Academic literature on the topic 'Solar power plants'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solar power plants.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solar power plants"

1

Zholubak, Ivan, and V. Matviiets. "Tracker for solar power plants." Computer systems and network 4, no. 1 (December 16, 2022): 37–46. http://dx.doi.org/10.23939/csn2022.01.037.

Full text
Abstract:
The article investigates a device for tracking the position of the sun during the day - a tracker for solar power plants. The practice of using solar trackers as a device to increase the efficiency of solar power plants is considered. The relevance of this development in Ukraine and prospects for its development are determined. Methods and principles of increasing the efficiency of solar energy production, expediency of using trackers for solar power plants are analyzed. The aim of the article is to present the stages of development of a biaxial solar tracker and the algorithm of the controlling the angle of inclination of solar panels placed on a moving platform, relative to the obtained data on the position of the sun. The article presents a tracker for solar power plants, its structure and algorithm. It is stated that the principle of operation is to analyze the current position of the sun and automatically set the movable platform with solar panels in the most effective position.
APA, Harvard, Vancouver, ISO, and other styles
2

Smestad, Greg. "Solar Power Plants." Solar Energy Materials and Solar Cells 30, no. 2 (July 1993): 189. http://dx.doi.org/10.1016/0927-0248(93)90020-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schnatbaum, L. "Solar thermal power plants." European Physical Journal Special Topics 176, no. 1 (September 2009): 127–40. http://dx.doi.org/10.1140/epjst/e2009-01153-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rabiul Islam, Md, Wei Xu, Youguang Guo, and Ke Ma. "Solar Photovoltaic Power Plants." International Journal of Photoenergy 2017 (2017): 1–2. http://dx.doi.org/10.1155/2017/1041375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Quraeshi, S. "Solar/wind power plants." Solar & Wind Technology 4, no. 1 (January 1987): 51–54. http://dx.doi.org/10.1016/0741-983x(87)90007-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lüle, Fuat, Turhan Koyuncu, and Ali İhsan Kaya. "PAYBACK PERIODS OF THREE IDENTICAL SOLAR PHOTOVOLTAIC POWER PLANTS." E-journal of New World Sciences Academy 14, no. 4 (November 1, 2019): 199–205. http://dx.doi.org/10.12739/nwsa.2019.14.4.1a0441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuznetsov, P. N., V. V. Cheboxarov, and B. A. Yakimovich. "Hybrid Wind-Solar Power Plants." Bulletin of Kalashnikov ISTU 23, no. 1 (June 15, 2020): 45. http://dx.doi.org/10.22213/2413-1172-2020-1-45-53.

Full text
Abstract:
Приведен анализ известных подходов к созданию гибридных ветро-солнечных энергетических установок. На примерах показано, что размещение фотоэлектрических преобразователей на роторах ветрогенераторов, существующих конструкций является неэффективным решением по ряду факторов. Представлено описание конструкции гибридной ветро-солнечной установки, разработанной ООО «НТЦ «Солнечная энергетика», с вертикальным ротором Дарье и фотоэлектрическими преобразователями, расположенными на общей опорной конструкции, позволяющей получить положительный синергетический эффект от использования двух возобновляемых источников энергии. Приведены достоинства данного решения, одними из которых является повышение энергетической эффективности фотоэлектрических преобразователей за счет интенсификации теплоотвода от поверхности фотоэлементов ветровым потоком от ротора Дарье, эффективное использование площади и стабильность выдачи электроэнергии.Приведены преимущества использования гибридных установок, работающих от возобновляемых источников энергии, в частности ветро-солнечных установок. Описаны возможные пути снижения негативных последствий, вызванных нестабильным характером выработки электроэнергии такими установками.Описаны результаты проведенных работ, направленных на повышение энергетической эффективности ротора ветроустановки и фотоэлектрических преобразователей за счет установки оптимального угла лопастей и фотоэлектрических модулей. Результатами моделирования показано, что максимальное значение коэффициента использования ветра достигается при установке лопастей под углом 38°, а оптимальный угол установки фотоэлектрических модулей для г. Севастополя составляет 34°. Приведены оценочные расчеты энергетических параметров комбинированной ветро-солнечной установки.
APA, Harvard, Vancouver, ISO, and other styles
8

Tregnago, Giulia. "Solar power plants age well." Nature Energy 4, no. 3 (March 2019): 172. http://dx.doi.org/10.1038/s41560-019-0361-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Daryabi, Shaik, and Pentakota Sai Sampth. "250KW Solar Power with MPPT Hybrid Power Generation Station." International Journal for Research in Applied Science and Engineering Technology 10, no. 12 (December 31, 2022): 346–53. http://dx.doi.org/10.22214/ijraset.2022.47864.

