Academic literature on the topic 'Solar power plants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solar power plants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solar power plants"
Zholubak, Ivan, and V. Matviiets. "Tracker for solar power plants." Computer systems and network 4, no. 1 (December 16, 2022): 37–46. http://dx.doi.org/10.23939/csn2022.01.037.
Full textSmestad, Greg. "Solar Power Plants." Solar Energy Materials and Solar Cells 30, no. 2 (July 1993): 189. http://dx.doi.org/10.1016/0927-0248(93)90020-4.
Full textSchnatbaum, L. "Solar thermal power plants." European Physical Journal Special Topics 176, no. 1 (September 2009): 127–40. http://dx.doi.org/10.1140/epjst/e2009-01153-0.
Full textRabiul Islam, Md, Wei Xu, Youguang Guo, and Ke Ma. "Solar Photovoltaic Power Plants." International Journal of Photoenergy 2017 (2017): 1–2. http://dx.doi.org/10.1155/2017/1041375.
Full textQuraeshi, S. "Solar/wind power plants." Solar & Wind Technology 4, no. 1 (January 1987): 51–54. http://dx.doi.org/10.1016/0741-983x(87)90007-5.
Full textLüle, Fuat, Turhan Koyuncu, and Ali İhsan Kaya. "PAYBACK PERIODS OF THREE IDENTICAL SOLAR PHOTOVOLTAIC POWER PLANTS." E-journal of New World Sciences Academy 14, no. 4 (November 1, 2019): 199–205. http://dx.doi.org/10.12739/nwsa.2019.14.4.1a0441.
Full textKuznetsov, P. N., V. V. Cheboxarov, and B. A. Yakimovich. "Hybrid Wind-Solar Power Plants." Bulletin of Kalashnikov ISTU 23, no. 1 (June 15, 2020): 45. http://dx.doi.org/10.22213/2413-1172-2020-1-45-53.
Full textTregnago, Giulia. "Solar power plants age well." Nature Energy 4, no. 3 (March 2019): 172. http://dx.doi.org/10.1038/s41560-019-0361-y.
Full textDaryabi, Shaik, and Pentakota Sai Sampth. "250KW Solar Power with MPPT Hybrid Power Generation Station." International Journal for Research in Applied Science and Engineering Technology 10, no. 12 (December 31, 2022): 346–53. http://dx.doi.org/10.22214/ijraset.2022.47864.
Full textStrebkov, Dmitriy S., Yuriy Kh Shogenov, and Nikolay Yu Bobovnikov. "Improving the Efficiency of Solar Power Plants." Engineering Technologies and Systems 30, no. 3 (September 30, 2020): 480–97. http://dx.doi.org/10.15507/2658-4123.030.202003.480-497.
Full textDissertations / Theses on the topic "Solar power plants"
Avapak, Sukunta. "Failure mode analysis on concentrated solar power (CSP) plants : a case study on solar tower power plant." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/102375/1/Sukunta_Avapak_Thesis.pdf.
Full textParvareh, Forough. "Solar Repowering of PCC-retrofitted Power Plants." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/15473.
Full textCottam, P. J. "Innovation in solar thermal chimney power plants." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10045417/.
Full textMiranda, Gilda. "Dispatch Optimizer for Concentrated Solar Power Plants." Thesis, Uppsala universitet, Byggteknik och byggd miljö, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-402436.
Full textStalin, Maria Jebamalai Joseph. "Receiver Design Methodology for Solar Tower Power Plants." Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192664.
Full textCentral Receiver Systems (CRS) are gaining momentum because of their high concentration and high potential to reduce costs by means of increasing the capacity factor of the plant with storage. In CRS plants, sunlight is focused onto the receiver by the arrangement of thousands of mirrors to convert the solar radiation into heat to drive thermal cycles. Solar receivers are used to transfer the heat flux received from the solar field to the working fluid. Generally, solar receivers work in a high-temperature environment and are therefore subjected to different heat losses. Also, the receiver has a notable impact on the total cost of the power plant. Thus, the design and modelling of the receiver has a significant influence on efficiency and the cost of the plant. The goal of the master thesis is to develop a design methodology to calculate the geometry of the receiver and its efficiency. The design methodology is mainly aimed at large-scale power plants in the range of 100 MWe, but also the scalability of the design method has been studied. The developed receiver design method is implemented in the in-house design tool devISEcrs and also it is integrated with other modules like solar field, storage and power block to calculate the overall efficiency of the power plant. The design models for other components are partly already implemented, but they are modified and/or extended according to the requirements of CRS plants. Finally, the entire receiver design model is validated by comparing the results of test cases with the data from the literature.
Thareef, J. Mohammed Athabhawi, Jasim Mohammed Dijla, and Jasim Mohammed Sanaa. "Economic feasibility of solar power plants in Iraq." Thesis, Видавництво СумДУ, 2012. http://essuir.sumdu.edu.ua/handle/123456789/26478.
Full textPretorius, Johannes Petrus. "Solar Tower Power Plant Performance Characteristics." Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16413.
Full textENGLISH ABSTRACT: This study investigates energy generation by large-scale solar tower power plants. The performance characteristics of a so-called reference plant with a 4000 m diameter glass collector roof and a 1500 m high, 160 m diameter tower are determined for a site located in South Africa. The relevant draught and conservation equations are derived, discretized and implemented in a numerical model which solves the equations using speci ed meteorological input data and determines the power delivered by the plant. The power output of a solar tower power plant over a twenty-four hour period is presented. Corresponding temperature distributions in the ground under the collector are shown. Variations in seasonal generation are evaluated and the total annual electrical output is determined. The dependency of the power output on collector diameter and tower height is illustrated, while showing that greater power production can be facilitated by optimizing the roof shape and height. The minor in uence of the tower shadow falling across the collector is evaluated, while the e ect of prevailing winds on the power generated is found to be signi cant.
AFRIKAANSE OPSOMMING: Hierdie studie ondersoek elektrisiteitsopwekking deur grootskaalse sontoringkragstasies. Die uitsetkarakteristieke van 'n sogenaamde verwysings-kragstasie met 'n 4000 m deursnee glas kollektor en 'n 1500 m hoë, 160 m deursnee toring word ondersoek vir 'n spesi eke ligging in Suid-Afrika. Die toepaslike trek- en behoudsvergelykings word afgelei, gediskretiseer en geimplementeer in 'n numeriese rekenaarmodel. Die rekenaarmodel los die betrokke vergelykings op deur gebruik te maak van gespesi seerde meteorologiese invoerdata en bepaal dan die uitset gelewer deur die kragstasie. Die uitset van 'n sontoring-kragstasie oor 'n periode van vier-en-twintig uur word getoon. Ooreenstemmende temperatuurverdelings in die grond onder die kollektor word geïllustreer. Die variasie in seisoenale elektrisiteitsopwekking word ondersoek en die totale jaarlikse elektriese uitset bepaal. Die invloed wat die kragstasie dimensies (kollektor deursnee en toring hoogte) op die uitset het, word bestudeer en resultate getoon. Daar is ook bevind dat verhoogde uitset meegebring kan word deur die vorm en hoogte van die kollektordak te optimeer. Die geringe e ek van die toringskadu op die kollektor word bespreek, terwyl bevind is dat heersende winde 'n beduidende e ek op die kragstasie uitset het.
Howard, Dustin F. "Modeling, simulation, and analysis of grid connected dish-stirling solar power plants." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34832.
Full textSpelling, James. "Hybrid Solar Gas-Turbine Power Plants : A Thermoeconomic Analysis." Doctoral thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121315.
Full textHållbar energiförsörjning är för närvarande en av de viktigaste frågorna förmänskligheten. Koncentrerad solenergi är nu etablerad som en tillförlitlig källaav förnybar energi. Den reglerbara karaktären hos tekniken gör den specielltintressant för uppbyggnaden av ett framtida koldioxidsnålt elsystem.Kostnaden för elektricitet från nuvarande termiska solkraftverk är hög trottsflera decennier av utveckling. Ett genombrått på tekniknivå krävs för att drivaned kostnaderna. Sol-gasturbiner är ett av de mest lovande alternativen, somger en ökad verkningsgrad samtidigt som vattenkonsumtionen reducerasdrastiskt. Sol-gasturbintekniken gör det möjligt att blandköra solenergi ochandra bränslen för att möta efterfrågan vid alla tidpunkter, en attraktiv aspekt iförhållande till alternativa lösningar.Uppbyggnaden av första generationens kommersiella hybrida solgasturbinkraftverkförsvåras dock av bristen på etablerade och standardiseradekraftverkskonfigurationer. Dessa ger planeraren ett stort antal valmöjlighetersom underlag för beslutsfattande. Termoekonomiska studier har genomförtsför ett flertal olika kraftverkskonfigurationer, däribland kraftverk med enkelcykel, kombikraftverk samt möjligheten att utnyttja termisk energilagring.Pareto-optimala konfigurationer har identifierats med hjälp av multiobjektsoptimeringför att belysa balansen mellan kostnader och utsläpp.Analysen av det enkla hybrida sol-gasturbinkraftverket visade attelektricitetskostnaden hållits på en låg nivå, men att den möjliga minskningen avkoldioxidutsläpp är relativt liten. Dessutom identifierades en inre balans mellanatt bibehålla en hög verkningsgrad hos konfigurationen och en hög andelsolenergi i produktionen. Andelen av solenergi i gasturbinen överskred aldrig63% på årlig bas, även med optimerade kraftverkskonfigurationer.Två förbättringar föreslås för att övervinna begränsningarna hos kraftverk medenkel cykel: integration av termisk energilagring samt nyttjande avkombikraftverkskonfigurationer. Termisk energilagring tillåter en ökad andelsolenergi i driften och reducerar koldioxidutsläppen drastiskt, medan denytterligare cykeln hos kombikraftverket reducerar elektricitetskostnaden.Kombinationen av dessa förbättringar ger den bästa prestandan, med enreduktion av koldioxidutsläppen på upp till 34% och reducerade elektricitetskostnaderpå upp till 22% i jämförelse med andra kombinationer avkonventionella kraftverkskonfigurationer.
QC 20130503
Lenner, Johan. "Solar cells on hydro power plants : A feasibility study." Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255842.
Full textBooks on the topic "Solar power plants"
Winter, C. J., Rudolf L. Sizmann, and Lorin L. Vant-Hull, eds. Solar Power Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9.
Full textPrecup, Radu-Emil, Tariq Kamal, and Syed Zulqadar Hassan, eds. Solar Photovoltaic Power Plants. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6151-7.
Full textCasal, Federico G. Solar Thermal Power Plants. Edited by Paul Kesselring and Carl-Jochen Winter. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-52281-9.
Full textGretz, J., A. Strub, and W. Palz, eds. Thermo-Mechanical Solar Power Plants. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5402-1.
Full textCamacho, Eduardo F. Advanced Control of Solar Plants. London: Springer London, 1997.
Find full textPalenzuela, Patricia, Diego-César Alarcón-Padilla, and Guillermo Zaragoza. Concentrating Solar Power and Desalination Plants. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20535-9.
Full textIslam, Md Rabiul, Faz Rahman, and Wei Xu, eds. Advances in Solar Photovoltaic Power Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50521-2.
Full textCommission, California Energy, Martifer Group, URS Corporation, Bethel Energy, San Joaquin Solar 1 LLC., and San Joaquin Solar 2 LLC., eds. Application for certification, San Joaquin Solar 1 LLC, San Joaquin Solar 2 LLC. [San Francisco, Calif.?]: URS, 2008.
Find full textBook chapters on the topic "Solar power plants"
Goel, Malti, V. S. Verma, and Neha Goel Tripathi. "Solar Power Plants." In Solar Energy, 39–49. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2099-8_4.
Full textFischer, M., and R. Tamme. "Solar Fuels and Chemicals, Solar Hydrogen." In Solar Power Plants, 336–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_9.
Full textMoukhtar, Ibrahim, Adel Z. El Dein, Adel A. Elbaset, and Yasunori Mitani. "Solar Power Plants Design." In Solar Energy, 29–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61307-5_2.
Full textBloss, W. H., H. P. Hertlein, W. Knaupp, S. Nann, and F. Pfisterer. "Photovoltaic Power Stations." In Solar Power Plants, 283–335. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_8.
Full textSizmann, R., P. Köpke, and R. Busen. "Solar Radiation Conversion." In Solar Power Plants, 17–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_2.
Full textWinter, C. J. "The Energy Heptagon." In Solar Power Plants, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_1.
Full textHertlein, H. P., H. Klaiss, and J. Nitsch. "Cost Analysis of Solar Power Plants." In Solar Power Plants, 367–409. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_10.
Full textVant-Hull, L. L. "Concentrator Optics." In Solar Power Plants, 84–133. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_3.
Full textGrasse, W., H. P. Hertlein, and C. J. Winter. "Aspects of Solar Power Plant Engineering." In Solar Power Plants, 134–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_4.
Full textBecker, M., and L. L. Vant-Hull. "Thermal Receivers." In Solar Power Plants, 163–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61245-9_5.
Full textConference papers on the topic "Solar power plants"
Hassani, Vahab, and Henry W. Price. "Modular Trough Power Plants." In ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-156.
Full textKinsey, Geoffrey S. "Amonix Concentration Photovoltaic Power Plants." In Optics for Solar Energy. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ose.2011.srwb1.
Full textFitz, Arkady D., Andrey S. Poddubitsky, and Andrey S. Izhevsky. "Floating solar power plants." In Актуальные вопросы энергетики в АПК. Благовещенск: Дальневосточный государственный аграрный университет, 2022. http://dx.doi.org/10.22450/9785964205777_83.
Full textKinsey, Geoffrey S., Kenneth Stone, Joseph Brown, and Vahan Garboushian. "Amonix CPV solar power plants." In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5617196.
Full textHusein, Sebastian, Roland Saive, and Rebecca Saive. "1500% Efficient Solar Power Plants." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300396.
Full textKinsey, Geoffrey S., Kenneth Stone, and Vahan Garboushian. "Energy prediction of Amonix solar power plants." In SPIE Solar Energy + Technology, edited by Lori E. Greene and Raed A. Sherif. SPIE, 2010. http://dx.doi.org/10.1117/12.860188.
Full textPeterseim, Juergen H., Amir Tadros, Udo Hellwig, and Stuart White. "Integrated Solar Combined Cycle Plants Using Solar Towers With Thermal Storage to Increase Plant Performance." In ASME 2013 Power Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/power2013-98121.
Full textDersch, Ju¨rgen, Michael Geyer, Ulf Hermann, Scott A. Jones, Bruce Kelly, Rainer Kistner, Winfried Ortmanns, Robert Pitz-Paal, and Henry Price. "Solar Trough Integration Into Combined Cycle Systems." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1072.
Full textBreyer, Christian, Marzella Görig, Ann-Katrin Gerlach, and Jürgen Schmid. "Economics of Hybrid PV-Fossil Power Plants." In ISES Solar World Congress 2011. Freiburg, Germany: International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.10.02.
Full textBreyer, Christian, Stephan Rieke, Michael Sterner, and Jürgen Schmid. "Hybrid PV-Wind-Renewable Power Methane Plants." In ISES Solar World Congress 2011. Freiburg, Germany: International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.10.03.
Full textReports on the topic "Solar power plants"
Madaeni, S. H., R. Sioshansi, and P. Denholm. Capacity Value of Concentrating Solar Power Plants. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1018079.
Full textTurchi, C., N. Langle, R. Bedilion, and C. Libby. Solar-Augment Potential of U.S. Fossil-Fired Power Plants. Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1006246.
Full textClark, Caitlyn, Aaron Barker, Jennifer King, and James Reilly. Wind and Solar Hybrid Power Plants for Energy Resilience. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1842446.
Full textTurchi, Craig, Parthiv Kurup, Sertac Akar, and Francisco Flores. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1215314.
Full textLinker, K. Heat engine development for solar thermal dish-electric power plants. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/7228892.
Full textMaxwell, E. L., and M. D. Rymes. The impact of solar radiation resources on the siting of solar thermal power plants. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/6016955.
Full textOng, S., C. Campbell, P. Denholm, R. Margolis, and G. Heath. Land-Use Requirements for Solar Power Plants in the United States. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1086349.
Full textWendt, Daniel, Greg Mines, Craig Turchi, and Guangdong Zhu. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1245529.
Full textMaxwell, E., and M. Rymes. An initial development of a methodology for siting solar power plants. Office of Scientific and Technical Information (OSTI), November 1987. http://dx.doi.org/10.2172/5659171.
Full textDenholm, P., G. Brinkman, D. Lew, and M. Hummon. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study. Office of Scientific and Technical Information (OSTI), May 2014. http://dx.doi.org/10.2172/1132184.
Full text