Academic literature on the topic 'Solar PV array'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solar PV array.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solar PV array"

1

Udenze, Peter, Yihua Hu, Huiqing Wen, Xianming Ye, and Kai Ni. "A Reconfiguration Method for Extracting Maximum Power from Non-Uniform Aging Solar Panels." Energies 11, no. 10 (2018): 2743. http://dx.doi.org/10.3390/en11102743.

Full text
Abstract:
Aging affects different photovoltaic (PV) modules in a PV array in a non-uniform way, thereby leading to non-uniform working conditions of the PV modules and resulting in variations in the power outputs of the PV array. In this paper, an algorithm is developed for optimising the electrical configuration of a PV array during the non-uniform aging processes amongst the PV modules. A new PV array reconfiguration method is proposed to maximize the power generation from non-uniformly aged PV arrays through rearrangements of the positions of the PV modules without having to replace the aged PV modules with new ones, thereby saving on maintenance costs. This reconfiguration strategy requires information about the electrical parameters of the PV modules in an array, so as to choose the optimal reconfiguration topology. In this algorithm, the PV modules are sorted iteratively in a hierarchy pattern to reduce the effect of mismatch due to the non-uniform aging processes amongst PV modules. Computer simulation and analysis have been carried out to evaluate the effectiveness of the proposed method for different sizes of non-uniform aged PV arrays (4 × 4, 10 × 10, and 100 × 10 arrays) with MATLAB. The results show an improvement in the power generation from a non-uniformly aged PV array and can be applied to any size of PV array.
APA, Harvard, Vancouver, ISO, and other styles
2

Wei, Xue Ye, Bin Guo, De Yue Li, and Gzhong Yang. "A Modeling Method and I-V Characteristics for PV Array." Applied Mechanics and Materials 713-715 (January 2015): 1202–7. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.1202.

Full text
Abstract:
The output characteristics of a PV array vary nonlinearly when the number of solar cells interconnected in series and parallel changes. The model and its parameters for a single solar cell are analyzed firstly. Then the models and there parameters for series, parallel circuits and series-parallel PV array are proposed respectively using circuit theory and observational method. Especial, the parameters of the equivalent circuits for PV arrays are characterized by a equation. A simulations are implemented to verify the three types of theoretical models and there parameters.Keywords: Solar cell; Model; PV array; I-V curve; Equivalent circuit
APA, Harvard, Vancouver, ISO, and other styles
3

Rajanna, B. V., and Malligunta Kiran Kumar. "Chopper-Based Control Circuit for BESS Integration in Solar PV Grids." Energies 14, no. 6 (2021): 1530. http://dx.doi.org/10.3390/en14061530.

Full text
Abstract:
The power delivered by photovoltaic (PV) arrays is dependent on environmental factors, and hence the availability and quality of power delivered by the PV array is low. These issues can be mitigated by integrating a battery energy storage system (BESS) with PV arrays. The integration of the BESS with PV arrays requires controller circuits to regulate power flow between the BESS, PV array, and the load. In this paper, a boost converter-based controller is proposed. The proposed controller has higher reliability and efficiency, and lower operational complexity. It improves the power quality and availability by adjusting the power flow to/from the BESS while delivering the required load power. A simulation study was performed to validate the proposed controller under varying irradiance and temperature of the PV array. The controller was validated against both lithium-ion and lead-acid BESSs.
APA, Harvard, Vancouver, ISO, and other styles
4

Kamble, Vishwesh, and Milind Marathe. "Modelling and Simulation of Solar PV Array Field Incorporated with Solar Irradiance and Temperature Variation to Estimate Output Power of Solar PV Field." International Journal of Students' Research in Technology & Management 3, no. 2 (2015): 251–57. http://dx.doi.org/10.18510/ijsrtm.2015.323.