Full text
Abstract:
Abstract: Energy comes in different forms. Light is a form of energy. So is heat. So is electricity. Often, one form of energy can be turned into another. This fact is very important because it explains how we get electricity, which we use in so many ways. Electricity is used to light streets and buildings, to run computers and TVs, and to run many other machines and appliances at home, at school, and at work. One way to get electricity is to This method for making electricity is popular. But it has some problems. Our planet has only a limited supply of oil and coal .In this method details about Endless Energy, Solar Cells Galore, Energy from Sun shine , Understanding Electricity. Solar Thermal power plant use the Sun as a heat source. In order to generate a high enough temperature for a power plant, solar energy must be concentrated. In a solar thermal power plant this in normally achieved with mirrors. Estimation for global solar thermal potential indicates that it could more than provide for total global electricity needs. There are three primary solar thermal technologies based on three ways no of concentrating solar energy: solar parabolic through plants, solar tower power plants, and solar dish power plants. The mirrors used in these plants are normally constructed from glass, a although, other techniques are being explored. Power plant of these types use solar heat to heat a thermodynamics fluid such as water in order to drive a thermodynamic engine; for water this will be a stream turbine. Solar thermal power plants can have heat storage systems that allow them to generate electricity beyond daylight hours.
APA, Harvard, Vancouver, ISO, and other styles
10

Strebkov, Dmitriy S., Yuriy Kh Shogenov, and Nikolay Yu Bobovnikov. "Improving the Efficiency of Solar Power Plants." Engineering Technologies and Systems 30, no. 3 (September 30, 2020): 480–97. http://dx.doi.org/10.15507/2658-4123.030.202003.480-497.

Full text
Abstract:
Introduction. An urgent scientific problem is to increase the efficiency of using solar energy in solar power plants (SES). The purpose of the article is to study methods for increasing the efficiency of solar power plants. Materials and Methods. Solar power plants based on modules with a two-sided working surface are considered. Most modern solar power plants use solar modules. The reflection of solar radiation from the earth’s surface provides an increase in the production of electrical energy by 20% compared with modules with a working surface on one side. It is possible to increase the efficiency of using solar energy by increasing the annual production of electric energy through the creation of equal conditions for the use of solar energy by the front and back surfaces of bilateral solar modules. Results. The article presents a solar power plant on a horizontal surface with a vertical arrangement of bilateral solar modules, a solar power station with a deviation of bilateral solar modules from a vertical position, and a solar power plant on the southern slope of the hill with an angle β of the slope to the horizon. The formulas for calculating the sizes of the solar energy reflectors in the meridian direction, the width of the solar energy reflectors, and the angle of inclination of the solar modules to the horizontal surface are given. The results of computer simulation of the parameters of a solar power plant operating in the vicinity of Luxor (Egypt) are presented. Discussion and Conclusion. It is shown that the power generation within the power range of 1 kW takes a peak value for vertically oriented two-sided solar modules with horizontal reflectors of sunlight at the installed capacity utilization factor of 0.45. At the same time, when the solar radiation becomes parallel to the plane of vertical solar modules, there is a decrease in the output of electricity. The proposed design allows equalizing and increasing the output of electricity during the maximum period of solar radiation. Vertically oriented modules are reliable and easy to use while saving space between modules.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Solar power plants"

1

Avapak, Sukunta. "Failure mode analysis on concentrated solar power (CSP) plants : a case study on solar tower power plant." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/102375/1/Sukunta_Avapak_Thesis.pdf.

Full text
Abstract:
This thesis is an investigation of critical failure modes of solar tower power system in concentrated solar power (CSP) technology. The thesis evaluated the causes and impacts of failure on the major components and apply the failure Mode and Effect Analysis (FMEA) to CSP solar tower system. This research proposed an alternative method to overcome the limitations of Risk Priority Number (RPN) from traditional FMEA. A case study applies the proposed approach to CSP solar tower system for a better prioritization of failure mode in order to reduce the risk of failures.
APA, Harvard, Vancouver, ISO, and other styles
2

Parvareh, Forough. "Solar Repowering of PCC-retrofitted Power Plants." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/15473.

Full text
Abstract:
The integration of concentrated solar thermal technology with PCC-retrofitted power plants has the potential to recover the power plant penalty while capturing carbon through the PCC plant. The main contribution of this thesis is showcasing such synergy between solar and PCC-retrofitted power plants through development of a model investigating the solar plant dynamic behaviour and response to external disturbances including climatic changes for the Australian context. Firstly, the potential of solar thermal and/or power energy to compensate for both PCC penalties is investigated. The mode of integrated solar energy with the PCC-retrofitted power plant and the integration point in the superstructure, result in a number of possible configurations among which, three are shown to have a higher potential to meet the operational objective, maintaining the original output rate while PCC is operating. The basic sizing data, a preliminary size of each configuration, operational capability and complexity level involved in the integration of each configuration are established. A limitation was faced in assessing the performance of each option using levelised cost of energy due to the lack of a dynamic profile of high-pressure side feed water preheaters of the PCC-retrofitted power plant. Additionally, a dynamic study on the superstructure was required using the annual dynamic profile of PCC load requirements, carbon price and power demand. Despite these, this work has shown near optimal values for solar multiple and number of full load hours of thermal storage for each configuration. These results are used to select one option for a dynamic model. A comprehensive dynamic study is performed on Option 2 using TRNSYS modelling package. The main operating and control schemes are identified and details of the modelling are provided followed by an analysis of performance results and conclusion and a note for future directions.
APA, Harvard, Vancouver, ISO, and other styles
3

Cottam, P. J. "Innovation in solar thermal chimney power plants." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10045417/.

Full text
Abstract:
This thesis analyses novel technology for renewable electricity generation: the solar thermal chimney (STC) power plant and the suspended chimney (SC) as a plant component. The STC consists of a solar collector, a tall chimney located at the centre of the collector, and turbines and generators at the base of the chimney. Air heated in the collector rises up the chimney under buoyancy and generates power in the turbines. STCs have the potential to generate large amounts of power, but research is required to improve their economic viability. A state-of-the-art STC model was developed, focussing on accurate simulation of collector thermodynamics, and providing data on flow characteristics and plant performance. It was used to explore power generation for matched component dimensions, where for given chimney heights, a range of chimney and collector radii were investigated. Matched dimensions are driven by the collector thermal components approaching thermal equilibrium. This analysis was complemented with a simple cost model to identify the most cost-effective STC configurations. The collector canopy is an exceptionally large structure. Many of the designs proposed in the literature are either complex to manufacture or limit performance. This thesis presents and analyses a series of novel canopy profiles which are easier to manufacture and can be incorporated with little loss in performance. STC chimneys are exceptionally tall slender structures and supporting their self-weight is difficult. This thesis proposes to re-design the chimney as a fabric structure, held aloft with lighter-than-air gas. The performance of initial, small scale suspended chimney prototypes under lateral loading was investigated experimentally to assess the response to wind loads. A novel method of stiffening is proposed and design of larger prototypes developed. The economic viability of a commercial-scale suspended chimney was investigated, yielding cost reductions compared to conventional chimney designs.
APA, Harvard, Vancouver, ISO, and other styles
4

Miranda, Gilda. "Dispatch Optimizer for Concentrated Solar Power Plants." Thesis, Uppsala universitet, Byggteknik och byggd miljö, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-402436.

Full text
Abstract:
Concentrating solar power (CSP) plant is a promising technology that exploits direct normal irradiation (DNI) from the sun to be converted into thermal energy in the solar field. One of the advantages of CSP technology is the possibility to store thermal energy in thermal energy storage (TES) for later production of electricity. The integration of thermal storage allows the CSP plant to be a dispatchable system which is defined as having a capability to schedule its operation using an innovative dispatch planning tool. Considering weather forecast and electricity price profile in the market, dispatch planning tool uses an optimization algorithm. It aims to shift the schedule of electricity delivery to the hours with high electricity price. These hours are usually reflected by the high demand periods. The implementation of dispatch optimizer can benefit the CSP plants economically from the received financial revenues. This study proposes an optimization of dispatch planning strategies for the parabolic trough CSP plant under two dispatch approaches: solar driven and storage driven. The performed simulation improves the generation of electricity which reflects to the increase of financial revenue from the electricity sale in both solar and storage driven approaches. Moreover, the optimization also proves to reduce the amount of dumped thermal energy from the solar field.
APA, Harvard, Vancouver, ISO, and other styles
5

Stalin, Maria Jebamalai Joseph. "Receiver Design Methodology for Solar Tower Power Plants." Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192664.

Full text
Abstract:
Centrala solmottagarsystem (CRS) är på frammarsch på grund av deras höga koncentrationsfaktor och höga potential att minska kostnaderna genom att öka kapacitetsfaktorn av solkraftanläggningar med lagring. I CRS kraftanläggningar är solljuset fokuserat på mottagaren genom arrangemanget av tusentals speglar för att omvandla solstrålning till värme för att driva värmecykler. Solmottagare används för att överföra värmeflux från solen till arbetsmediet. Generellt arbetar solmottagare i driftpunkter med hög temperatur och därför genereras strålningsförluster. Vidare har solmottagaren en betydande påverkan på den totala kostnaden för kraftverket. Således har konstruktion och modellering av mottagaren en signifikant påverkan på kraftanläggningseffektivitet och kostnad. Målet med detta examensarbete är att utveckla en designmetodik för att beräkna geometrin hos solmottagaren och dess verkningsgrad. Denna designmetodik riktar sig främst till stora kraftverk i området 100 MWe, men även skalbarheten av designmetoden har studerats. Den utvecklade konstruktionsmetoden implementerades i in-house designverktyg devISEcrs som även integrerar andra moduler som modellerar solspegelfält, lagring och kraftblocket för att beräkna den totala kraftverksverkningsgraden. Designmodeller för de andra komponenterna är delvis redan implementerade, men de är modifierade och/eller utvidgade för att integrera den nya CRS mottagarmodellen. Slutligen har hela mottagarmodellen validerats genom att jämföra resultaten med testdata från litteraturen.
Central Receiver Systems (CRS) are gaining momentum because of their high concentration and high potential to reduce costs by means of increasing the capacity factor of the plant with storage. In CRS plants, sunlight is focused onto the receiver by the arrangement of thousands of mirrors to convert the solar radiation into heat to drive thermal cycles. Solar receivers are used to transfer the heat flux received from the solar field to the working fluid. Generally, solar receivers work in a high-temperature environment and are therefore subjected to different heat losses. Also, the receiver has a notable impact on the total cost of the power plant. Thus, the design and modelling of the receiver has a significant influence on efficiency and the cost of the plant. The goal of the master thesis is to develop a design methodology to calculate the geometry of the receiver and its efficiency. The design methodology is mainly aimed at large-scale power plants in the range of 100 MWe, but also the scalability of the design method has been studied. The developed receiver design method is implemented in the in-house design tool devISEcrs and also it is integrated with other modules like solar field, storage and power block to calculate the overall efficiency of the power plant. The design models for other components are partly already implemented, but they are modified and/or extended according to the requirements of CRS plants. Finally, the entire receiver design model is validated by comparing the results of test cases with the data from the literature.
APA, Harvard, Vancouver, ISO, and other styles
6

Thareef, J. Mohammed Athabhawi, Jasim Mohammed Dijla, and Jasim Mohammed Sanaa. "Economic feasibility of solar power plants in Iraq." Thesis, Видавництво СумДУ, 2012. http://essuir.sumdu.edu.ua/handle/123456789/26478.

Full text
Abstract:
This gives grounds for implementation sun energy projects for electricity generation. It is interesting that the efficiency of modern solar power station nowadays reaches up to 14,4%, however 5 years ago at the height of the popularity of solar modules their efficiency does not exceed 10%. It is believed 5-10 years later, this index closer to 30%. Due to new technologies introduction quite naturally the cost of electricity will fall. Such prospects in the development of solar energy make it one of the most attractive destinations in attracting foreign investment. An important advantage of the solar power station for Iraq is the ability of local electricity generation, which could decentralize the power systems in Iraq, as a result great losses of energy could disappear when transporting electricity. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/26478
APA, Harvard, Vancouver, ISO, and other styles
7

Pretorius, Johannes Petrus. "Solar Tower Power Plant Performance Characteristics." Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16413.

Full text
Abstract:
Thesis (MScIng)--University of Stellenbosch, 2004.
ENGLISH ABSTRACT: This study investigates energy generation by large-scale solar tower power plants. The performance characteristics of a so-called reference plant with a 4000 m diameter glass collector roof and a 1500 m high, 160 m diameter tower are determined for a site located in South Africa. The relevant draught and conservation equations are derived, discretized and implemented in a numerical model which solves the equations using speci ed meteorological input data and determines the power delivered by the plant. The power output of a solar tower power plant over a twenty-four hour period is presented. Corresponding temperature distributions in the ground under the collector are shown. Variations in seasonal generation are evaluated and the total annual electrical output is determined. The dependency of the power output on collector diameter and tower height is illustrated, while showing that greater power production can be facilitated by optimizing the roof shape and height. The minor in uence of the tower shadow falling across the collector is evaluated, while the e ect of prevailing winds on the power generated is found to be signi cant.
AFRIKAANSE OPSOMMING: Hierdie studie ondersoek elektrisiteitsopwekking deur grootskaalse sontoringkragstasies. Die uitsetkarakteristieke van 'n sogenaamde verwysings-kragstasie met 'n 4000 m deursnee glas kollektor en 'n 1500 m hoë, 160 m deursnee toring word ondersoek vir 'n spesi eke ligging in Suid-Afrika. Die toepaslike trek- en behoudsvergelykings word afgelei, gediskretiseer en geimplementeer in 'n numeriese rekenaarmodel. Die rekenaarmodel los die betrokke vergelykings op deur gebruik te maak van gespesi seerde meteorologiese invoerdata en bepaal dan die uitset gelewer deur die kragstasie. Die uitset van 'n sontoring-kragstasie oor 'n periode van vier-en-twintig uur word getoon. Ooreenstemmende temperatuurverdelings in die grond onder die kollektor word geïllustreer. Die variasie in seisoenale elektrisiteitsopwekking word ondersoek en die totale jaarlikse elektriese uitset bepaal. Die invloed wat die kragstasie dimensies (kollektor deursnee en toring hoogte) op die uitset het, word bestudeer en resultate getoon. Daar is ook bevind dat verhoogde uitset meegebring kan word deur die vorm en hoogte van die kollektordak te optimeer. Die geringe e ek van die toringskadu op die kollektor word bespreek, terwyl bevind is dat heersende winde 'n beduidende e ek op die kragstasie uitset het.
APA, Harvard, Vancouver, ISO, and other styles
8

Howard, Dustin F. "Modeling, simulation, and analysis of grid connected dish-stirling solar power plants." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34832.

Full text
Abstract:
The percentage of renewable energy within the global electric power generation portfolio is expected to increase rapidly over the next few decades due to increasing concerns about climate change, fossil fuel costs, and energy security. Solar thermal energy, also known as concentrating solar power (CSP), is emerging as an important solution to new demands for clean, renewable electricity generation. Dish-Stirling (DS) technology, a form of CSP, is a relatively new player in the renewable energy market, although research in the technology has been ongoing now for nearly thirty years. The first large plant utilizing DS technology, rated at 1.5 MW, came online in January 2010 in Peoria, AZ, and plants rated for several hundred MW are in the planning stages. Increasing capacity of this technology within the utility grid requires extensive dynamic simulation studies to ensure that the power system maintains its safety and reliability in spite of the technological challenges that DS technology presents, particularly related to the intermittency of the energy source and its use of a non-conventional asynchronous generator. The research presented in this thesis attempts to fill in the gaps between the well established research on Stirling engines in the world of thermodynamics and the use of DS systems in electric power system applications, a topic which has received scant attention in publications since the emergence of this technology. DS technology uses a paraboloidal shaped dish of mirrors to concentrate sunlight to a single point. The high temperatures achieved at the focal point of the mirrors is used as a heat source for the Stirling engine, which is a closed-cycle, external heat engine. Invented by the Scottish clergyman Robert Stirling in 1816, the Stirling engine is capable of high efficiency and releases no emissions, making it highly compatible with concentrated solar energy. The Stirling engine turns a squirrel-cage induction generator, where electricity is delivered through underground cables from thousands of independent, autonomous 10-25 kW rated DS units in a large solar farm. A dynamic model of the DS system is presented in this thesis, including models of the Stirling engine working gas and mechanical dynamics. Custom FORTRAN code is written to model the Stirling engine dynamics within PSCAD/EMTDC. The Stirling engine and various other components of the DS system are incorporated into an electrical network, including first a single-machine, infinite bus network, and then a larger 12-bus network including conventional generators, loads, and transmission lines. An analysis of the DS control systems is presented, and simulation results are provided to demonstrate the system's steady state and dynamic behavior within these electric power networks. Potential grid interconnection requirements are discussed, including issues with power factor correction and low voltage ride-through, and simulation results are provided to illustrate the dish-Stirling system's capability for meeting such requirements.
APA, Harvard, Vancouver, ISO, and other styles
9

Spelling, James. "Hybrid Solar Gas-Turbine Power Plants : A Thermoeconomic Analysis." Doctoral thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121315.

Full text
Abstract:
The provision of a sustainable energy supply is one of the most importantissues facing humanity at the current time, and solar thermal power hasestablished itself as one of the more viable sources of renewable energy. Thedispatchable nature of this technology makes it ideally suited to forming thebackbone of a future low-carbon electricity system.However, the cost of electricity from contemporary solar thermal power plantsremains high, despite several decades of development, and a step-change intechnology is needed to drive down costs. Solar gas-turbine power plants are apromising new alternative, allowing increased conversion efficiencies and asignificant reduction in water consumption. Hybrid operation is a furtherattractive feature of solar gas-turbine technology, facilitating control andensuring the power plant is available to meet demand whenever it occurs.Construction of the first generation of commercial hybrid solar gas-turbinepower plants is complicated by the lack of an established, standardised, powerplant configuration, which presents the designer with a large number ofchoices. To assist decision making, thermoeconomic studies have beenperformed on a variety of different power plant configurations, includingsimple- and combined-cycles as well as the addition of thermal energy storage.Multi-objective optimisation has been used to identify Pareto-optimal designsand highlight trade-offs between costs and emissions.Analysis of the simple-cycle hybrid solar gas-turbines revealed that, whileelectricity costs were kept low, the achievable reduction in carbon dioxideemissions is relatively small. Furthermore, an inherent trade-off between thedesign of high efficiency and high solar share hybrid power plants wasidentified. Even with the use of new optimised designs, the degree of solarintegration into the gas-turbine did not exceed 63% on an annual basis.In order to overcome the limitations of the simple-cycle power plants, twoimprovements were suggested: the integration of thermal energy storage, andthe use of combined-cycle configurations. Thermal energy storage allowed thedegree of solar operation to be extended, significantly decreasing carbondioxide emissions, and the addition of a bottoming-cycle reduced the electricitycosts. A combination of these two improvements provided the bestperformance, allowing a reduction in carbon dioxide emissions of up to 34%and a reduction in electricity costs of up to 22% compared to a combination ofconventional power generation technologies.
Hållbar energiförsörjning är för närvarande en av de viktigaste frågorna förmänskligheten. Koncentrerad solenergi är nu etablerad som en tillförlitlig källaav förnybar energi. Den reglerbara karaktären hos tekniken gör den specielltintressant för uppbyggnaden av ett framtida koldioxidsnålt elsystem.Kostnaden för elektricitet från nuvarande termiska solkraftverk är hög trottsflera decennier av utveckling. Ett genombrått på tekniknivå krävs för att drivaned kostnaderna. Sol-gasturbiner är ett av de mest lovande alternativen, somger en ökad verkningsgrad samtidigt som vattenkonsumtionen reducerasdrastiskt. Sol-gasturbintekniken gör det möjligt att blandköra solenergi ochandra bränslen för att möta efterfrågan vid alla tidpunkter, en attraktiv aspekt iförhållande till alternativa lösningar.Uppbyggnaden av första generationens kommersiella hybrida solgasturbinkraftverkförsvåras dock av bristen på etablerade och standardiseradekraftverkskonfigurationer. Dessa ger planeraren ett stort antal valmöjlighetersom underlag för beslutsfattande. Termoekonomiska studier har genomförtsför ett flertal olika kraftverkskonfigurationer, däribland kraftverk med enkelcykel, kombikraftverk samt möjligheten att utnyttja termisk energilagring.Pareto-optimala konfigurationer har identifierats med hjälp av multiobjektsoptimeringför att belysa balansen mellan kostnader och utsläpp.Analysen av det enkla hybrida sol-gasturbinkraftverket visade attelektricitetskostnaden hållits på en låg nivå, men att den möjliga minskningen avkoldioxidutsläpp är relativt liten. Dessutom identifierades en inre balans mellanatt bibehålla en hög verkningsgrad hos konfigurationen och en hög andelsolenergi i produktionen. Andelen av solenergi i gasturbinen överskred aldrig63% på årlig bas, även med optimerade kraftverkskonfigurationer.Två förbättringar föreslås för att övervinna begränsningarna hos kraftverk medenkel cykel: integration av termisk energilagring samt nyttjande avkombikraftverkskonfigurationer. Termisk energilagring tillåter en ökad andelsolenergi i driften och reducerar koldioxidutsläppen drastiskt, medan denytterligare cykeln hos kombikraftverket reducerar elektricitetskostnaden.Kombinationen av dessa förbättringar ger den bästa prestandan, med enreduktion av koldioxidutsläppen på upp till 34% och reducerade elektricitetskostnaderpå upp till 22% i jämförelse med andra kombinationer avkonventionella kraftverkskonfigurationer.

QC 20130503

APA, Harvard, Vancouver, ISO, and other styles
10

Lenner, Johan. "Solar cells on hydro power plants : A feasibility study." Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255842.

Full text
Abstract:
Parts of the auxiliary power systems at Fortum's hydro power stations are usingdirect current, which is fed from the generators at the plant and converted byrectifiers. As photovoltaic solar cells produce direct current there are severalhypothetical advantages to use solar power for the auxiliary power supply, e.g.enabling more of the power from the generator to be sold to the grid. It eliminatesthe need of an inverter, conversion losses are avoided and less load is put on therectifiers. However the exclusion of an inverter also prevents the solar cells to have adirect connection to the grid, which in turn makes them ineligible for the Swedishgovernmental solar power investment support program. The lesser load on therectifiers will not affect their lifetime according to manufacturers and thus achieves noeconomic gain. Avoiding conversion losses will increase the gain from the producedelectricity by enabling even more power to be sold to the grid. The economic gainfrom avoiding conversion losses is however too small to gain any feasibility in a smallsolar power installation at a hydro power plant, as the small size will make itexpensive in terms of investment per Wp.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Solar power plants"

1

Winter, C. J., Rudolf L. Sizmann, and Lorin L. Vant-Hull, eds. Solar Power Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Precup, Radu-Emil, Tariq Kamal, and Syed Zulqadar Hassan, eds. Solar Photovoltaic Power Plants. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6151-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Casal, Federico G. Solar Thermal Power Plants. Edited by Paul Kesselring and Carl-Jochen Winter. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-52281-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gretz, J., A. Strub, and W. Palz, eds. Thermo-Mechanical Solar Power Plants. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5402-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Camacho, Eduardo F. Advanced Control of Solar Plants. London: Springer London, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Benduhn, Tea. Solar power. Pleasantville, NY: Weekly Reader Books, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Camacho, E. F. Advanced control of solar plants. Berlin: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Palenzuela, Patricia, Diego-César Alarcón-Padilla, and Guillermo Zaragoza. Concentrating Solar Power and Desalination Plants. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20535-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Islam, Md Rabiul, Faz Rahman, and Wei Xu, eds. Advances in Solar Photovoltaic Power Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50521-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Commission, California Energy, Martifer Group, URS Corporation, Bethel Energy, San Joaquin Solar 1 LLC., and San Joaquin Solar 2 LLC., eds. Application for certification, San Joaquin Solar 1 LLC, San Joaquin Solar 2 LLC. [San Francisco, Calif.?]: URS, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Solar power plants"

1

Goel, Malti, V. S. Verma, and Neha Goel Tripathi. "Solar Power Plants." In Solar Energy, 39–49. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2099-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fischer, M., and R. Tamme. "Solar Fuels and Chemicals, Solar Hydrogen." In Solar Power Plants, 336–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moukhtar, Ibrahim, Adel Z. El Dein, Adel A. Elbaset, and Yasunori Mitani. "Solar Power Plants Design." In Solar Energy, 29–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61307-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bloss, W. H., H. P. Hertlein, W. Knaupp, S. Nann, and F. Pfisterer. "Photovoltaic Power Stations." In Solar Power Plants, 283–335. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sizmann, R., P. Köpke, and R. Busen. "Solar Radiation Conversion." In Solar Power Plants, 17–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Winter, C. J. "The Energy Heptagon." In Solar Power Plants, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hertlein, H. P., H. Klaiss, and J. Nitsch. "Cost Analysis of Solar Power Plants." In Solar Power Plants, 367–409. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vant-Hull, L. L. "Concentrator Optics." In Solar Power Plants, 84–133. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grasse, W., H. P. Hertlein, and C. J. Winter. "Aspects of Solar Power Plant Engineering." In Solar Power Plants, 134–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Becker, M., and L. L. Vant-Hull. "Thermal Receivers." In Solar Power Plants, 163–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Solar power plants"

1

Hassani, Vahab, and Henry W. Price. "Modular Trough Power Plants." In ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-156.

Full text
Abstract:
Abstract A number of factors are creating an increased market potential for small trough power technology. These include the need for distributed power systems for rural communities worldwide, the need to generate more electricity by non-combustion renewable processes, the need for sustainable power for economic growth in developing countries, and the deregulation and privatization of the electrical generation sector worldwide. Parabolic trough collector technology has been used in large central station power plants. Organic Rankine cycle (ORC) air-cooled modular power units have been successfully applied for large and small-scale geothermal power plants, with over 600 MW of capacity, during the same period. The merging of these two technologies to produce distributed modular power plants in the 200 kW to 10 MW range offers a new application for both technologies. It is our objective in this paper to introduce a modular trough power plant (MTPP) and discuss its performance and the cost of electricity generation from such system.
APA, Harvard, Vancouver, ISO, and other styles
2

Kinsey, Geoffrey S. "Amonix Concentration Photovoltaic Power Plants." In Optics for Solar Energy. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ose.2011.srwb1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fitz, Arkady D., Andrey S. Poddubitsky, and Andrey S. Izhevsky. "Floating solar power plants." In Актуальные вопросы энергетики в АПК. Благовещенск: Дальневосточный государственный аграрный университет, 2022. http://dx.doi.org/10.22450/9785964205777_83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kinsey, Geoffrey S., Kenneth Stone, Joseph Brown, and Vahan Garboushian. "Amonix CPV solar power plants." In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5617196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Husein, Sebastian, Roland Saive, and Rebecca Saive. "1500% Efficient Solar Power Plants." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kinsey, Geoffrey S., Kenneth Stone, and Vahan Garboushian. "Energy prediction of Amonix solar power plants." In SPIE Solar Energy + Technology, edited by Lori E. Greene and Raed A. Sherif. SPIE, 2010. http://dx.doi.org/10.1117/12.860188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peterseim, Juergen H., Amir Tadros, Udo Hellwig, and Stuart White. "Integrated Solar Combined Cycle Plants Using Solar Towers With Thermal Storage to Increase Plant Performance." In ASME 2013 Power Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/power2013-98121.

Full text
Abstract:
In Australia both natural gas and an excellent solar irradiance are abundant energy sources and its combination is one option to implement concentrating solar power (CSP) systems in Australia’s traditionally low cost electricity market. The recently introduced carbon pricing mechanism in Australia is likely to steer investment towards combined cycle gas turbine (CCGT) plants. This will also lead to further plants being built in high solar irradiance areas where CSP could provide valuable peak capacity. Hybridisation would enable more competitive power generation than standalone CSP systems as hybrid plants share equipment, such as steam turbine and condenser, therewith lowering the specific investment. This paper investigates the novel hybridization of CCGT and solar tower systems to increase the efficiency of integrated solar combined cycle (ISCC). Currently, all ISCC plants use parabolic trough systems with thermal oil as this technology is most mature. However, increases in plant efficiency, simpler solar tower integration as well as further synergies of solar tower ISCC systems, such as joint use of tower as CCGT stack, are likely to enhance the economic viability of new ISCC plants. In addition to a technical concept description this paper outlines the ideal sites for ISCC plants in Australia and presents a 200MWe ISCC case study with 3h molten salt thermal storage for the conversion of the Port Hedland open cycle gas turbine (OCGT) facility in Western Australia into a solar tower ISCC plant.
APA, Harvard, Vancouver, ISO, and other styles
8

Dersch, Ju¨rgen, Michael Geyer, Ulf Hermann, Scott A. Jones, Bruce Kelly, Rainer Kistner, Winfried Ortmanns, Robert Pitz-Paal, and Henry Price. "Solar Trough Integration Into Combined Cycle Systems." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1072.

Full text
Abstract:
Parabolic trough solar technology has over 125 plant-years of successful operation at nine commercial Solar Electric Generating Systems (SEGS) power plants that are operating near Barstow, California. These solar plants utilize conventional steam Rankine turbine-generator systems, and as a result most people associate parabolic trough solar technology with steam Rankine cycle power plants. Although these plants are clearly optimized for their particular application, other power cycle designs may be appropriate in other situations. Of particular interest is the integration of parabolic trough solar technology with combined cycle power plant technology, a configuration called the integrated solar combined cycle system (ISCCS). Four potential projects in India, Egypt, Morocco, and Mexico are considering the ISSCS configuration. This paper compares the performance, cost, and carbon emissions of ISCCS and SEGS plants with a standard combined cycle plant.
APA, Harvard, Vancouver, ISO, and other styles
9

Breyer, Christian, Marzella Görig, Ann-Katrin Gerlach, and Jürgen Schmid. "Economics of Hybrid PV-Fossil Power Plants." In ISES Solar World Congress 2011. Freiburg, Germany: International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.10.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Breyer, Christian, Stephan Rieke, Michael Sterner, and Jürgen Schmid. "Hybrid PV-Wind-Renewable Power Methane Plants." In ISES Solar World Congress 2011. Freiburg, Germany: International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.10.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Solar power plants"

1

Madaeni, S. H., R. Sioshansi, and P. Denholm. Capacity Value of Concentrating Solar Power Plants. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1018079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Turchi, C., N. Langle, R. Bedilion, and C. Libby. Solar-Augment Potential of U.S. Fossil-Fired Power Plants. Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1006246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Clark, Caitlyn, Aaron Barker, Jennifer King, and James Reilly. Wind and Solar Hybrid Power Plants for Energy Resilience. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1842446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Turchi, Craig, Parthiv Kurup, Sertac Akar, and Francisco Flores. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1215314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Linker, K. Heat engine development for solar thermal dish-electric power plants. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/7228892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maxwell, E. L., and M. D. Rymes. The impact of solar radiation resources on the siting of solar thermal power plants. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/6016955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ong, S., C. Campbell, P. Denholm, R. Margolis, and G. Heath. Land-Use Requirements for Solar Power Plants in the United States. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1086349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wendt, Daniel, Greg Mines, Craig Turchi, and Guangdong Zhu. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1245529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Maxwell, E., and M. Rymes. An initial development of a methodology for siting solar power plants. Office of Scientific and Technical Information (OSTI), November 1987. http://dx.doi.org/10.2172/5659171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Denholm, P., G. Brinkman, D. Lew, and M. Hummon. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study. Office of Scientific and Technical Information (OSTI), May 2014. http://dx.doi.org/10.2172/1132184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography