope for the sustainability of Humans on Earth, it is essential to change our consumer habits on energetics by breaking our dependance on fossil fuels, which use leads to ecological desasters and which stocks are running out. The key of this important challenge is the growth of renewable energy sources, and this is called energy transition. The ideal energy would not produce any polluting waste, would be efficient and widely available. Solar energy is an excellent candidate because it is by far the most abundant and promising source of clean energy. Thus, important efforts are made to developp the solar technologies, including artificial photosynthesis.Artificial photosynthesis was created a century ago and is the focus of many interests and researchs. This technology aims at mimicking the natural photosynthesis realized by plants ; and that in order to store the energy coming from the Sun irriadiation in compounds that can be used at demand. Artificial photosynthesis consists in the elaboration of synthetic systems able under light impulsion to realize the water splitting/decomposition reactions in a catalytique way, generating hydrogène or CO2 reduction products, which are called solar fuels thanks to their high energetic potentials. Indeed, photosynthesis begins with the photo-catalysis of water oxidation, which extirpates the electrons and protons of water molecules. And it is these electrons and protons which will be used to produce the solar fuels.Recently, a real commitment to understand deaply the mechanisms that take place during these catalysed reactions seems to appear. These transformations involve multiple photo-induced electron transfers and it returns their study relatively complicated. Thanks to technological breakthroughs, we studied in a thorough way several photocatalytic systems to draw knowledges ; allowing the rationalisation of the design and then the efficiency improvement of future developped systems. These technical advances were possible thanks to interdisciplinary collaborations between chemists and physicists and led to the developpment of a set-up of « double-pump » transient absorption, that enables to characterize the transient species formed and to track down the pathways during two successive photoinduced electron transfers.In the second part of this work, new catalysts were developped for the photocatalysis of water oxidation reaction. The big majority of the studies led so far on this subject concerned molecular systems, but the lack of robustness and reusability of homogeneous catalysts pushed the research towards materials area. Since about forty years, heterogeneous systems were developped for photocatalysis of several reactions. We explored two types of materials, nanoparticules as catalyst in photocatalytic systems ; and polymers that are able on their own to realize all the functions required for the photocatalysis of a reaction such as water oxidation under visible light irradiation.Thus, during this PhD we tried by two approaches to increase the knowledges and the development of artificial photosynthesis. A solution that is still under-developped to fix the energetic issue our society is facing to, is the use of solar fuels ; and it’s imperative for the research to move forward and that energy transition prevails more effectively and widely
Maheu, Clément. "Study of Titania supported transition metal sulfides for the photocatalytic production of hydrogen." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1172.
Full textPhotocatalysis is a promising way to synthesize H2 as a solar fuel. On one hand, the photocatalytic H2 production stores solar energy under chemical energy. On the other hand, it produces H2 with a renewable process using water and bio-based alcohols as a feedstock. This Ph.D thesis aims to study the photocatalytic dehydrogenation of alcohols with transition metal sulfides supported on TiO2 (MSx/TiO2). Those transition metal sulfides have versatile and highly tunable properties. They can activate H2, they have promising electrochemical behavior and optical properties. Seven MSx/TiO2 (M = Co, Ni, Cu, Mo, Ru, Ag, Hg) are therefore studied. The photocatalytic dehydrogenation of propan-2-ol is used as a model reaction. Structure-activity relationships are found between the intrinsic properties of the MSx/TiO2 and their photocatalytic activity. Measuring an apparent activation energy provides additional mechanistic insights. It shows that the photocatalytic production of hydrogen is mostly limited by the charge carrier separation and by the electronic transfer. Therefore a method combining the UPS and the UV-Visbile absorption spectroscopies has been develop to establish the electronic structure of photocatalytic powders. This work concludes that the electronic structure plays a crucial role in photocatalysis. With RuS2/TiO2 photocatalyst, the electron transfer is evidenced as the rate-determining step of the photocatalytic dehydrogenation of propan-2-ol
Rahbari, Alireza. "Solar fuel production via supercritical water gasification of algae biomass." Phd thesis, 2020. http://hdl.handle.net/1885/213050.
Full textIgnatowich, Michael Joseph. "An Investigation of Nonstoichiometric Oxides for Solar-Driven Thermochemical Fuel Production." Thesis, 2017. https://thesis.library.caltech.edu/10288/7/2017-06-05%20Ignatowich%20Thesis%20-%20Final.pdf.
Full textIn order to realize energy independence and substantially combat global climate change, renewable and sustainable energy technologies must be developed. Solar energy is the most readily abundant, and if converted into a chemical fuel, could be stored and transported easily. Solar-driven thermochemical cycling is a method of chemical fuel production that shows great promise, but current state-of-the-art systems have very low efficiencies. This work discusses new reactor designs and cycling techniques using nonstoichiometric oxides that will enable more efficient solar to fuel energy conversion. Practical aspects of the reactor design are explored – specifically, thermochemical expansion of the reactive oxide, and morphologies aimed at enhancing the reaction kinetics. Additionally, doped fluorite- and perovskite-structured materials are evaluated for thermodynamic behavior and in-situ thermochemical cycling performance. Oxide morphology and new doped compounds show little improvement over previously established neat ceria due to thermodynamic limitations. The thermodynamic limit is explored in new reactor geometries and is shown to demonstrate significantly more efficient fuel production. Finally, different nonstoichiometry thermodynamics are explored to provide guidance for further material exploration, as well as applicable methodologies.
Riaz, Asim. "Mixed Metal Oxides for Sustainable Fuel Production via Solar Thermochemical Routes." Phd thesis, 2021. http://hdl.handle.net/1885/224521.
Full textLi, Sha. "Thermodynamics and Transport Phenomena of Thermochemical Systems for Solar Fuel Production." Phd thesis, 2021. http://hdl.handle.net/1885/238602.
Full text"Application and Study of Water Oxidation Catalysts and Molecular Dyes for Solar-Fuel Production." Doctoral diss., 2013. http://hdl.handle.net/2286/R.I.18771.
Full textDissertation/Thesis
Ph.D. Chemistry 2013
Shaner, Matthew Reed. "An Experimental and Technoeconomic Study of Silicon Microwire Arrays for Fuel Production Using Solar Energy." Thesis, 2016. https://thesis.library.caltech.edu/9817/1/Thesis%20Final.pdf.
Full textDirect solar energy conversion is one of few sustainable energy resources able to wholly satisfy global energy demand; however, utility scale adoption and reliance are currently limited by the lack of a cost effective energy storage technology. The production of fuel from sunlight (solar fuels) enables solar energy storage in chemical bonds, a volumetrically and gravimetrically dense form compatible with current infrastructure worldwide. Hydrogen production via water splitting is a first generation solar fuel targeted herein that is currently used for hydrocarbon up-grading and fertilizer production and could further be utilized in combustion cycles and/or fuel cells for electricity and heat production and transportation.
This thesis presents achievements that form the foundation for Si microwire array based solar water splitting devices beginning with a tandem junction device design using Si microwire arrays as the architectural motif and one of many active components. Si microwire arrays have potential advantages over two dimensional planar device architectures such as minimized resistance losses, lower semiconductor material usage, and embedment in a polymeric membrane enabling a flexible device.
Experimental fabrication and characterization of this tandem junction device design was realized in the form of a np+-Si microwire array coated by either tungsten oxide (WO3) or titanium dioxide (TiO2) as the second tandem semiconductor. The Si/TiO2 device demonstrated the highest performance with an expected solar-to-hydrogen efficiency of 0.39%. To achieve these demonstrations new processing methods were needed and developed for formation of the np+-Si microwire array homojunction and formation of a low resistance contact between the p+-Si and second semiconductor using sputtered tin- doped indium oxide (ITO) and spray pyrolyzed fluorine-doped tin oxide (FTO).
Another achievement includes demonstration of the longest known (>2200 hours) photoanode stability for water oxidation using a np+-Si microwire array coated with an in-house developed amorphous TiO2 protection layer and NiCrOx electrocatalyst. Additionally, the Si microwire array architecture was used to enable decoupling of semiconductor light absorption and catalytic activity, two performance metrics that ideally are maximized simultaneously. However, all previous demonstrations have shown anti-correlation between these performance metrics because planar architectures are subject to a trade-off where adding electrocatalyst increases catalytic activity, but decreases semiconductor light absorption and vice versa.
Finally, a techno-economic analysis of solar water splitting production facilities was performed to assess economic competitiveness because this is the ultimate metric by which all energy production technologies are currently evaluated. This analysis suggests that a hydrogen production facility that is cosmetically similar to current solar panel installations with hydrogen collection from distributed tilted panels is unlikely to achieve cost competitiveness with fossil fuel derived hydrogen due to the balance of systems costs alone. A cost of CO2 greater than ~$800 (ton CO2)-1 was estimated to be necessary for the least expensive base-case solar-to-hydrogen system to reach price parity with hydrogen derived from steam reforming of methane priced at $3 (MM BTU)-1 ($1.39 (kg H2)-1). Direct CO2 reduction systems were also explored and resulted in even larger challenges than hydrogen production. Accordingly, major facility wide breakthroughs are required to obtain viable economic costs for solar hydrogen production, but the barriers to achieve cost-competitiveness with existing large-scale thermochemical processes for CO2 reduction are even greater.
Ooms, Matthew. "Evanescent Photosynthesis: A New Approach to Sustainable Biofuel Production." Thesis, 2012. http://hdl.handle.net/1807/33484.
Full textLourenço, André Castanheira. "Sunlight-driven CO2-to-fuel conversion: exploring thermal and electrical coupling between photovoltaic and electrochemical systems for optimum solar-methane production." Master's thesis, 2019. http://hdl.handle.net/10362/97472.
Full textDavis, Jonathan Tesner. "Membraneless Electrolyzers for Solar Fuels Production." Thesis, 2019. https://doi.org/10.7916/d8-ypyq-6d71.
Full textLabrador, Natalie Yumiko. "Oxide-Encapsulated Electrocatalysts for Solar Fuels Production." Thesis, 2018. https://doi.org/10.7916/D8PP0PK1.
Full textSaadi, Fadl Hussein. "Acid-Stable Electrocatalysts for the Solar Production of Fuels." Thesis, 2017. https://thesis.library.caltech.edu/10012/97/Saadi_Ch6.pdf.
Full textSunlight is one of the few renewable resources that can meet global energy demand. Unfortunately, while solar energy has grown in the past few years, several economic and scientific constraints have hindered mass adoption. One of the main obstacles solar energy faces is the lack of economically competitive storage technologies. Artificial photosynthesis is a potential solution in which solar energy is directly converted into energy dense chemical bonds that can be easily stored and transported.
One impediment facing the commercialization of artificial photosynthesis is the use of expensive and rare precious metals as catalysts. This dissertation focuses on the achievements of the past five years in characterizing novel, earth-abundant, acid-stable hydrogen evolution catalysts. While nickel alloys have long been known as catalysts for the hydrogen evolution reaction in basic media, it has only been in the past decade that earth abundant catalysts that are stable in acidic media have been reported. These discoveries are critically important as the many proposed artificial photosynthetic devices require the use of acidic media.
In this dissertation we examine two families of hydrogen evolution catalysts: transition metal chalcogenides (namely molybdenum and cobalt selenide) as well as transition metal phosphides (cobalt phosphide). In addition to the electrochemical characterization of these catalysts, spectroscopic characterizations were performed in order to carefully examine the chemical compositions of these catalysts before, after and during the hydrogen evolution reaction. This analysis elucidated both chemical, and structural changes that occurred after the catalysts had been subject to the hydrogen evolution reaction conditions.
The final chapter in this thesis delves into the techno-economic realities of energy transportation via different fuels. Due to the strong interest in renewable energy, several future energy transportation scenarios, including 100% grid electrification and widespread installation of hydrogen pipelines, have been proposed. In order to get a fuller understanding of such potential infrastructure alternatives, we report their differing energy transportation costs.
Gao, Xiang. "Transition Metal Oxides for Sustainable Fuels Production via Solar Chemical Looping Reforming." Phd thesis, 2019. http://hdl.handle.net/1885/155256.
Full textGuo, Peijun. "Assessment of Fischer−Tropsch liquid fuels production via solar hybridized dual fluidized bed gasification of solid fuels." Thesis, 2017. http://hdl.handle.net/2440/119469.
Full textThesis (Ph.D.) (Research by Publication) -- University of Adelaide, School of Chemical Engineering, 2017
"Design and Evaluation of a Concentrating Solar Power System with Thermochemical Water Splitting Process for the Co-production of Hydrogen and Electricity." Doctoral diss., 2018. http://hdl.handle.net/2286/R.I.49422.
Full textDissertation/Thesis
Doctoral Dissertation Mechanical Engineering 2018
Sarmento, Bernardo Fitas. "Simulation of sunlight driven CO2 conversion to CH4 to satisfy a single-house heating requirements." Master's thesis, 2018. http://hdl.handle.net/10362/58233.
Full text