Full text
Abstract:
Photovoltaic systems are designed to feed either to grid or direct consumption. Due to global concerns, significant growth is being observed in Grid connected solar PV Plants. Since the PV module generates DC power, inverter is needed to interface it with grid. The power generated by a solar PV module depends on surrounding such as irradiance and temperature. This paper presents modelling of solar PV arrays connected to grid-connected plant incorporated with irradiance and temperature variation, to design simulator to study and analyse effect on output power of solar PV arrays with irradiance and temperature variation, also to estimate the output power generated by PV arrays. The mathematical model is designed implemented separately on simulator for each PV components connected in PV systems, which are PV cell, Module, sting, array and field of arrays. The results from simulation based on model are verified by the data collected from power plants and experiments done on solar PV cell.
APA, Harvard, Vancouver, ISO, and other styles
5

Sarhaddi, Faramarz, Said Farahat, Hossein Ajam, and Amin Behzadmehr. "Exergetic Optimization of a Solar Photovoltaic Array." Journal of Thermodynamics 2009 (February 10, 2009): 1–11. http://dx.doi.org/10.1155/2009/313561.

Full text
Abstract:
An exergetic optimization is developed to determine the optimal performance and design parameters of a solar photovoltaic (PV) array. A detailed energy and exergy analysis is carried out to evaluate the electrical performance, exergy destruction components, and exergy efficiency of a typical PV array. The exergy efficiency of a PV array obtained in this paper is a function of climatic, operating, and design parameters such as ambient temperature, solar radiation intensity, PV array temperature, overall heat loss coefficient, open-circuit voltage, short-circuit current, maximum power point voltage, maximum power point current, and PV array area. A computer simulation program is also developed to estimate the electrical and operating parameters of a PV array. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Finally, exergetic optimization has been carried out under given climatic, operating, and design parameters. The optimized values of the PV array temperature, the PV array area, and the maximum exergy efficiency have been found. Parametric studies have been also carried out.
APA, Harvard, Vancouver, ISO, and other styles
6

Suresh Babu, G., B. Prem Charan, and T. Murali Krishna. "Performance Analysis of SPV Module Using Solar PVTR System." International Journal of Engineering & Technology 7, no. 3.3 (2018): 68. http://dx.doi.org/10.14419/ijet.v7i3.3.14488.

Full text
Abstract:
With a spurt in the use of non-conventional energy sources, photovoltaic installations are being deployed in several applications such as distributed power generation and standalone systems. Solar Photo Voltaic (SPV) module is the basic component of the solar PV system. The functioning of a photovoltaic array is influenced by solar insolation, shading and array arrangement. Often the PV arrays get shadowed, completely or partially by neighboring buildings, trees, towers and service poles. The efficacy of PV array unvaryingly depends upon temperature which in turn is reliant on radiation. In order to validate this hypothesis, there are certain instruments and experimentation methods available which are expensive. But carrying out hardware testing on the solar PV system with Photo Voltaic Training and Research (PVTR) system and simulating using software will lead to least economical method of achieving performance analysis which is the main objective of this paper. The efficiency of PV module is analyzed from I-V and P-V characteristics for this standalone solar pv system by changing radiation and temperature parameters. This paper mainly emphases on comparison of the testing results and simulation results for different radiation levels.
APA, Harvard, Vancouver, ISO, and other styles
7

Ardhenta, Lunde, and Wijono Wijono. "Photovoltaic Array Modeling under Uniform Irradiation and Partial Shading Condition." International Journal of Applied Power Engineering (IJAPE) 6, no. 3 (2017): 142. http://dx.doi.org/10.11591/ijape.v6.i3.pp142-149.

Full text
Abstract:
Wind energy and solar energy are the prime energy sources which are being utilized for renewal energy. The performance of a photovoltaic (PV) array for solar energy is affected by temperature, irradiation, shading, and array configuration. Often, the PV arrays are shadowed, completely or partially, by the passing clouds, neighboring buildings and towers, trees, and utility and telephone poles. Under partially shaded conditions, the PV characteristics are more complex with multiple peaks, hence, it is very important to understand and predict the MPP under PSC in order to extract the maximum possible power. This paper presents the development of PV array simulator for studying the I–V and P–V characteristics of a PV array under a partial shading condition. It can also be used for developing and evaluating new maximum power point tracking techniques, for PV array with partially shaded conditions. It is observed that, for a given number of PV modules, the array configuration significantly affects the maximum available power under partially shaded conditions. This is another aspect to which the developed tool can be applied. The model has been experimentally validated and the usefulness of this research is highlighted with the help of several illustrations.
APA, Harvard, Vancouver, ISO, and other styles
8

Ardhenta, Lunde, and Wijono Wijono. "Photovoltaic Array Modeling under Uniform Irradiation and Partial Shading Condition." International Journal of Applied Power Engineering (IJAPE) 6, no. 3 (2017): 144. http://dx.doi.org/10.11591/ijape.v6.i3.pp144-152.

Full text
Abstract:
Wind energy and solar energy are the prime energy sources which are being utilized for renewal energy. The performance of a photovoltaic (PV) array for solar energy is affected by temperature, irradiation, shading, and array configuration. Often, the PV arrays are shadowed, completely or partially, by the passing clouds, neighboring buildings and towers, trees, and utility and telephone poles. Under partially shaded conditions, the PV characteristics are more complex with multiple peaks, hence, it is very important to understand and predict the MPP under PSC in order to extract the maximum possible power. This paper presents the development of PV array simulator for studying the I–V and P–V characteristics of a PV array under a partial shading condition. It can also be used for developing and evaluating new maximum power point tracking techniques, for PV array with partially shaded conditions. It is observed that, for a given number of PV modules, the array configuration significantly affects the maximum available power under partially shaded conditions. This is another aspect to which the developed tool can be applied. The model has been experimentally validated and the usefulness of this research is highlighted with the help of several illustrations
APA, Harvard, Vancouver, ISO, and other styles
9

Mas'ud, Abdullahi Abubakar. "The Combined Effect of Current Boosting and Power Loss on Photovoltaic Arrays under Partial Shading Conditions." Engineering, Technology & Applied Science Research 13, no. 1 (2023): 9932–40. http://dx.doi.org/10.48084/etasr.5369.

Full text
Abstract:
This study proposes a novel technique for improving the performance of photovoltaic (PV) arrays under Partial Shading Conditions (PSCs). A 4×4 solar PV array with 16 panels was considered. Bridge-Linked (BL), Total Cross-Tied (TCT), Honey Comp (HC), One Cross-Link (OCL), and Two Cross-Link (TCL) were among the topologies of interest. First, the combined effect of connecting switches and partial shading on the PV array was studied. Then, the power loss/gain caused by reconfiguring the PV array structure from Series-Parallel (SP) to other schemes was investigated. Finally, a method of boosting current into the PV array is proposed to reduce PSCs-related power losses in the connecting switches. The results show that the number of connecting switches in the topology plays an important role in determining power gain or loss at different partial shading levels. TCT and HC outperformed the others in terms of power improvement when PSCs were considered without current boosting. This is true for different levels of solar irradiation exposure. The SP topology is optimal when the solar irradiation level is greater than 900W/m2 or less than 200W/m2. TCT outperformed the others when the current was boosted in the PV array, with a power improvement of 108%, for certain PSCs.
APA, Harvard, Vancouver, ISO, and other styles
10

Smith, Sarah E., Brooke J. Stanislawski, Byron Kasey Eng, et al. "Viewing convection as a solar farm phenomenon broadens modern power predictions for solar photovoltaics." Journal of Renewable and Sustainable Energy 14, no. 6 (2022): 063502. http://dx.doi.org/10.1063/5.0105649.

Full text
Abstract:
Heat mitigation for large-scale solar photovoltaic (PV) arrays is crucial to extend lifetime and energy harvesting capacity. PV module temperature is dependent on site-specific farm geometry, yet common predictions consider panel-scale and environmental factors only. Here, we characterize convective cooling in diverse PV array designs, capturing combined effects of spatial and atmospheric variation on panel temperature and production. Parameters, including row spacing, panel inclination, module height, and wind velocity, are explored through wind tunnel experiments, high-resolution numerical simulations, and operating field data. A length scale based on fractal lacunarity encapsulates all aspects of arrangement (angle, height, etc.) in a single value. When applied to the Reynolds number Re within the canonical Nusselt number heat transfer correlation, lacunarity reveals a relationship between convection and farm-specific geometry. This correlation can be applied to existing and forthcoming array designs to optimize convective cooling, ultimately increasing production and PV cell life.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography