Academic literature on the topic 'Solid biofuel'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solid biofuel.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solid biofuel"

1

Heneman, P. "Change in humidity of solid biofuels." Research in Agricultural Engineering 50, No. 2 (February 8, 2012): 61–65. http://dx.doi.org/10.17221/4928-rae.

Full text
Abstract:
Humidity, as one of the most important physical properties of pressed solid biofuels, affects thel calorific value of the biofuel and its consistency. Biofuel humidity depends on the initial humidity of raw material, which varies and depends on many factors. Method of manufacture and place and duration of storage have a considerable effect on solid biofuel humidity as well. Humidity of pressed solid biofuels changes not only during the pressing itself, when temperature increases by compression and a part of contained moisture evaporates, but also in the course of handling and storage under unstable environment conditions with high relative air humidity, when, on the contrary, their humidity gradually increases due to their hygroscopicity. Properties of solid biofuels change with their increasing humidity – their calorific value and consistency decreasing and the share of crumbles increasing.
APA, Harvard, Vancouver, ISO, and other styles
2

Saakian, Alexander. "The bioenergy development analysis in Russia and Colombia." АгроЭкоИнфо 2, no. 44 (March 17, 2021): 6. http://dx.doi.org/10.51419/20212206.

Full text
Abstract:
In this review, an attempt was made to assess the bioenergy potential of renewable energy sources in Russia and Colombia, obtained from plant raw materials (mainly crops). The purpose of the study is a comparative analysis of the development processes of bioenergy in Russia and Colombia and mutually beneficial cooperation between the two countries in this area. To achieve the goal, the tasks were set to assess the bioenergy potential of renewable energy sources, analyze the possibilities and experience of bioenergy production in both countries, analyze energy crops for the production of solid and liquid biofuels, as well as assess the obstacles and prospects for the development of bioenergy in Russia and Colombia. The authors compared the experience of producing such types of biofuels as biodiesel and bioethanol, identified the main laws and regulations of Russia and Colombia on the introduction of biofuel technologies, identified the main types of agricultural crops suitable as raw materials for the production of bioethanol, biodiesel and solid fuels. The authors also identified obstacles, challenges and prospects for the development of the biofuel industry in both countries. Keywords: BIOENERGY, BIOFUEL, BIOFUEL INDUSTRY, PLANT RAW MATERIALS, BIOETHANOL, BIODIESEL, SOLID FUELS, RUSSIA, COLOMBIA
APA, Harvard, Vancouver, ISO, and other styles
3

Ivanova, Tatiana, Alexandru Muntean, Bohumi lHavrland, and Petr Hutla. "Quality assessment of solid biofuel made of sweet sorghum biomass." BIO Web of Conferences 10 (2018): 02007. http://dx.doi.org/10.1051/bioconf/20181002007.

Full text
Abstract:
The present article relates to assessment of energy utilization of sweet sorghum waste biomass as solid biofuel (briquettes). The briquettes were produced from biomass of pure sweet sorghum after juice extraction, mixture of sorghum with wood sawdust (ratio 1:1) and mixture of sorghum with wood shavings (ratio 1:1). Chemical, physical and mechanical properties of produced briquettes were measured in accordance with appropriate standards. The research results showed that the mixed sorghum briquettes with wood shavings have the highest mechanical durability and the lowest ash content; on the other hand, briquettes made of sweet sorghum and wood sawdust havethe best values of all other parameters, including higher calorific values, density, etc. Although addition of residual wood biomass improved the general quality of sorghum based briquettes, it was stated that the briquettes made of pure processed sorghum stalks belong to the category of high quality agricultural solid biofuels. It can be concluded that sweet sorghum is of very good prospects and thus it is a promising biomass feedstock for solid biofuels production (not only for the production of liquid biofuel as it has been used by today and has been known before).
APA, Harvard, Vancouver, ISO, and other styles
4

Azimov, Ulugbek, Victor Okoro, and Hector H. Hernandez. "Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review." Energies 14, no. 19 (September 22, 2021): 6011. http://dx.doi.org/10.3390/en14196011.

Full text
Abstract:
This review covers the recent progress in the design and application of microbial biofuels, assessing the advancement of genetic engineering undertakings and their marketability, and lignocellulosic biomass pretreatment issues. Municipal solid waste (MSW) is a promising sustainable biofuel feedstock due to its high content of lignocellulosic fiber. In this review, we compared the production of fatty alcohols, alkanes, and n-butanol from residual biogenic waste and the environmental/economic parameters to that of conventional biofuels. New synthetic biology tools can be used to engineer fermentation pathways within micro-organisms to produce long-chain alcohols, isoprenoids, long-chain fatty acids, and esters, along with alkanes, as substitutes to petroleum-derived fuels. Biotechnological advances have struggled to address problems with bioethanol, such as lower energy density compared to gasoline and high corrosive and hygroscopic qualities that restrict its application in present infrastructure. Biofuels derived from the organic fraction of municipal solid waste (OFMSW) may have less environmental impacts compared to traditional fuel production, with the added benefit of lower production costs. Unfortunately, current advanced biofuel production suffers low production rates, which hinders commercial scaling-up efforts. Microbial-produced biofuels can address low productivity while increasing the spectrum of produced bioenergy molecules.
APA, Harvard, Vancouver, ISO, and other styles
5

Panchuk, М. V., І. М. Semianyk, and I. O, Mandryk. "Solid Biofuel Production Perspectives in Ukraine." Oil and Gas Power Engineering, no. 2(32) (December 27, 2019): 70–78. http://dx.doi.org/10.31471/1993-9868-2019-2(32)-70-78.

Full text
Abstract:
The reserves of fossil fuel resources in Ukraine are limited, that is why the usage of solid biofuel from renewable raw materials is one of the most important factors of state energy policy directed at the preservation of traditional fuel and energy resources and improvement of the environment condition. The analysis of biological resources is made in this paper, and it is determined that Ukraine has a sufficient potential which is available for energy production and constitutes around 29 million tons of equivalent fuel. Energy crops are an important resource therewith. A potential yield of solid biofuel from perennial energy crops can constitute approximately 35.8 million tons per year. It is shown that raw biomass has a number of disadvantages: low energy density, unstable granulometry, wide spread of moisture content, and low bulk density which are the main problems for its storage and transportation. In order to increase consumer performance properties of biomass, the granulation process is suggested to be used. The implementation of granulation process will allow to eliminate the shortcomings of biological raw material and to transform it into a high-efficiency fuel. One of the most important conditions of effective and profitable functioning of granulated biomass production is the availability and regular supply of raw materials. Therewith, for Ukraine's conditions it is worthwhile to use sets of high-power equipment for its operation both in the places with high concentration of raw materials and small mobile units which can work in stationary conditions and move to the places with sufficient amount of raw materials decreasing the costs of biomass transportation to minimum. At the same time, there is a need in developing new homeland elaborations, both complex process lines and individual equipment units for different capacities. The paper determines the main directions of using granulation products among which are: combustion in pellet boilers, common combustion with coal, and gasification of granulated biomass for obtaining motor oils. It is mentioned that the application of granulation technologies solves not only the energy problems but also a set of other problems: ecological, agricultural, forestry and social ones.
APA, Harvard, Vancouver, ISO, and other styles
6

Ho, Shih-Hsin, Congyu Zhang, Fei Tao, Chaofan Zhang, and Wei-Hsin Chen. "Microalgal Torrefaction for Solid Biofuel Production." Trends in Biotechnology 38, no. 9 (September 2020): 1023–33. http://dx.doi.org/10.1016/j.tibtech.2020.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vitázek, Ivan, Janko Klúčik, Tomáš Pinter, and Zuzana Mikulová. "Gas Emissions in Combustion of Biofuel." Acta Technologica Agriculturae 17, no. 3 (October 23, 2014): 75–79. http://dx.doi.org/10.2478/ata-2014-0017.

Full text
Abstract:
Abstract Nowadays, biomass or more precisely biofuel is more and more being exploited as a substitute for fossil fuels for heating as well as for example for heating a drying environment. This contribution focuses on assessing a heat source by combusting various types of solid biofuels. It is a boiler VIGAS 25 with AK 2000 regulation for heating a family house. Gaseous emissions were measured using a device TESTO 330-2LL. Firewood, peat briquettes, bark briquettes and hardwood briquettes were burnt. Results of experimental measurements concerning the production of gaseous emissions are processed in tables and graphs depending on boiler performance and combustion time.
APA, Harvard, Vancouver, ISO, and other styles
8

Tian, Feiyu, Deliang Xu, and Xinwu Xu. "Extruded Solid Biofuels of Rice Straw Plus Oriented Strand Board Residues at Various Proportions." Energies 13, no. 13 (July 4, 2020): 3468. http://dx.doi.org/10.3390/en13133468.

Full text
Abstract:
Disposal of vast agricultural residues has been a nerve-wracking social problem in many agriculture-intensive regions. Open-field combustion both squanders those biomass resources and causes severe atmospheric pollution and hazards. In addition, wood industries yield residues such as sanding powders without value application. Production of biofuels out of these biomass provides a multiple beneficial solution. To that end, this work focused on fabrication of biomass fuels using rice straws (Calorific value: 14.7 MJ/Kg) and wood residues from OSB industries (Calorific value: 17.3 MJ/Kg). Biofuel sticks from various proportions of biomass residues were made using an 18.5 KW industrial biomass extruder without adding bonding agents, achieving densities of 1.0–1.6 g/cm3 and comparative calorific values. The biofuel sticks exhibit moisture sensitivity when subjected to a ten-day conditioning. Release of residual stresses that were created during the densification process led to structural destruction of the products under moisture aggression. It’s highlighted that combination of rice straw particles with OSB residues gives sound extrusion process ability and high combustibility. The blend of rice straws and OSB residues are proven practically feasible for making solid biofuels. It’s suggested to promote the waste-to-wealth technological scheme in addressing the energy crisis worldwide, especially in those regions rich in agricultural residues while poor in non-renewable energy sources.
APA, Harvard, Vancouver, ISO, and other styles
9

Carneiro-Junior, José Airton de Mattos, Giulyane Felix de de Oliveira, Carine Tondo Alves, Heloysa Martins Carvalho Andrade, Silvio Alexandre Beisl Vieira de Beisl Vieira de Melo, and Ednildo Andrade Torres. "Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction." Energies 14, no. 12 (June 11, 2021): 3465. http://dx.doi.org/10.3390/en14123465.

Full text
Abstract:
Torrefaction has been investigated to improve the desirable properties of biomass as solid biofuel, usually used in natura as firewood in several countries. This paper has the main objective to present a broad characterization of the biomass Prosopis juliflora (P. juliflora), investigating its potential as a solid biofuel after its torrefaction process. The methodology was based on different procedures. The experimental runs were carried out at 230, 270, and 310 °C for 30 min, using a bench-scale torrefaction apparatus, with an inert atmosphere. In order to investigate the effect of temperature in constant time, torrefaction parameters were calculated, such as mass yield, energy yield, calorific value, base-to-acid ratio (B/A), and the alkaline index (AI). The physicochemical properties of the torrefied samples were determined and thermogravimetric analysis was used to determine the kinetic parameters at four different heating rates of 5, 10, 20, and 30 °C/min. Pyrolysis kinetics was investigated using the Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) isoconversional methods. Highly thermally stable biofuels were obtained due to the great degradation of hemicellulose and cellulose during torrefaction at higher temperatures. The highest heating value (HHV) of the samples varied between 18.3 and 23.1 MJ/kg, and the energy yield between 81.1 and 96.2%. The results indicate that P. juliflora torrefied becomes a more attractive and competitive solid biofuel alternative in the generation of heat and energy in northeast Brazil.
APA, Harvard, Vancouver, ISO, and other styles
10

Perea-Moreno, Miguel-Angel, Francisco Manzano-Agugliaro, and Alberto-Jesus Perea-Moreno. "Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings." Sustainability 10, no. 10 (September 25, 2018): 3407. http://dx.doi.org/10.3390/su10103407.

Full text
Abstract:
Buildings account for one third of the world’s energy consumption, 70% of which is devoted to heating and cooling. To increase the share of renewables in the energy consumption of buildings, it is necessary to research and promote new sources of green energy. World production of sunflower (Helianthus annuus) was 47.34 million tons in 2016, with a harvested area of 26.20 million hectares, and the main producing countries being Ukraine, the Russian Federation, and Argentina, which produce about half of world production of sunflower seed. The sunflower husk, which represents a percentage by weight of 45%–60% of the seed depending on the sunflower variety, is widely used for the production of feed; however, its energy use is very scarce. The objectives of this study were to analyse the energy properties of sunflower husk as a solid biofuel and to carry out an energy, environmental, economic and operational analysis of a thermal installation fed with this by-product of the sunflower oil industry. The results show that this agro-industrial waste has a Higher Heating Value (HHV) of 17.844 MJ/kg, similar to that of other solid biofuels currently used. In addition, replacing a 430 kW fuel oil boiler with a biomass boiler of the same capacity fed by this biofuel can avoid the emission of 254.09 tons of CO2 per year, as well as obtain an annual energy saving of 75.47%. If we consider the production of sunflower seeds in each country and the sunflower husk were used as biofuel, this would result in a CO2 saving of more than 10 per thousand of the total emissions emitted. The results of this work contribute to the standardization of this by-product as a solid biofuel for thermal energy generation due to its potential to reduce CO2 emissions and increase energy efficiency.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Solid biofuel"

1

Nakashima, Gabriela Tami. "Use of sugarcane trash for solid biofuel production: physicochemical characterization and influence of storage time." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/8955.

Full text
Abstract:
Submitted by Milena Rubi (milenarubi@ufscar.br) on 2017-08-09T12:48:03Z No. of bitstreams: 1 NAKASHIMA_Gabriela_2016.pdf: 18948386 bytes, checksum: c4adf2165784091a5371108a8c2bd529 (MD5)
Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-08-09T12:48:12Z (GMT) No. of bitstreams: 1 NAKASHIMA_Gabriela_2016.pdf: 18948386 bytes, checksum: c4adf2165784091a5371108a8c2bd529 (MD5)
Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-08-09T12:48:18Z (GMT) No. of bitstreams: 1 NAKASHIMA_Gabriela_2016.pdf: 18948386 bytes, checksum: c4adf2165784091a5371108a8c2bd529 (MD5)
Made available in DSpace on 2017-08-09T12:48:26Z (GMT). No. of bitstreams: 1 NAKASHIMA_Gabriela_2016.pdf: 18948386 bytes, checksum: c4adf2165784091a5371108a8c2bd529 (MD5) Previous issue date: 2016-04-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
In the sugarcane plantation it was common to use fire to facilitate the cutting and harvesting of sugarcane. However, Law 11,241 / 02 in São Paulo State provides the gradual elimination of this straw burning of sugarcane. The largest producer of sugarcane in Brazil is the São Paulo State, which has about 4.7 million hectares of planted area. It is estimated that one hectare produces about 14 tons of trash. Therefore, the mills have been trying to incorporate this trash in burning with the bagasse for power generation. However, high concentrations of mineral impurities are impossible its use for energy purposes. The aim of the study was to investigate the influence of storage time and particle size in the physicochemical characterization of the sugarcane trash. It was used the sugarcane trash inside and outside of the bale collected at different storage time (0, 1 and 2 years). The collected material was separated into four different particle sizes (> 0.420mm, 0.250-0.420mm, < 0.250mm and mix). The analyzes involved particle size distribution, proximate analysis, the high heating value (HHV), the chemical analysis of the components of the ashes, the images in the Scanning Electron Microscope (SEM), the Klason lignin content, the holocellulose content and extractives. There were variations in the results of the ash content with different particle sizes. It was observed a higher concentration of mineral impurities in smaller particles (< 0.250mm). The HHV varied from 15.9 to 18.3 MJ.kg-1 and showed no statistical difference for the treatments. The results indicate that the sugarcane trash presents problems related to mineral impurities which constrain its use as a solid fuel in the industry. The particle size interferes in their physicochemical characteristics. The trash can be stored in field and the time storage did not affect the quality for use as solid biofuel.
No manejo da cana-de-açúcar era comum a utilização do fogo para facilitar o corte e colheita da cana. No entanto, a Lei 11.241/02 do estado de São Paulo prevê a eliminação gradual da queima da palha da cana-de-açúcar. O maior produtor de cana-de-açúcar do Brasil é o estado de São Paulo, que possui aproximadamente 4,7 milhões de hectares de área plantada. É estimado que 1 hectare produza cerca de 14 toneladas de palha. Logo, as usinas vêm tentando incorporar esta palha na queima para geração de energia, juntamente com o bagaço. Porém, as altas concentrações de impurezas minerais estão impossibilitando seu uso para fins energéticos. O trabalho teve como objetivo o estudo da influência do tempo de estocagem e da granulometria na caracterização físico-química do palhiço da cana-de-açúcar. Foi utilizado o palhiço de canade-açúcar da superfície e do interior do fardo coletados em diferentes períodos de estocagem, 0, 1 e 2 anos. O material coletado foi separado em 4 granulometrias diferentes (> 0,420mm, 0,250-0,420mm, < 0,250mm e mix). As análises realizadas foram a distribuição granulométrica, a análise imediata, o poder calorífico superior (PCS), a análise química dos componentes das cinzas, as imagens no Microscópio Eletrônico de Varredura (MEV), o teor de lignina Klason, a holocelulose e os extrativos. Houve variações nos resultados do teor de cinzas com as diferentes granulometrias. Observou-se maior concentração de impurezas minerais nas partículas mais finas (< 0,250mm). O PCS variou entre 15,9 a 18,3 MJ.kg-1 e não apresentou diferença estatística para os tratamentos. Os resultados indicam que a palha de cana-de-açúcar apresenta problemas relacionados às impurezas minerais, que dificultam e restringem seu uso como combustível sólido na indústria. A granulometria da palha interferiu nas suas características físico-químicas. O palhiço pode ser estocado no campo e o tempo de estocagem não interferiu na qualidade para o uso como combustível sólido.
APA, Harvard, Vancouver, ISO, and other styles
2

O'Brien, Megan Lynn. "Design of a mobile torrefaction reactor for in-situ conversion of agricultural waste to solid biofuel." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104263.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 143-149).
Significant volumes of biomass waste are generated each year as a result of agricultural practices in India. Despite the negative environmental impacts, in-situ incineration of crop residues is common practice for disposal of this waste. Transportation of raw biomass accounts for a significant portion of the cost of biomass conversion processes due to its low energy density and high bulk volume. The use of raw biomass also reduces the overall efficiency of thermochemical conversion processes due to high moisture content, over-oxidation of the fuel resulting from high oxygen content, and the relatively high oxygen to carbon ratio. There has been much recent interest in improving the properties of biomass prior to gasification and pyrolysis through densification, drying, and mild thermochemical treatments. One approach is a process known as torrefaction, which is a mild pyrolysis process that is shown to produce an energy-dense fuel with improved transport, storage, and feedstock characteristics. Particularly in the Indian context, there is a need for the development of a small-scale system which can densify and upgrade the properties of agricultural residues after harvest. This thesis presents the design and preliminary testing of a lab-scale moving-bed torrefaction reactor. Key learnings from the assembly and testing of this machine are identified and recommendations for improvement are made. A rudimentary model evaluating the heat transfer in packed bed of biomass is developed to provide a framework for analyzing future reactor designs. The functional requirements of a labscale screw conveyor torrefaction reactor are developed based on this analysis and a preliminary reactor architecture is proposed. Multiple studies are recommended to improve the reliability of the heat transfer model. Recommendations are made for future design iterations of the lab-scale screw conveyor torrefaction reactor.
by Megan Lynn O'Brien.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
3

Pocius, Vaidas. "Rinkodaros priemonių taikymas biokuro produktų rinkos plėtrai." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140617_123257-65821.

Full text
Abstract:
Darbe siekiama apibendrinti kietojo biokuro rinkos plėtros aspektus nagrinėjant jos struktūrinius pokyčius bei rinkos dalyvių elgseną. Teorinėje dalyje analizuojamas rinkodaros sprendimų priėmimo procesas ir inovatyviosios rinkodaros priemonių svarba siekiant šios verslo sistemos vystymo. Kietojo biokuro rinkos segmentų valdymo moksliniai-praktiniai sprendimai yra orientuoti taikyti tokias rinkodaros priemones, kurios padėtų gerinti tiekimo sistemos struktūriškumą. Tiriamojoje dalyje, remiantis kietojo biokuro rinkos dalyvių sąveikos įvertinimu, atliekamas jų veiklos plėtros galimybių vertinimas. Empirinio tyrimo pagrindas – apklausa.
The final thesis aims to examine the development aspects of solid biofuel market by summarizing the structural changes and the behavior of market entities. The theoretical analysis includes the marketing decision-making process and innovative marketing tools to achieve development of solid biofuel market. The scientific-practical managerial solutions are oriented towards the application of marketing tools that improve the supply system for the segments of solid biofuel market, which is structural complex and undeveloped. The research covers the basis of solid biofuel market interactions including activities of entities with the feasibility development assessment. The empirical basis of the study – a survey by questionnaire.
APA, Harvard, Vancouver, ISO, and other styles
4

Petricoski, Silvia Maccari. "Briquetes produzidos com mistura de podas urbanas, glicerina e resíduos de processamento de mandioca." Universidade Estadual do Oeste do Paraná, 2017. http://tede.unioeste.br/handle/tede/2969.

Full text
Abstract:
Submitted by Rosangela Silva (rosangela.silva3@unioeste.br) on 2017-08-31T17:05:31Z No. of bitstreams: 2 Silvia Macarri Petricoski.pdf: 2620168 bytes, checksum: f44863d59b0669f97542e59fbc5a4625 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-08-31T17:05:31Z (GMT). No. of bitstreams: 2 Silvia Macarri Petricoski.pdf: 2620168 bytes, checksum: f44863d59b0669f97542e59fbc5a4625 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-09
Throughout history, several sources and forms of energy have been used for production of goods and services. especially energy generated from fossil fuels such as oil. Due to the limits of their world reserves; CO2 emissions and ecological disasters from oil well drilling, it is crucial to think in renewable and sustainable sources of energy: those that naturally reconstitute themselves in a short period of time. One the alternatives for solving this problem is the energy coming from biomasses, whether animal or vegetable origin, it can be used to production of energy. The briquette is considered a solid biofuel, made from compaction of lignocellulosic residues much used to energy generation. This paper aimed to study production of briquettes from mixtures of urban pruning waste - RPU, from glycerine and cassava bagasse (Manihot esculenta). A prototype drier was used through solar heating to reduce humidity of RPU and cassava samples. Afterwards, samples of RPU, cassava bagasse and glycerin were mixed, yielding the treatments T1 (100% RPU), T2 (92% RPU and 8% Cassava bagasse), T3 (97% RPU and 3% Glycerin), T4 (89% RPU, 8% Cassava bagasse and 3% Glycerin) and T5 (94.5% RPU, 4% Cassava bagasse and 1,5% Glycerin). Then the analyzes of physical, chemical and energetic parameters the briquettes were carried out. The moisture content of the briquettes was lower in T1 treatment (7.935%). T2 treatment had lower fixed carbon value (16.858%) volatile content (66.520%) and higher ash content (16.621%). The percentages of C, H and N did not differ statistically between the treatments. The values of the upper, lower and useful calorific value were higher on T3 (18.973 MJ kg-1); (17,480 MJ kg-1) and (15,980 MJ kg-1) respectively. The apparent density was higher in T1 (1183 kg m-3) as well as energy density (20778.76 MJ m-3). Treatment T2 had the highest mechanical strength (1,281 kgf cm-2). The results, therefore, showed that treatments T1, T2 and T3 were more efficient, producing briquettes with properties that meet specifications of the market, besides presenting great energetic potential, being good substitutes for firewood. Based on information collected in Vera Cruz do Oeste - PR in 2015, approximately 76.92 t ano-1 of briquettes from urban pruning residues could be produced, thus contributing to generation of revenue in the value of R$ 23,614.44.
Ao longo da história, diversas foram as fontes e as formas de energia utilizadas para a produção de bens e de serviços, em especial a energia gerada a partir de combustíveis fósseis, como o petróleo. Em função dos limites de suas reservas mundiais; as emissões de CO2, e os desastres ecológicos a partir da perfuração de poços de petróleo, é fundamental pensar em fontes de energia renováveis e sustentáveis: aquelas que se reconstituem naturalmente, num curto período de tempo. Uma das alternativas para a solução deste problema é a energia proveniente das biomassas, seja de origem animal ou vegetal, que pode ser utilizada na produção de energia. O briquete é considerado um biocombustível sólido, feito a partir da compactação de resíduos lignocelulósicos muito utilizado para a geração de energia. Neste trabalho objetivou-se estudar a produção de briquetes a partir de misturas de Resíduos de Podas Urbanas - RPU, glicerina e bagaço de mandioca (Manihot esculenta). Para a redução da umidade das amostras de RPU e de mandioca, foi utilizado um secador via aquecimento solar. Posteriormente, as amostras dos RPU, do bagaço de mandioca e a glicerina foram misturadas gerando os tratamentos, T1 (100% RPU), T2 (92% RPU e 8% Bagaço de mandioca), T3 (97% RPU e 3% Glicerina), T4 (89% RPU, 8% Bagaço de mandioca e 3% Glicerina) e T5 (94,5% RPU, 4% Bagaço de mandioca e 1,5% Glicerina). Em seguida, foram realizadas as análises de parâmetros físicos, químicos e energéticos dos briquetes. O teor de umidade dos briquetes foi menor no tratamento T1 (7,935%). O tratamento T2 teve menor valor de carbono fixo (16,858%) e teor de voláteis (66,520%) e maior teor de cinzas (16,621%). As porcentagens de C, H e N não diferiram estatisticamente entre os tratamentos. Os valores do poder calorífico superior, inferior e útil foram maiores no tratamento T3 (18,973 MJ kg-1); (17,480 MJ kg-1) e (15,980 MJ kg-1) respectivamente. A densidade aparente foi maior no tratamento T1 (1.183 kg m-3) bem como a densidade energética (20.778,76 MJ m-3). O tratamento T2 teve a maior resistência mecânica (1,281 kgf cm-2). Os resultados, portanto, demonstraram que os tratamentos T1, T2 e T3 foram mais eficientes, produzindo briquetes com propriedades que atendam as especificações do mercado, além de apresentarem grande potencial energético, sendo bons substitutos à lenha. Com base nas informações coletadas no Município de Vera Cruz do Oeste - PR no ano de 2015, poderiam ser produzidos aproximadamente 76,92 t ano-1 de briquetes oriundos de resíduos de podas urbanas, contribuindo desta forma para a geração de receita no valor de R$ 23.614,44.
APA, Harvard, Vancouver, ISO, and other styles
5

Gaudet, Peter George. "Advanced Solid Biofuel Production via the Integration of Torrefaction and Densification and its Characterization for the Direct Coal Substitution in Energy Intensive Industries." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39851.

Full text
Abstract:
The greatest political, scientific, and engineering challenge of the 21st century is finding a viable solution to limit anthropogenic greenhouse gas emissions (CO2) to curb the effects of global climate change. All sectors of society need to contribute to alleviate this problem, but industrial operations must play a significant leadership role. Some of these industries include: metallurgy, cement, power, agriculture and forestry. In particular, the iron/steel, cement, and power generation industries use coal on account of its high energy density among solid fuels. Coal combustion yields 720 tonne CO2/GWh, and produces fine particulates, sulphur and nitrous oxides, along with excess CO2 contributing to climate change. In comparison, biomass (such as agricultural and forestry residues) has a solid fuel rating of 25-100 tonne CO2/GWh; therefore, biomass fuels are considered more sustainable since the living biomass consumed CO2 in the early part of its life cycle. However, biomass has significant industrial shortcomings for its use as fuel at large scale, including low energy content, density, and hydrophobicity relative to coal. In short, biomass fuels cannot be substituted without major infrastructure changes which add economic penalties that industry is currently unwilling to absorb. Biomass upgrading routes were considered in this thesis. These include densification, torrefaction, and integrated torrefaction and densification (ITD). The first half of the methodology involved converting woody biomass (willow residue and poplar bark), agricultural residue (switchgrass plants), and pulp mill waste via a single pellet/briquette press at different densification temperatures and pressures. The second half of the methodology involved product characterization of each batch of pellets and briquettes. In this work, pellets and briquettes were tested for physical characteristics (density and durability), chemical differences (energy content and hydrophobicity), and transport phenomena characteristics (drying profiles). First, results showed that extrusion of torrefied biomass at 300°C with an estimated pressure of 10 MPa creates partially formed pellets from agricultural residues. Using the concept of ITD (temperature range 220-325°C and pressure range 40 and 215 MPa), the density was found to be 1000-1250 kg/m3 for pellets and briquettes. The degree of compression from the loose biomass was on the order of 3-10 which corresponds with theoretical expectations. Material density increased with increasing pressure. The solid yield of pellets and briquettes decreased with increasing temperature, and results aligned with micro-scale thermogravimetric analysis. The larger ITD briquettes (produced at T = 325°C, P = 40 MPa) were evaluated for calorific value and found to fall in the lignite classification (O/C < 0.4 and H/C < 1.2) on a van Krevelen diagram. The resulting ITD pellets and briquettes were found to have a durability similar to commercial materials (durability > 97%), and to be more hydrophobic (8 wt% moisture absorption compared to 35 wt%). The drying time of ITD materials was faster than commercial torrefied briquettes, with an effective diffusivity of 1.5×10-6 m2/s compared to 7.3×10-9 m2/s likely because of a smaller pore volume in ITD briquettes. Further pilot scale studies would help improve the ITD methodology and make the process more appealing for the replacement of coal fuels.
APA, Harvard, Vancouver, ISO, and other styles
6

Burke, Thomas A. "Modification and Validation of a Novel Solid-Liquid Separation Technique Using a Microscreen and Capillary Belt System." Ohio University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1324052073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Edlund, Kajsa, and Ali Ahmad Shahnawazi. "Real-time characterization of fuel by Near-Infrared spectroscopy : Quantitative measurements of moisture content, ash content, heating value, and elemental compositions in solid biofuel mixtures." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55231.

Full text
Abstract:
The global energy demand supplies mainly from fossil fuels, which is neither sustainable nor environmentally friendly and aims to global warming. Therefore, both more investments in renewable energy sources such as bioenergy are required, as well as new technologies such as carbon capture and storage (CCS) to handle the emissions from existing combined heat and power (CHP) plants. In this degree project, the focus is to determine the moisture content, ash content, heating value, and elemental compositions of solid biofuel mixtures in real-time by utilizing the optical technique of near-infrared (NIR) spectroscopy. A total number of 150 samples of solid biofuel mixtures were prepared and illuminated by NIR light. All spectra of the samples were recorded in a wavenumber range of 12000 cm-1 – 400 cm-1 in a dish on a turn table which was in a moving mode with a speed of 0.5 m/s. Each sample was scanned three times to avoid, or at least minimize the deviation of the spectra and the samples were mixed between each scan to get more reliable representative spectra data. Partial least square regression models were created to analyze the spectra data. A data split was done randomly, 100 for calibration and 50 for validation. Then the data was pre-processed with different methods including multiplicative scatter correction (MSC), standard normal variate (SNV), Savitzky-Golay 1st derivative (SG 1st), Savitzky-Golay 2nd derivative (SG 2nd), and orthogonal signal correction (OSC) to reduce noise and scatter effect. The results of NIR spectra treated by OSC method obtained  , RMSE and SE of 0.900, 2.241 and 2.204, respectively for prediction of moisture content, 0.424, 0.913 and 0.922 for prediction of ash content, 0.640, 0.370 and 0.368 for prediction of heating value, respectively. The obtained prediction of  , RMSE and SE were 0.687, 0.066 and 0.058 for nitrogen, 0.636, 0.361 and 0.364 for carbon, 0.483, 0.269 and 0.270 for hydrogen, respectively. As the results shows, these models to predict the ash content and hydrogen content has a lower accuracy than what is expected in process modeling while the prediction of moisture content has the highest accuracy.
APA, Harvard, Vancouver, ISO, and other styles
8

Navadvorskytė, Justina. "Žolinių augalų panaudojimas kietajam biokurui." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130204_163017-06346.

Full text
Abstract:
Šio magistro baigiamojo darbo tikslas buvo ištirti trijų energetinių žolinių augalų biometrines bei energetines savybes ir jas palyginti tarpusavyje. Augalai buvo auginami lauko sąlygomis, kiekvieną augalą tręšiant skirtingomis mineralinio azoto normomis (N0 – kontrolė, N60 – 200 kg ha-1 ir N120 – 400 kg ha-1). Buvo tiriami pagrindiniai biometriniai rodikliai: augalų aukštis, augalų stiebų skaičius, sausoji biomasė, chlorofilo indeksas. Taip pat ištirtas pasirinktų augalų šilumingumas, peleningumas, pagrindiniai elementai (C, H, N, S, O) bei šalutiniai elementai (K, Ca, Mg, P, Al, Si, S), taip pat sunkieji metalai. Visų augalų energetinės savybės palygintos tarpusavyje. Vertinant gautus duomenis, tinkamiausi žoliniai augalai biokurui yra sida ir drambliažolė, kadangi jų peleningumas yra mažiausias. Tačiau nendrinio dryžučio, nors ir išsiskyrė didesniu peleningumu, šilumingumas buvo didžiausias. Cheminės sudėties analizės metu buvo nustatyta, jog papildomas tręšimas azotinėmis trąšomis įvairių elementų kiekiui augaluose didelės įtakos neturėjo, tačiau vertinant šalutinių elementų kiekį augaluose pastebėta tai, jog kai kurių cheminių elementų padidėjimą galėjo lemti ir augalų augimo vieta (atvira pieva, šalia žvyrkelio, šalia kelio, šalia dirbamo lauko ir pan.).
This master's thesis was to analyze three energy plant grass biometric and energy properties and to compare them with each other. Plants were grown in field, every plant fertilized with different rates of nitrogen (N0 - control, N60 - 200 kg ha-1 and N120 - 400 kg ha-1). It was investigated the main biometric parameters: plant height, plant stems, dry biomass and chlorophyll index. Also plants calorific value, ash content, the main elements (C, H, N, S, O) and minor elements (K, Ca, Mg, P, Al, Si, S) and heavy metals. Plant‘s energy properties were compared with each other. Evaluating the data, the optimum herbaceous plant for biofuels are sida and Miscanthus as their ash content is lowest. Reed canary grass calorific value was highest, but it stood higher ash content too. Chemical composition analysis showed that the additional nitrogen fertilization had no major impact of the various elements in plants, but by assessing the amount of elements in plants is noticeable that plant growth and position may impact some chemical elements increase (open meadow, near the gravel, next to the road, arable land, etc.).
APA, Harvard, Vancouver, ISO, and other styles
9

Paz, Ana Marta. "The dielectric properties of solid biofuels." Doctoral thesis, Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-10500.

Full text
Abstract:
The use of bioenergy has been increasing due to efforts in fossil fuels replacement. Modern bioenergy technologies aim for high efficiency and low pollution levels, which increases the need for methods for the on-line characterization of biofuels. Dielectric methods have been identified as useful for the sensing of solid biofuels because they allow for rapid, nonhazardous, nondestructive, and bulk determination of material properties. The dielectric properties describe the interaction between the material and the electromagnetic waves. Dielectric properties are intrinsic of the materials and can therefore be used for the development of prediction models that can be applied regardless of the measurement technique. The study of the dielectric properties is also important as it improves the understanding of the dielectric behavior of the materials. This thesis focuses on the dielectric properties of solid biofuels and their use in the characterization of these materials. The work presented includes the development of new methods permitting the determination of the dielectric properties of solid biofuels with large particle size (waveguide method), broadband measurement of the dielectric properties (coaxial-line probe), and the use of a previously developed method for the accurate determination of the dielectric properties (free-space method). The results includes the dielectric properties of solid biofuels and their dependence on parameters such as frequency, moisture, density, and temperature. This thesis also presents semi-theoretical models for the determination of moisture content, which obtained a RMSEP of 4% for moisture contents between 34 and 67%, and an empirical model that resulted in a RMSEC of 0.3% for moisture contents between 4 and 13%. Finally, this thesis includes measurements of the influence of salt content on the dielectric properties and a discussion of its use for estimation of the ash content of solid biofuels. 
APA, Harvard, Vancouver, ISO, and other styles
10

Santos, Carlos Eduardo dos. "Potencial de desenvolvimento de biocombustível produzido a partir de bio-óleo da pirólise de papel moeda descartado." Universidade do Vale do Rio dos Sinos, 2014. http://www.repositorio.jesuita.org.br/handle/UNISINOS/4067.

Full text
Abstract:
Submitted by Maicon Juliano Schmidt (maicons) on 2015-06-29T16:51:03Z No. of bitstreams: 1 Carlos Eduardo dos Santos.pdf: 1425766 bytes, checksum: 2d271aba515ce43ef52cc0aed01b7ea8 (MD5)
Made available in DSpace on 2015-06-29T16:51:03Z (GMT). No. of bitstreams: 1 Carlos Eduardo dos Santos.pdf: 1425766 bytes, checksum: 2d271aba515ce43ef52cc0aed01b7ea8 (MD5) Previous issue date: 2014-09-30
FAPERGS - Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
A intensa geração de resíduos sólidos urbanos aliada a uma expansão acentuada do consumo energético, apresenta-se como um dos maiores desafios ambientais. Em relação aos resíduos sólidos, fatores como dificuldades de gerenciamento, natureza química dos resíduos e sua complexidade impulsionam a busca de tecnologias limpas e, consequentemente, soluções que atendam à sociedade. Este estudo aplicou a tecnologia de pirólise para conversão de papel moeda descartado com o objetivo de avaliar o potencial de desenvolvimento de biocombustível produzido a partir do bio-óleo gerado no processo pirolítico. O resíduo de papel moeda foi caracterizado por análise imediata, termogravimétrica (TGA) e fluorescência de raio X (FRX). Os ensaios pirolíticos foram conduzidos em reator a vácuo, na temperatura de 500º C e avaliados os rendimentos dos bio-produtos gerados. O bio-óleo foi caracterizado através dos parâmetros de pH, conteúdo de água, ponto de fulgor, condutividade elétrica, índice de acidez, número de cetano, poder calorífico e análise de metais por FRX. O surfactante propilenoglicol, demonstrou a uma temperatura de 25°C, um tempo de estabilização de 107s + 12, o Tween 20 cerca de 57s + 8 e o Monoesterato de glicerina 48s + 11. Misturas binárias de 1%, 2% e 3% (m/m) de bio-óleo pirolítico e diesel petroquímico foram preparadas em diferentes condições de agitação e temperatura, sendo a estabilidade das emulsões avaliada pelo índice de emulsificação (IE). A tecnologia adotada resultou em uma redução mássica de 81,5%, um rendimento de bio-óleo de 43% (m/m) e de bio-carvão 18,5% (m/m). A caracterização físico-química do bio-óleo indicou a ausência de metais oriundos da tinta de impressão do papel moeda. Foi constatado um melhoramento das características físico-químicas do bio-óleo, mediante a elaboração de misturas binárias (emulsões) com o óleo diesel, potencializando a sua utilização em diferentes tecnologias que promovam geração de energia, como motores a diesel, turbinas a gás e caldeiras. Finalmente, emulsões estáveis, com IE de 69% a 77% em 5 horas, foram verificadas nas condições de 2500 rpm e 3500 rpm, respectivamente.
The intense generation of municipal solid waste combined with a marked expansion of energy consumption, is presented as one of the greatest environmental challenges. For solid waste, factors such as management difficulties, chemical nature of the waste and its complexity drive the search for clean technologies and hence solutions that meet the society. This study applied pyrolysis technology to convert paper money droppedin order to assess the development potential of biofuel produced from bio-oil generated in the pyrolytic process. The residue of paper currency was characterized by immediate analysis, thermogravimetric (TGA) and X-ray fluorescence (XRF). Pyrolytic reactor experiments were conducted in vacuum, at a temperature of 500 ° C and evaluated yields of bio-products generated. The bio-oil was characterized by parameters of pH, water content, flash point, electrical conductivity, acidity, number of cetane, heat and power metal analysis by FRX. The surfactant propylene glycol, showed a temperature of 25 ° C a stabilization time of 107s + 12, Tween 20 + 8 about 57s and 48s glycerin monostearate + 11. Binary mixtures of 1%, 2% and 3% (w / w) of pyrolytic bio-oil and petrochemical diesel fuel were prepared at different agitation conditions and temperature stability of the emulsions is assessed by emulsification index (SI). The technology adopted resulted in a weight reduction of 81.5%, a yield of bio-oil 43% (w/w) and bio-coal 18.5% (w/w). The physicochemical characterization of bio-oil indicated the absence of metals originating from ink print paper money. An improvement in physico-chemical characteristics of bio-oil was identified by preparing binary mixtures (emulsions) with diesel oil, enhancing its use in different technologies that promote energy generation such as diesel engines, gas turbines and boilers. Stable emulsions with IE of 69% to 77% in 5 hours, were observed in the conditions of 2500 rpm and 3500 rpm, respectively.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Solid biofuel"

1

Grammelis, Panagiotis, ed. Solid Biofuels for Energy. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-393-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Christoforou, Elias, and Paris A. Fokaides. Advances in Solid Biofuels. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00862-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fernandez-Anez, Nieves, Blanca Castells Somoza, Isabel Amez Arenillas, and Javier Garcia-Torrent. Explosion Risk of Solid Biofuels. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43933-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grammelis, Panagiotis. Solid biofuels for energy: A lower greenhouse gas alternative. London: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karthikeyan, Obulisamy Parthiba, Kirsten Heimann, and Subramanian Senthilkannan Muthu, eds. Recycling of Solid Waste for Biofuels and Bio-chemicals. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0150-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Christoforou, Elias, and Paris A. Fokaides. Advances in Solid Biofuels. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fernandez-Anez, Nieves, Blanca Castells Somoza, Isabel Amez Arenillas, and Javier Garcia-Torrent. Explosion Risk of Solid Biofuels. Springer, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fang, Zhen, ed. Liquid, Gaseous and Solid Biofuels - Conversion Techniques. InTech, 2013. http://dx.doi.org/10.5772/50479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Heimann, Kirsten, Subramanian Senthilkannan Muthu, and Obulisamy Parthiba Karthikeyan. Recycling of Solid Waste for Biofuels and Bio-chemicals. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Biofuels from Food Waste: Applications of Saccharification Using Fungal Solid StateFermentation. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Solid biofuel"

1

Hartmann, Hans. "Solid Biofuels solid biofuel , Fuels and Their Characteristics." In Encyclopedia of Sustainability Science and Technology, 9821–51. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhushan, Indu, Manjot Kour, and Guneet Kour. "Strategies to Improve Enzymes via Solid-State Fermentation." In Biofuel and Biorefinery Technologies, 111–19. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94797-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Deng, Wen-Jing. "Turning Food Waste into Biofuel." In Recycling of Solid Waste for Biofuels and Bio-chemicals, 357–79. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0150-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Velázquez-Sánchez, Hugo Iván, Alexis Saldivar-García, and Ricardo Aguilar-López. "Biofuel Production Technology and Engineering." In Recycling of Solid Waste for Biofuels and Bio-chemicals, 275–99. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0150-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hurst, G., M. Peeters, and S. Tedesco. "Integration of Catalytic Biofuel Production and Anaerobic Digestion for Biogas Production." In Springer Proceedings in Energy, 125–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_16.

Full text
Abstract:
AbstractThe drive towards a low carbon economy will lead to an increase in new lignocellulosic biorefinery activities. Integration of biorefinery waste products into established bioenergy technologies could lead to synergies for increased bioenergy production. In this study, we show that solid residue from the acid hydrolysis production of levulinic acid, has hydrochar properties and can be utilised as an Anaerobic Digestion (AD) supplement. The addition of 6 g/L solid residue to the AD of ammonia inhibited chicken manure improved methane yields by +14.1%. The co-digestion of biorefinery waste solids and manures could be a promising solution for improving biogas production from animal manures, sustainable waste management method and possible form of carbon sequestration.
APA, Harvard, Vancouver, ISO, and other styles
6

Zaichenko, Victor. "Development of New Technologies of Solid and Gaseous Biofuel Production." In Springer Proceedings in Physics, 397–403. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05521-3_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Höfer, Isabel, Martin Kaltschmitt, and Alexander Beckendorff. "Emissions from Solid Biofuel Combustion: Pollutant Formation and Control Options." In Energy from Organic Materials (Biomass), 483–512. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7813-7_1043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Höfer, Isabel, Martin Kaltschmitt, and Alexander Beckendorff. "Emissions from solid biofuel combustion, Pollutant formation and control options." In Encyclopedia of Sustainability Science and Technology, 1–30. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-2493-6_1043-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Khomina, Veronika, Ivan Trach, Iryna Semenyshyna, Olena Koberniuk, Krzysztof Mudryk, Marcin Jewiarz, Marek Wróbel, and Jakub Styks. "Potential of Soybean Straw in Ukraine and Solid Biofuel Production." In Springer Proceedings in Energy, 163–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13888-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Debiagi, P., T. Faravelli, C. Hasse, and E. Ranzi. "Kinetic Modeling of Solid, Liquid and Gas Biofuel Formation from Biomass Pyrolysis." In Biofuels and Biorefineries, 31–76. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2732-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Solid biofuel"

1

Shamsuddin, Abd Halim, and Mohd Shahir Liew. "High Quality Solid Biofuel Briquette Production From Palm Oil Milling Solid Wastes." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90122.

Full text
Abstract:
Malaysia has about 4.2 million hectares of oil palm plantation. The palm oil milling industry has over 400 mills throughout the country with total milling capacity of 82 million tonnes fresh fruit bunches, FFB, per year. In 2003, the amount of FFB processed was 67 million tonnes, which generated solid wastes in the forms of empty fruit bunches, EFB (19.43 million tonnes), mesocarp fibres (12.07 million tonnes) and palm kernel shell (4.89 million tonnes). These wastes has moisture content of 60–70% for EFB and mesocarp fibre, and 34–40% for palm kernel shell, and calorific value of 5.0 – 18.0 Mj/kg. A processing technology was developed to process these low quality biomass fuels into high quality solid biofuel briquettes with moisture content in the range 8–12%. Depending on the formulations and the sources of the raw biomass, the final solid biofuel briquettes can have calorific values in the range of 18–25 Mj/kg. The production of the solid biofuel briquettes would be an attractive financial advantage for full exploitation of biomass fuels. Logistic problems due to the disperse nature of the biomass resources would significantly be addressed.
APA, Harvard, Vancouver, ISO, and other styles
2

Shoji, K., and K. Morishima. "Stacked biofuel cells separated by artificial lipid bilayers." In TRANSDUCERS 2015 - 2015 18th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2015. http://dx.doi.org/10.1109/transducers.2015.7181408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Togo, M., K. Morimoto, T. Abe, H. Kaji, and M. Nishizawa. "Microfluidic biofuel cells: Series-connection with superhydrophobic air valves." In TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2009. http://dx.doi.org/10.1109/sensor.2009.5285620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cholewinski, Maciej, Wojciech Pospolita, and Krzysztof Jesionek. "The Application of Grape Pomace as a Solid Biofuel in Combustion Technologies." In MultiScience - XXXI. microCAD International Multidisciplinary Scientific Conference. University of Miskolc, 2017. http://dx.doi.org/10.26649/musci.2017.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Syamsiro, Mochamad, Batman Budiarto Sitompul, Untoro Budi Surono, Bayu Prabowo, and Muhammad Kunta Biddinika. "Alternative solid biofuel production from palm oil residue wastes employing dry torrefaction." In DISRUPTIVE INNOVATION IN MECHANICAL ENGINEERING FOR INDUSTRY COMPETITIVENESS: Proceedings of the 3rd International Conference on Mechanical Engineering (ICOME 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5046224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Matus, Milos. "EFFECT OF FRACTION SIZE OF DENSIFIED BIOMASS ON THE QUALITY OF SOLID BIOFUEL." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b41/s17.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shoji, K., M. Suzuki, Y. Akiyama, T. Hoshino, N. Nakamura, H. Ohno, and K. Morishima. "Biofuel cells with trehalose leading to an insect-implanted power source." In TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011. http://dx.doi.org/10.1109/transducers.2011.5969875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cui, Yan, Wenqiao Wayne Yuan, and Zhijian Pei. "Effects of Carrier Material and Design on Microalgae Attachment for Biofuel Manufacturing: A Literature Review." In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34150.

Full text
Abstract:
Continuous use of petroleum derived fuels is widely recognized as unsustainable due to depleting supplies and the accumulation of greenhouse gases in the environment. Renewable, carbon neutral transport fuels are needed for environmental and economic sustainabilities. Algae have been demonstrated to be one of the most promising sources for biofuel production. However, large-scale algae production and harvesting for energy manufacturing are too costly using existing methods. The approach of growing algae on solid carriers is innovative and can potentially lead to cost-effective manufacturing of algae biofuels. As cells approach to the solid surface, many factors come in to influence microbial attachment such as the surface wettability, free energy, polarity, roughness and topography. Surface wettability plays an important role in the initial cell attachment. For further contact, surface free energy and polarity are more directly related to cell-substratum attachment strength. Surface roughness and texture are species-specific parameters and have been applied widely in attachment studies.
APA, Harvard, Vancouver, ISO, and other styles
9

Streikus, Dionizas, Algirdas Jasinskas, Vytautas Kucinskas, and Jiri Masek. "Research in fibrous plant preparation for pressed solid biofuel and determination of pellet indicators." In 16th International Scientific Conference Engineering for Rural Development. Latvia University of Agriculture, 2017. http://dx.doi.org/10.22616/erdev2017.16.n136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shoji, K., Y. Akiyama, M. Suzuki, N. Nakamura, H. Ohno, and K. Morishima. "Gold nanoparticle-based biofuel cell using insect body fluid circulation." In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6627390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography