Academic literature on the topic 'Solid biofuel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solid biofuel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solid biofuel"
Heneman, P. "Change in humidity of solid biofuels." Research in Agricultural Engineering 50, No. 2 (February 8, 2012): 61–65. http://dx.doi.org/10.17221/4928-rae.
Full textSaakian, Alexander. "The bioenergy development analysis in Russia and Colombia." АгроЭкоИнфо 2, no. 44 (March 17, 2021): 6. http://dx.doi.org/10.51419/20212206.
Full textIvanova, Tatiana, Alexandru Muntean, Bohumi lHavrland, and Petr Hutla. "Quality assessment of solid biofuel made of sweet sorghum biomass." BIO Web of Conferences 10 (2018): 02007. http://dx.doi.org/10.1051/bioconf/20181002007.
Full textAzimov, Ulugbek, Victor Okoro, and Hector H. Hernandez. "Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review." Energies 14, no. 19 (September 22, 2021): 6011. http://dx.doi.org/10.3390/en14196011.
Full textPanchuk, М. V., І. М. Semianyk, and I. O, Mandryk. "Solid Biofuel Production Perspectives in Ukraine." Oil and Gas Power Engineering, no. 2(32) (December 27, 2019): 70–78. http://dx.doi.org/10.31471/1993-9868-2019-2(32)-70-78.
Full textHo, Shih-Hsin, Congyu Zhang, Fei Tao, Chaofan Zhang, and Wei-Hsin Chen. "Microalgal Torrefaction for Solid Biofuel Production." Trends in Biotechnology 38, no. 9 (September 2020): 1023–33. http://dx.doi.org/10.1016/j.tibtech.2020.02.009.
Full textVitázek, Ivan, Janko Klúčik, Tomáš Pinter, and Zuzana Mikulová. "Gas Emissions in Combustion of Biofuel." Acta Technologica Agriculturae 17, no. 3 (October 23, 2014): 75–79. http://dx.doi.org/10.2478/ata-2014-0017.
Full textTian, Feiyu, Deliang Xu, and Xinwu Xu. "Extruded Solid Biofuels of Rice Straw Plus Oriented Strand Board Residues at Various Proportions." Energies 13, no. 13 (July 4, 2020): 3468. http://dx.doi.org/10.3390/en13133468.
Full textCarneiro-Junior, José Airton de Mattos, Giulyane Felix de de Oliveira, Carine Tondo Alves, Heloysa Martins Carvalho Andrade, Silvio Alexandre Beisl Vieira de Beisl Vieira de Melo, and Ednildo Andrade Torres. "Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction." Energies 14, no. 12 (June 11, 2021): 3465. http://dx.doi.org/10.3390/en14123465.
Full textPerea-Moreno, Miguel-Angel, Francisco Manzano-Agugliaro, and Alberto-Jesus Perea-Moreno. "Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings." Sustainability 10, no. 10 (September 25, 2018): 3407. http://dx.doi.org/10.3390/su10103407.
Full textDissertations / Theses on the topic "Solid biofuel"
Nakashima, Gabriela Tami. "Use of sugarcane trash for solid biofuel production: physicochemical characterization and influence of storage time." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/8955.
Full textApproved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-08-09T12:48:12Z (GMT) No. of bitstreams: 1 NAKASHIMA_Gabriela_2016.pdf: 18948386 bytes, checksum: c4adf2165784091a5371108a8c2bd529 (MD5)
Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-08-09T12:48:18Z (GMT) No. of bitstreams: 1 NAKASHIMA_Gabriela_2016.pdf: 18948386 bytes, checksum: c4adf2165784091a5371108a8c2bd529 (MD5)
Made available in DSpace on 2017-08-09T12:48:26Z (GMT). No. of bitstreams: 1 NAKASHIMA_Gabriela_2016.pdf: 18948386 bytes, checksum: c4adf2165784091a5371108a8c2bd529 (MD5) Previous issue date: 2016-04-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
In the sugarcane plantation it was common to use fire to facilitate the cutting and harvesting of sugarcane. However, Law 11,241 / 02 in São Paulo State provides the gradual elimination of this straw burning of sugarcane. The largest producer of sugarcane in Brazil is the São Paulo State, which has about 4.7 million hectares of planted area. It is estimated that one hectare produces about 14 tons of trash. Therefore, the mills have been trying to incorporate this trash in burning with the bagasse for power generation. However, high concentrations of mineral impurities are impossible its use for energy purposes. The aim of the study was to investigate the influence of storage time and particle size in the physicochemical characterization of the sugarcane trash. It was used the sugarcane trash inside and outside of the bale collected at different storage time (0, 1 and 2 years). The collected material was separated into four different particle sizes (> 0.420mm, 0.250-0.420mm, < 0.250mm and mix). The analyzes involved particle size distribution, proximate analysis, the high heating value (HHV), the chemical analysis of the components of the ashes, the images in the Scanning Electron Microscope (SEM), the Klason lignin content, the holocellulose content and extractives. There were variations in the results of the ash content with different particle sizes. It was observed a higher concentration of mineral impurities in smaller particles (< 0.250mm). The HHV varied from 15.9 to 18.3 MJ.kg-1 and showed no statistical difference for the treatments. The results indicate that the sugarcane trash presents problems related to mineral impurities which constrain its use as a solid fuel in the industry. The particle size interferes in their physicochemical characteristics. The trash can be stored in field and the time storage did not affect the quality for use as solid biofuel.
No manejo da cana-de-açúcar era comum a utilização do fogo para facilitar o corte e colheita da cana. No entanto, a Lei 11.241/02 do estado de São Paulo prevê a eliminação gradual da queima da palha da cana-de-açúcar. O maior produtor de cana-de-açúcar do Brasil é o estado de São Paulo, que possui aproximadamente 4,7 milhões de hectares de área plantada. É estimado que 1 hectare produza cerca de 14 toneladas de palha. Logo, as usinas vêm tentando incorporar esta palha na queima para geração de energia, juntamente com o bagaço. Porém, as altas concentrações de impurezas minerais estão impossibilitando seu uso para fins energéticos. O trabalho teve como objetivo o estudo da influência do tempo de estocagem e da granulometria na caracterização físico-química do palhiço da cana-de-açúcar. Foi utilizado o palhiço de canade-açúcar da superfície e do interior do fardo coletados em diferentes períodos de estocagem, 0, 1 e 2 anos. O material coletado foi separado em 4 granulometrias diferentes (> 0,420mm, 0,250-0,420mm, < 0,250mm e mix). As análises realizadas foram a distribuição granulométrica, a análise imediata, o poder calorífico superior (PCS), a análise química dos componentes das cinzas, as imagens no Microscópio Eletrônico de Varredura (MEV), o teor de lignina Klason, a holocelulose e os extrativos. Houve variações nos resultados do teor de cinzas com as diferentes granulometrias. Observou-se maior concentração de impurezas minerais nas partículas mais finas (< 0,250mm). O PCS variou entre 15,9 a 18,3 MJ.kg-1 e não apresentou diferença estatística para os tratamentos. Os resultados indicam que a palha de cana-de-açúcar apresenta problemas relacionados às impurezas minerais, que dificultam e restringem seu uso como combustível sólido na indústria. A granulometria da palha interferiu nas suas características físico-químicas. O palhiço pode ser estocado no campo e o tempo de estocagem não interferiu na qualidade para o uso como combustível sólido.
O'Brien, Megan Lynn. "Design of a mobile torrefaction reactor for in-situ conversion of agricultural waste to solid biofuel." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104263.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 143-149).
Significant volumes of biomass waste are generated each year as a result of agricultural practices in India. Despite the negative environmental impacts, in-situ incineration of crop residues is common practice for disposal of this waste. Transportation of raw biomass accounts for a significant portion of the cost of biomass conversion processes due to its low energy density and high bulk volume. The use of raw biomass also reduces the overall efficiency of thermochemical conversion processes due to high moisture content, over-oxidation of the fuel resulting from high oxygen content, and the relatively high oxygen to carbon ratio. There has been much recent interest in improving the properties of biomass prior to gasification and pyrolysis through densification, drying, and mild thermochemical treatments. One approach is a process known as torrefaction, which is a mild pyrolysis process that is shown to produce an energy-dense fuel with improved transport, storage, and feedstock characteristics. Particularly in the Indian context, there is a need for the development of a small-scale system which can densify and upgrade the properties of agricultural residues after harvest. This thesis presents the design and preliminary testing of a lab-scale moving-bed torrefaction reactor. Key learnings from the assembly and testing of this machine are identified and recommendations for improvement are made. A rudimentary model evaluating the heat transfer in packed bed of biomass is developed to provide a framework for analyzing future reactor designs. The functional requirements of a labscale screw conveyor torrefaction reactor are developed based on this analysis and a preliminary reactor architecture is proposed. Multiple studies are recommended to improve the reliability of the heat transfer model. Recommendations are made for future design iterations of the lab-scale screw conveyor torrefaction reactor.
by Megan Lynn O'Brien.
S.M.
Pocius, Vaidas. "Rinkodaros priemonių taikymas biokuro produktų rinkos plėtrai." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140617_123257-65821.
Full textThe final thesis aims to examine the development aspects of solid biofuel market by summarizing the structural changes and the behavior of market entities. The theoretical analysis includes the marketing decision-making process and innovative marketing tools to achieve development of solid biofuel market. The scientific-practical managerial solutions are oriented towards the application of marketing tools that improve the supply system for the segments of solid biofuel market, which is structural complex and undeveloped. The research covers the basis of solid biofuel market interactions including activities of entities with the feasibility development assessment. The empirical basis of the study – a survey by questionnaire.
Petricoski, Silvia Maccari. "Briquetes produzidos com mistura de podas urbanas, glicerina e resíduos de processamento de mandioca." Universidade Estadual do Oeste do Paraná, 2017. http://tede.unioeste.br/handle/tede/2969.
Full textMade available in DSpace on 2017-08-31T17:05:31Z (GMT). No. of bitstreams: 2 Silvia Macarri Petricoski.pdf: 2620168 bytes, checksum: f44863d59b0669f97542e59fbc5a4625 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-09
Throughout history, several sources and forms of energy have been used for production of goods and services. especially energy generated from fossil fuels such as oil. Due to the limits of their world reserves; CO2 emissions and ecological disasters from oil well drilling, it is crucial to think in renewable and sustainable sources of energy: those that naturally reconstitute themselves in a short period of time. One the alternatives for solving this problem is the energy coming from biomasses, whether animal or vegetable origin, it can be used to production of energy. The briquette is considered a solid biofuel, made from compaction of lignocellulosic residues much used to energy generation. This paper aimed to study production of briquettes from mixtures of urban pruning waste - RPU, from glycerine and cassava bagasse (Manihot esculenta). A prototype drier was used through solar heating to reduce humidity of RPU and cassava samples. Afterwards, samples of RPU, cassava bagasse and glycerin were mixed, yielding the treatments T1 (100% RPU), T2 (92% RPU and 8% Cassava bagasse), T3 (97% RPU and 3% Glycerin), T4 (89% RPU, 8% Cassava bagasse and 3% Glycerin) and T5 (94.5% RPU, 4% Cassava bagasse and 1,5% Glycerin). Then the analyzes of physical, chemical and energetic parameters the briquettes were carried out. The moisture content of the briquettes was lower in T1 treatment (7.935%). T2 treatment had lower fixed carbon value (16.858%) volatile content (66.520%) and higher ash content (16.621%). The percentages of C, H and N did not differ statistically between the treatments. The values of the upper, lower and useful calorific value were higher on T3 (18.973 MJ kg-1); (17,480 MJ kg-1) and (15,980 MJ kg-1) respectively. The apparent density was higher in T1 (1183 kg m-3) as well as energy density (20778.76 MJ m-3). Treatment T2 had the highest mechanical strength (1,281 kgf cm-2). The results, therefore, showed that treatments T1, T2 and T3 were more efficient, producing briquettes with properties that meet specifications of the market, besides presenting great energetic potential, being good substitutes for firewood. Based on information collected in Vera Cruz do Oeste - PR in 2015, approximately 76.92 t ano-1 of briquettes from urban pruning residues could be produced, thus contributing to generation of revenue in the value of R$ 23,614.44.
Ao longo da história, diversas foram as fontes e as formas de energia utilizadas para a produção de bens e de serviços, em especial a energia gerada a partir de combustíveis fósseis, como o petróleo. Em função dos limites de suas reservas mundiais; as emissões de CO2, e os desastres ecológicos a partir da perfuração de poços de petróleo, é fundamental pensar em fontes de energia renováveis e sustentáveis: aquelas que se reconstituem naturalmente, num curto período de tempo. Uma das alternativas para a solução deste problema é a energia proveniente das biomassas, seja de origem animal ou vegetal, que pode ser utilizada na produção de energia. O briquete é considerado um biocombustível sólido, feito a partir da compactação de resíduos lignocelulósicos muito utilizado para a geração de energia. Neste trabalho objetivou-se estudar a produção de briquetes a partir de misturas de Resíduos de Podas Urbanas - RPU, glicerina e bagaço de mandioca (Manihot esculenta). Para a redução da umidade das amostras de RPU e de mandioca, foi utilizado um secador via aquecimento solar. Posteriormente, as amostras dos RPU, do bagaço de mandioca e a glicerina foram misturadas gerando os tratamentos, T1 (100% RPU), T2 (92% RPU e 8% Bagaço de mandioca), T3 (97% RPU e 3% Glicerina), T4 (89% RPU, 8% Bagaço de mandioca e 3% Glicerina) e T5 (94,5% RPU, 4% Bagaço de mandioca e 1,5% Glicerina). Em seguida, foram realizadas as análises de parâmetros físicos, químicos e energéticos dos briquetes. O teor de umidade dos briquetes foi menor no tratamento T1 (7,935%). O tratamento T2 teve menor valor de carbono fixo (16,858%) e teor de voláteis (66,520%) e maior teor de cinzas (16,621%). As porcentagens de C, H e N não diferiram estatisticamente entre os tratamentos. Os valores do poder calorífico superior, inferior e útil foram maiores no tratamento T3 (18,973 MJ kg-1); (17,480 MJ kg-1) e (15,980 MJ kg-1) respectivamente. A densidade aparente foi maior no tratamento T1 (1.183 kg m-3) bem como a densidade energética (20.778,76 MJ m-3). O tratamento T2 teve a maior resistência mecânica (1,281 kgf cm-2). Os resultados, portanto, demonstraram que os tratamentos T1, T2 e T3 foram mais eficientes, produzindo briquetes com propriedades que atendam as especificações do mercado, além de apresentarem grande potencial energético, sendo bons substitutos à lenha. Com base nas informações coletadas no Município de Vera Cruz do Oeste - PR no ano de 2015, poderiam ser produzidos aproximadamente 76,92 t ano-1 de briquetes oriundos de resíduos de podas urbanas, contribuindo desta forma para a geração de receita no valor de R$ 23.614,44.
Gaudet, Peter George. "Advanced Solid Biofuel Production via the Integration of Torrefaction and Densification and its Characterization for the Direct Coal Substitution in Energy Intensive Industries." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39851.
Full textBurke, Thomas A. "Modification and Validation of a Novel Solid-Liquid Separation Technique Using a Microscreen and Capillary Belt System." Ohio University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1324052073.
Full textEdlund, Kajsa, and Ali Ahmad Shahnawazi. "Real-time characterization of fuel by Near-Infrared spectroscopy : Quantitative measurements of moisture content, ash content, heating value, and elemental compositions in solid biofuel mixtures." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55231.
Full textNavadvorskytė, Justina. "Žolinių augalų panaudojimas kietajam biokurui." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130204_163017-06346.
Full textThis master's thesis was to analyze three energy plant grass biometric and energy properties and to compare them with each other. Plants were grown in field, every plant fertilized with different rates of nitrogen (N0 - control, N60 - 200 kg ha-1 and N120 - 400 kg ha-1). It was investigated the main biometric parameters: plant height, plant stems, dry biomass and chlorophyll index. Also plants calorific value, ash content, the main elements (C, H, N, S, O) and minor elements (K, Ca, Mg, P, Al, Si, S) and heavy metals. Plant‘s energy properties were compared with each other. Evaluating the data, the optimum herbaceous plant for biofuels are sida and Miscanthus as their ash content is lowest. Reed canary grass calorific value was highest, but it stood higher ash content too. Chemical composition analysis showed that the additional nitrogen fertilization had no major impact of the various elements in plants, but by assessing the amount of elements in plants is noticeable that plant growth and position may impact some chemical elements increase (open meadow, near the gravel, next to the road, arable land, etc.).
Paz, Ana Marta. "The dielectric properties of solid biofuels." Doctoral thesis, Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-10500.
Full textSantos, Carlos Eduardo dos. "Potencial de desenvolvimento de biocombustível produzido a partir de bio-óleo da pirólise de papel moeda descartado." Universidade do Vale do Rio dos Sinos, 2014. http://www.repositorio.jesuita.org.br/handle/UNISINOS/4067.
Full textMade available in DSpace on 2015-06-29T16:51:03Z (GMT). No. of bitstreams: 1 Carlos Eduardo dos Santos.pdf: 1425766 bytes, checksum: 2d271aba515ce43ef52cc0aed01b7ea8 (MD5) Previous issue date: 2014-09-30
FAPERGS - Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
A intensa geração de resíduos sólidos urbanos aliada a uma expansão acentuada do consumo energético, apresenta-se como um dos maiores desafios ambientais. Em relação aos resíduos sólidos, fatores como dificuldades de gerenciamento, natureza química dos resíduos e sua complexidade impulsionam a busca de tecnologias limpas e, consequentemente, soluções que atendam à sociedade. Este estudo aplicou a tecnologia de pirólise para conversão de papel moeda descartado com o objetivo de avaliar o potencial de desenvolvimento de biocombustível produzido a partir do bio-óleo gerado no processo pirolítico. O resíduo de papel moeda foi caracterizado por análise imediata, termogravimétrica (TGA) e fluorescência de raio X (FRX). Os ensaios pirolíticos foram conduzidos em reator a vácuo, na temperatura de 500º C e avaliados os rendimentos dos bio-produtos gerados. O bio-óleo foi caracterizado através dos parâmetros de pH, conteúdo de água, ponto de fulgor, condutividade elétrica, índice de acidez, número de cetano, poder calorífico e análise de metais por FRX. O surfactante propilenoglicol, demonstrou a uma temperatura de 25°C, um tempo de estabilização de 107s + 12, o Tween 20 cerca de 57s + 8 e o Monoesterato de glicerina 48s + 11. Misturas binárias de 1%, 2% e 3% (m/m) de bio-óleo pirolítico e diesel petroquímico foram preparadas em diferentes condições de agitação e temperatura, sendo a estabilidade das emulsões avaliada pelo índice de emulsificação (IE). A tecnologia adotada resultou em uma redução mássica de 81,5%, um rendimento de bio-óleo de 43% (m/m) e de bio-carvão 18,5% (m/m). A caracterização físico-química do bio-óleo indicou a ausência de metais oriundos da tinta de impressão do papel moeda. Foi constatado um melhoramento das características físico-químicas do bio-óleo, mediante a elaboração de misturas binárias (emulsões) com o óleo diesel, potencializando a sua utilização em diferentes tecnologias que promovam geração de energia, como motores a diesel, turbinas a gás e caldeiras. Finalmente, emulsões estáveis, com IE de 69% a 77% em 5 horas, foram verificadas nas condições de 2500 rpm e 3500 rpm, respectivamente.
The intense generation of municipal solid waste combined with a marked expansion of energy consumption, is presented as one of the greatest environmental challenges. For solid waste, factors such as management difficulties, chemical nature of the waste and its complexity drive the search for clean technologies and hence solutions that meet the society. This study applied pyrolysis technology to convert paper money droppedin order to assess the development potential of biofuel produced from bio-oil generated in the pyrolytic process. The residue of paper currency was characterized by immediate analysis, thermogravimetric (TGA) and X-ray fluorescence (XRF). Pyrolytic reactor experiments were conducted in vacuum, at a temperature of 500 ° C and evaluated yields of bio-products generated. The bio-oil was characterized by parameters of pH, water content, flash point, electrical conductivity, acidity, number of cetane, heat and power metal analysis by FRX. The surfactant propylene glycol, showed a temperature of 25 ° C a stabilization time of 107s + 12, Tween 20 + 8 about 57s and 48s glycerin monostearate + 11. Binary mixtures of 1%, 2% and 3% (w / w) of pyrolytic bio-oil and petrochemical diesel fuel were prepared at different agitation conditions and temperature stability of the emulsions is assessed by emulsification index (SI). The technology adopted resulted in a weight reduction of 81.5%, a yield of bio-oil 43% (w/w) and bio-coal 18.5% (w/w). The physicochemical characterization of bio-oil indicated the absence of metals originating from ink print paper money. An improvement in physico-chemical characteristics of bio-oil was identified by preparing binary mixtures (emulsions) with diesel oil, enhancing its use in different technologies that promote energy generation such as diesel engines, gas turbines and boilers. Stable emulsions with IE of 69% to 77% in 5 hours, were observed in the conditions of 2500 rpm and 3500 rpm, respectively.
Books on the topic "Solid biofuel"
Grammelis, Panagiotis, ed. Solid Biofuels for Energy. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-393-0.
Full textChristoforou, Elias, and Paris A. Fokaides. Advances in Solid Biofuels. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00862-8.
Full textFernandez-Anez, Nieves, Blanca Castells Somoza, Isabel Amez Arenillas, and Javier Garcia-Torrent. Explosion Risk of Solid Biofuels. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43933-0.
Full textGrammelis, Panagiotis. Solid biofuels for energy: A lower greenhouse gas alternative. London: Springer, 2011.
Find full textKarthikeyan, Obulisamy Parthiba, Kirsten Heimann, and Subramanian Senthilkannan Muthu, eds. Recycling of Solid Waste for Biofuels and Bio-chemicals. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0150-5.
Full textChristoforou, Elias, and Paris A. Fokaides. Advances in Solid Biofuels. Springer, 2018.
Find full textFernandez-Anez, Nieves, Blanca Castells Somoza, Isabel Amez Arenillas, and Javier Garcia-Torrent. Explosion Risk of Solid Biofuels. Springer, 2020.
Find full textFang, Zhen, ed. Liquid, Gaseous and Solid Biofuels - Conversion Techniques. InTech, 2013. http://dx.doi.org/10.5772/50479.
Full textHeimann, Kirsten, Subramanian Senthilkannan Muthu, and Obulisamy Parthiba Karthikeyan. Recycling of Solid Waste for Biofuels and Bio-chemicals. Springer, 2018.
Find full textBiofuels from Food Waste: Applications of Saccharification Using Fungal Solid StateFermentation. Taylor & Francis Group, 2017.
Find full textBook chapters on the topic "Solid biofuel"
Hartmann, Hans. "Solid Biofuels solid biofuel , Fuels and Their Characteristics." In Encyclopedia of Sustainability Science and Technology, 9821–51. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_245.
Full textBhushan, Indu, Manjot Kour, and Guneet Kour. "Strategies to Improve Enzymes via Solid-State Fermentation." In Biofuel and Biorefinery Technologies, 111–19. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94797-6_7.
Full textDeng, Wen-Jing. "Turning Food Waste into Biofuel." In Recycling of Solid Waste for Biofuels and Bio-chemicals, 357–79. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0150-5_13.
Full textVelázquez-Sánchez, Hugo Iván, Alexis Saldivar-García, and Ricardo Aguilar-López. "Biofuel Production Technology and Engineering." In Recycling of Solid Waste for Biofuels and Bio-chemicals, 275–99. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0150-5_10.
Full textHurst, G., M. Peeters, and S. Tedesco. "Integration of Catalytic Biofuel Production and Anaerobic Digestion for Biogas Production." In Springer Proceedings in Energy, 125–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_16.
Full textZaichenko, Victor. "Development of New Technologies of Solid and Gaseous Biofuel Production." In Springer Proceedings in Physics, 397–403. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05521-3_51.
Full textHöfer, Isabel, Martin Kaltschmitt, and Alexander Beckendorff. "Emissions from Solid Biofuel Combustion: Pollutant Formation and Control Options." In Energy from Organic Materials (Biomass), 483–512. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7813-7_1043.
Full textHöfer, Isabel, Martin Kaltschmitt, and Alexander Beckendorff. "Emissions from solid biofuel combustion, Pollutant formation and control options." In Encyclopedia of Sustainability Science and Technology, 1–30. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-2493-6_1043-1.
Full textKhomina, Veronika, Ivan Trach, Iryna Semenyshyna, Olena Koberniuk, Krzysztof Mudryk, Marcin Jewiarz, Marek Wróbel, and Jakub Styks. "Potential of Soybean Straw in Ukraine and Solid Biofuel Production." In Springer Proceedings in Energy, 163–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13888-2_15.
Full textDebiagi, P., T. Faravelli, C. Hasse, and E. Ranzi. "Kinetic Modeling of Solid, Liquid and Gas Biofuel Formation from Biomass Pyrolysis." In Biofuels and Biorefineries, 31–76. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2732-6_2.
Full textConference papers on the topic "Solid biofuel"
Shamsuddin, Abd Halim, and Mohd Shahir Liew. "High Quality Solid Biofuel Briquette Production From Palm Oil Milling Solid Wastes." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90122.
Full textShoji, K., and K. Morishima. "Stacked biofuel cells separated by artificial lipid bilayers." In TRANSDUCERS 2015 - 2015 18th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2015. http://dx.doi.org/10.1109/transducers.2015.7181408.
Full textTogo, M., K. Morimoto, T. Abe, H. Kaji, and M. Nishizawa. "Microfluidic biofuel cells: Series-connection with superhydrophobic air valves." In TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2009. http://dx.doi.org/10.1109/sensor.2009.5285620.
Full textCholewinski, Maciej, Wojciech Pospolita, and Krzysztof Jesionek. "The Application of Grape Pomace as a Solid Biofuel in Combustion Technologies." In MultiScience - XXXI. microCAD International Multidisciplinary Scientific Conference. University of Miskolc, 2017. http://dx.doi.org/10.26649/musci.2017.070.
Full textSyamsiro, Mochamad, Batman Budiarto Sitompul, Untoro Budi Surono, Bayu Prabowo, and Muhammad Kunta Biddinika. "Alternative solid biofuel production from palm oil residue wastes employing dry torrefaction." In DISRUPTIVE INNOVATION IN MECHANICAL ENGINEERING FOR INDUSTRY COMPETITIVENESS: Proceedings of the 3rd International Conference on Mechanical Engineering (ICOME 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5046224.
Full textMatus, Milos. "EFFECT OF FRACTION SIZE OF DENSIFIED BIOMASS ON THE QUALITY OF SOLID BIOFUEL." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b41/s17.023.
Full textShoji, K., M. Suzuki, Y. Akiyama, T. Hoshino, N. Nakamura, H. Ohno, and K. Morishima. "Biofuel cells with trehalose leading to an insect-implanted power source." In TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011. http://dx.doi.org/10.1109/transducers.2011.5969875.
Full textCui, Yan, Wenqiao Wayne Yuan, and Zhijian Pei. "Effects of Carrier Material and Design on Microalgae Attachment for Biofuel Manufacturing: A Literature Review." In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34150.
Full textStreikus, Dionizas, Algirdas Jasinskas, Vytautas Kucinskas, and Jiri Masek. "Research in fibrous plant preparation for pressed solid biofuel and determination of pellet indicators." In 16th International Scientific Conference Engineering for Rural Development. Latvia University of Agriculture, 2017. http://dx.doi.org/10.22616/erdev2017.16.n136.
Full textShoji, K., Y. Akiyama, M. Suzuki, N. Nakamura, H. Ohno, and K. Morishima. "Gold nanoparticle-based biofuel cell using insect body fluid circulation." In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6627390.
Full text