Journal articles on the topic 'Solar fuel production'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Solar fuel production.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Han, Hongxian, and Can Li. "Photocatalysis in solar fuel production." National Science Review 2, no. 2 (April 20, 2015): 145–47. http://dx.doi.org/10.1093/nsr/nwv016.
Full textDavenport, Timothy C., Chih-Kai Yang, Christopher J. Kucharczyk, Michael J. Ignatowich, and Sossina M. Haile. "Maximizing fuel production rates in isothermal solar thermochemical fuel production." Applied Energy 183 (December 2016): 1098–111. http://dx.doi.org/10.1016/j.apenergy.2016.09.012.
Full textRandhir, Kelvin, Nathan R. Rhodes, Like Li, Nicholas AuYeung, David W. Hahn, Renwei Mei, and James F. Klausner. "Magnesioferrites for solar thermochemical fuel production." Solar Energy 163 (March 2018): 1–15. http://dx.doi.org/10.1016/j.solener.2017.12.006.
Full textSun, Ke, Shaohua Shen, Yongqi Liang, Paul E. Burrows, Samuel S. Mao, and Deli Wang. "Enabling Silicon for Solar-Fuel Production." Chemical Reviews 114, no. 17 (August 2014): 8662–719. http://dx.doi.org/10.1021/cr300459q.
Full textMa, Dongling. "(Invited) Towards Broadband Solar Fuel Production." ECS Meeting Abstracts MA2022-02, no. 48 (October 9, 2022): 1804. http://dx.doi.org/10.1149/ma2022-02481804mtgabs.
Full textFalter, Christoph, Niklas Scharfenberg, and Antoine Habersetzer. "Geographical Potential of Solar Thermochemical Jet Fuel Production." Energies 13, no. 4 (February 12, 2020): 802. http://dx.doi.org/10.3390/en13040802.
Full textKhusnutdinova, D., A. M. Beiler, B. L. Wadsworth, S. I. Jacob, and G. F. Moore. "Metalloporphyrin-modified semiconductors for solar fuel production." Chemical Science 8, no. 1 (2017): 253–59. http://dx.doi.org/10.1039/c6sc02664h.
Full textYoon, Ji‐Won, Jae‐Hyeok Kim, Changyeon Kim, Ho Won Jang, and Jong‐Heun Lee. "MOF‐Based Hybrids for Solar Fuel Production." Advanced Energy Materials 11, no. 27 (January 15, 2021): 2003052. http://dx.doi.org/10.1002/aenm.202003052.
Full textBassi, Prince Saurabh, Gurudayal, Lydia Helena Wong, and James Barber. "Iron based photoanodes for solar fuel production." Physical Chemistry Chemical Physics 16, no. 24 (2014): 11834. http://dx.doi.org/10.1039/c3cp55174a.
Full textAmao, Yutaka, Naho Shuto, Kana Furuno, Asami Obata, Yoshiko Fuchino, Keiko Uemura, Tsutomu Kajino, et al. "Artificial leaf device for solar fuel production." Faraday Discuss. 155 (2012): 289–96. http://dx.doi.org/10.1039/c1fd00097g.
Full textOzalp, Nesrin, Christian Sattler, James F. Klausner, and James E. Miller. "Making Fuel While the Sun Shines." Mechanical Engineering 137, no. 01 (January 1, 2015): 46–51. http://dx.doi.org/10.1115/1.2015-jan-4.
Full textFukuzumi, Shunichi. "Production of Liquid Solar Fuels and Their Use in Fuel Cells." Joule 1, no. 4 (December 2017): 689–738. http://dx.doi.org/10.1016/j.joule.2017.07.007.
Full textZhu, Yisong, Zhenjun Wu, Xiuqiang Xie, and Nan Zhang. "A retrospective on MXene-based composites for solar fuel production." Pure and Applied Chemistry 92, no. 12 (December 16, 2020): 1953–69. http://dx.doi.org/10.1515/pac-2020-0704.
Full textBen-Arfa, Basam A. E., Stéphane Abanades, Isabel M. Miranda Salvado, José M. F. Ferreira, and Robert C. Pullar. "Robocasting of 3D printed and sintered ceria scaffold structures with hierarchical porosity for solar thermochemical fuel production from the splitting of CO2." Nanoscale 14, no. 13 (2022): 4994–5001. http://dx.doi.org/10.1039/d2nr00393g.
Full textWang, Kailin, Tianqi Wang, Quazi Arif Islam, and Yan Wu. "Layered double hydroxide photocatalysts for solar fuel production." Chinese Journal of Catalysis 42, no. 11 (November 2021): 1944–75. http://dx.doi.org/10.1016/s1872-2067(21)63861-5.
Full textWichmann, Julian, Kyle J. Lauersen, Natascia Biondi, Magnus Christensen, Tiago Guerra, Klaus Hellgardt, Simon Kühner, et al. "Engineering Biocatalytic Solar Fuel Production: The PHOTOFUEL Consortium." Trends in Biotechnology 39, no. 4 (April 2021): 323–27. http://dx.doi.org/10.1016/j.tibtech.2021.01.003.
Full textBerardi, Serena, Vito Cristino, Carlo Alberto Bignozzi, Silvia Grandi, and Stefano Caramori. "Hematite-based photoelectrochemical interfaces for solar fuel production." Inorganica Chimica Acta 535 (May 2022): 120862. http://dx.doi.org/10.1016/j.ica.2022.120862.
Full textSivula, Kevin. "(Invited) Photoelectrochemical Solar Fuel Production Using Organic Semiconductors." ECS Meeting Abstracts MA2020-01, no. 39 (May 1, 2020): 1729. http://dx.doi.org/10.1149/ma2020-01391729mtgabs.
Full textHou, Wenbo, Zuwei Liu, Wayne Hsuan, Prathamesh Pavaskar, and Stephen B. Cronin. "Plasmon Resonant Enhancement of Photocatalytic Solar Fuel Production." ECS Transactions 41, no. 6 (December 16, 2019): 197–205. http://dx.doi.org/10.1149/1.3629967.
Full textVyas, Vijay S., Vincent Wing-hei Lau, and Bettina V. Lotsch. "Soft Photocatalysis: Organic Polymers for Solar Fuel Production." Chemistry of Materials 28, no. 15 (July 26, 2016): 5191–204. http://dx.doi.org/10.1021/acs.chemmater.6b01894.
Full textSivula, Kevin. "A Step toward Economically Viable Solar Fuel Production." Chem 4, no. 11 (November 2018): 2490–92. http://dx.doi.org/10.1016/j.chempr.2018.10.015.
Full textPellegrin, Yann, and Fabrice Odobel. "Sacrificial electron donor reagents for solar fuel production." Comptes Rendus Chimie 20, no. 3 (March 2017): 283–95. http://dx.doi.org/10.1016/j.crci.2015.11.026.
Full textLhermitte, Charles R., and Kevin Sivula. "Alternative Oxidation Reactions for Solar-Driven Fuel Production." ACS Catalysis 9, no. 3 (January 22, 2019): 2007–17. http://dx.doi.org/10.1021/acscatal.8b04565.
Full textJulian, Maya, Nathalie Bassil, and Sofiene Dellagi. "Lebanon’s electricity from fuel to solar energy production." Energy Reports 6 (November 2020): 420–29. http://dx.doi.org/10.1016/j.egyr.2020.08.061.
Full textDolezal, Adam G., Jacob Torres, and Matthew E. O’Neal. "Can Solar Energy Fuel Pollinator Conservation?" Environmental Entomology 50, no. 4 (June 3, 2021): 757–61. http://dx.doi.org/10.1093/ee/nvab041.
Full textHaeussler, Anita, Stéphane Abanades, Julien Jouannaux, and Anne Julbe. "Non-Stoichiometric Redox Active Perovskite Materials for Solar Thermochemical Fuel Production: A Review." Catalysts 8, no. 12 (December 3, 2018): 611. http://dx.doi.org/10.3390/catal8120611.
Full textMehrpooya, Mehdi, Bahram Ghorbani, Fazele Karimian Bahnamiri, and Mohammad Marefati. "Solar fuel production by developing an integrated biodiesel production process and solar thermal energy system." Applied Thermal Engineering 167 (February 2020): 114701. http://dx.doi.org/10.1016/j.applthermaleng.2019.114701.
Full textHaije, Wim, and Hans Geerlings. "Efficient Production of Solar Fuel Using Existing Large Scale Production Technologies." Environmental Science & Technology 45, no. 20 (October 15, 2011): 8609–10. http://dx.doi.org/10.1021/es203160k.
Full textWieckert, C., U. Frommherz, S. Kräupl, E. Guillot, G. Olalde, M. Epstein, S. Santén, T. Osinga, and A. Steinfeld. "A 300kW Solar Chemical Pilot Plant for the Carbothermic Production of Zinc." Journal of Solar Energy Engineering 129, no. 2 (March 29, 2006): 190–96. http://dx.doi.org/10.1115/1.2711471.
Full textSousa, Sinval F., Breno L. Souza, Cristiane L. Barros, and Antonio Otavio T. Patrocinio. "Inorganic Photochemistry and Solar Energy Harvesting: Current Developments and Challenges to Solar Fuel Production." International Journal of Photoenergy 2019 (January 3, 2019): 1–23. http://dx.doi.org/10.1155/2019/9624092.
Full textKong, Hui, Yong Hao, and Hongsheng Wang. "A solar thermochemical fuel production system integrated with fossil fuel heat recuperation." Applied Thermal Engineering 108 (September 2016): 958–66. http://dx.doi.org/10.1016/j.applthermaleng.2016.03.170.
Full textPuntoriero, Fausto, and Osamu Ishitani. "Metal complexes and inorganic materials for solar fuel production." Dalton Transactions 49, no. 20 (2020): 6529–31. http://dx.doi.org/10.1039/d0dt90081h.
Full textSantaclara, J. G., F. Kapteijn, J. Gascon, and M. A. van der Veen. "Understanding metal–organic frameworks for photocatalytic solar fuel production." CrystEngComm 19, no. 29 (2017): 4118–25. http://dx.doi.org/10.1039/c7ce00006e.
Full textTorella, Joseph P., Christopher J. Gagliardi, Janice S. Chen, D. Kwabena Bediako, Brendan Colón, Jeffery C. Way, Pamela A. Silver, and Daniel G. Nocera. "Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system." Proceedings of the National Academy of Sciences 112, no. 8 (February 9, 2015): 2337–42. http://dx.doi.org/10.1073/pnas.1424872112.
Full textAndrei, Virgil, Geani M. Ucoski, Chanon Pornrungroj, Chawit Uswachoke, Qian Wang, Demetra S. Achilleos, Hatice Kasap, et al. "Floating perovskite-BiVO4 devices for scalable solar fuel production." Nature 608, no. 7923 (August 17, 2022): 518–22. http://dx.doi.org/10.1038/s41586-022-04978-6.
Full textPark, Sunghak, Seungwoo Choi, Sungho Kim, and Ki Tae Nam. "Metal Halide Perovskites for Solar Fuel Production and Photoreactions." Journal of Physical Chemistry Letters 12, no. 34 (August 24, 2021): 8292–301. http://dx.doi.org/10.1021/acs.jpclett.1c02373.
Full textSokol, Katarzyna P., and Virgil Andrei. "Automated synthesis and characterization techniques for solar fuel production." Nature Reviews Materials 7, no. 4 (March 17, 2022): 251–53. http://dx.doi.org/10.1038/s41578-022-00432-1.
Full textXu, Chenyu, Jianan Hong, Pengfei Sui, Mengnan Zhu, Yanwei Zhang, and Jing-Li Luo. "Standalone Solar Carbon-Based Fuel Production Based on Semiconductors." Cell Reports Physical Science 1, no. 7 (July 2020): 100101. http://dx.doi.org/10.1016/j.xcrp.2020.100101.
Full textTakalkar, G. D., R. R. Bhosale, A. Kumar, F. AlMomani, M. Khraisheh, R. A. Shakoor, and R. B. Gupta. "Transition metal doped ceria for solar thermochemical fuel production." Solar Energy 172 (September 2018): 204–11. http://dx.doi.org/10.1016/j.solener.2018.03.022.
Full textErmanoski, Ivan. "Cascading pressure thermal reduction for efficient solar fuel production." International Journal of Hydrogen Energy 39, no. 25 (August 2014): 13114–17. http://dx.doi.org/10.1016/j.ijhydene.2014.06.143.
Full textTran, Phong D., Lydia H. Wong, James Barber, and Joachim S. C. Loo. "Recent advances in hybrid photocatalysts for solar fuel production." Energy & Environmental Science 5, no. 3 (2012): 5902. http://dx.doi.org/10.1039/c2ee02849b.
Full textLi, Zhaosheng, Jianyong Feng, Shicheng Yan, and Zhigang Zou. "Solar fuel production: Strategies and new opportunities with nanostructures." Nano Today 10, no. 4 (August 2015): 468–86. http://dx.doi.org/10.1016/j.nantod.2015.06.001.
Full textYano, Junko, Joel A. Haber, John M. Gregoire, Daniel Friebel, Anders Nilsson, and Frances Houle. "JCAP Research on Solar Fuel Production at Light Sources." Synchrotron Radiation News 27, no. 5 (September 3, 2014): 14–17. http://dx.doi.org/10.1080/08940886.2014.952208.
Full textAmao, Yutaka. "Solar Fuel Production Based on the Artificial Photosynthesis System." ChemCatChem 3, no. 3 (February 18, 2011): 458–74. http://dx.doi.org/10.1002/cctc.201000293.
Full textErmanoski, I. "Maximizing Efficiency in Two-step Solar-thermochemical Fuel Production." Energy Procedia 69 (May 2015): 1731–40. http://dx.doi.org/10.1016/j.egypro.2015.03.141.
Full textOzalp, Nesrin, Christian Sattler, James F. Klausner, and James E. Miller. "Making Fuel While the Sun Shines." Mechanical Engineering 136, no. 10 (October 1, 2014): 38–43. http://dx.doi.org/10.1115/10.2014-oct-2.
Full textSriramagiri, Gowri M., Nuha Ahmed, Wesley Luc, Kevin Dobson, Steven S. Hegedus, Feng Jiao, and Robert W. Birkmire. "Design and Implementation of High Voltage Photovoltaic Electrolysis System for Solar Fuel Production from CO2." MRS Advances 2, no. 55 (2017): 3359–64. http://dx.doi.org/10.1557/adv.2017.446.
Full textAbanades, Stéphane. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review." Energies 15, no. 19 (September 26, 2022): 7061. http://dx.doi.org/10.3390/en15197061.
Full textKumari, Sudesh, R. Turner White, Bijandra Kumar, and Joshua M. Spurgeon. "Solar hydrogen production from seawater vapor electrolysis." Energy & Environmental Science 9, no. 5 (2016): 1725–33. http://dx.doi.org/10.1039/c5ee03568f.
Full textCheng, Ziming, Ruitian Yu, Fuqiang Wang, Huaxu Liang, Bo Lin, Hao Wang, Shengpeng Hu, Jianyu Tan, Jie Zhu, and Yuying Yan. "Experimental study on the effects of light intensity on energy conversion efficiency of photo-thermo chemical synergetic catalytic water splitting." Thermal Science 22, Suppl. 2 (2018): 709–18. http://dx.doi.org/10.2298/tsci170626056z.
Full text