To see the other types of publications on this topic, follow the link: Solid electrochemistry.

Journal articles on the topic 'Solid electrochemistry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Solid electrochemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Riess, Ilan. "Solid State Electrochemistry." Israel Journal of Chemistry 48, no. 3-4 (December 2008): 143–58. http://dx.doi.org/10.1560/ijc.48.3-4.143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Owen, John. "Solid state electrochemistry." Journal of Electroanalytical Chemistry 421, no. 1-2 (January 1997): 228. http://dx.doi.org/10.1016/s0022-0728(97)80110-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bruce, Peter G., and M. Stanley Whittingham. "Solid State Electrochemistry." Physics Today 49, no. 1 (January 1996): 68. http://dx.doi.org/10.1063/1.2807474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lerner, Michael. "Solid state electrochemistry." Materials Research Bulletin 30, no. 7 (July 1995): 923. http://dx.doi.org/10.1016/0025-5408(95)80014-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Doménech-Carbó, Antonio, Jan Labuda, and Fritz Scholz. "Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report)." Pure and Applied Chemistry 85, no. 3 (December 16, 2012): 609–31. http://dx.doi.org/10.1351/pac-rep-11-11-13.

Full text
Abstract:
Solid state electroanalytical chemistry (SSEAC) deals with studies of the processes, materials, and methods specifically aimed to obtain analytical information (quantitative elemental composition, phase composition, structure information, and reactivity) on solid materials by means of electrochemical methods. The electrochemical characterization of solids is not only crucial for electrochemical applications of materials (e.g., in batteries, fuel cells, corrosion protection, electrochemical machining, etc.) but it lends itself also for providing analytical information on the structure and chemical and mineralogical composition of solid materials of all kinds such as metals and alloys, various films, conducting polymers, and materials used in nanotechnology. The present report concerns the relationships between molecular electrochemistry (i.e., solution electrochemistry) and solid state electrochemistry as applied to analysis. Special attention is focused on a critical evaluation of the different types of analytical information that are accessible by SSEAC.
APA, Harvard, Vancouver, ISO, and other styles
6

Riess, Ilan. "ChemInform Abstract: Solid State Electrochemistry." ChemInform 41, no. 29 (June 24, 2010): no. http://dx.doi.org/10.1002/chin.201029225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wiemhöfer, Hans Dieter, U. Vohrer, and W. Göpel. "Interface Analysis for Solid State Electrochemistry." Materials Science Forum 76 (January 1991): 265–68. http://dx.doi.org/10.4028/www.scientific.net/msf.76.265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

TAGAWA, Hiroaki. "For Special Issue "Solid-State Electrochemistry″." Denki Kagaku oyobi Kogyo Butsuri Kagaku 58, no. 6 (June 5, 1990): 487. http://dx.doi.org/10.5796/kogyobutsurikagaku.58.487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Feng, Tadeusz GóRecki, Donald Irish, and Janusz Pawliszyn. "Solid-phase microextraction combined with electrochemistry." Anal. Commun. 33, no. 10 (1996): 361–64. http://dx.doi.org/10.1039/ac9963300361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

FERLONI, P., and A. MAGISTRIS. "New materials for solid state electrochemistry." Le Journal de Physique IV 04, no. C1 (January 1994): C1–3—C1–15. http://dx.doi.org/10.1051/jp4:1994101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yao, Zhengui. "Solid State Electrochemistry Peter G. Bruce." Materials and Manufacturing Processes 13, no. 3 (May 1998): 475–76. http://dx.doi.org/10.1080/10426919808935266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Okubo, Masashi, Jérôme Long, Daniel R. Talham, and Rodrigue Lescouëzec. "Solid-state electrochemistry of metal cyanides." Comptes Rendus Chimie 22, no. 6-7 (June 2019): 483–89. http://dx.doi.org/10.1016/j.crci.2019.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

MAIER, Joachim. "Perspectives of Solid State Ionics." Electrochemistry 82, no. 10 (2014): 818. http://dx.doi.org/10.5796/electrochemistry.82.818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Navratil, Tomas. "Composite Solid Electrodes - Tool for Organic Electrochemistry." Current Organic Chemistry 15, no. 17 (September 1, 2011): 2996–3013. http://dx.doi.org/10.2174/138527211798357191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gholami, Mojtaba, Manuel N. Chaur, Myron Wilde, Michael J. Ferguson, Robert McDonald, Luis Echegoyen, and Rik R. Tykwinski. "Radiaannulenes: synthesis, electrochemistry, and solid-state structure." Chemical Communications, no. 21 (2009): 3038. http://dx.doi.org/10.1039/b904762j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yang, Dezhi, Lianhuan Han, Yang Yang, Liu-Bin Zhao, Cheng Zong, Yi-Fan Huang, Dongping Zhan, and Zhong-Qun Tian. "Solid-State Redox Solutions: Microfabrication and Electrochemistry." Angewandte Chemie 123, no. 37 (July 26, 2011): 8838–41. http://dx.doi.org/10.1002/ange.201103386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

YAMAMOTO, O. "ChemInform Abstract: Applications (of Solid-State Electrochemistry)." ChemInform 26, no. 30 (August 17, 2010): no. http://dx.doi.org/10.1002/chin.199530305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yang, Dezhi, Lianhuan Han, Yang Yang, Liu-Bin Zhao, Cheng Zong, Yi-Fan Huang, Dongping Zhan, and Zhong-Qun Tian. "Solid-State Redox Solutions: Microfabrication and Electrochemistry." Angewandte Chemie International Edition 50, no. 37 (July 26, 2011): 8679–82. http://dx.doi.org/10.1002/anie.201103386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fleig, Jürgen, and Werner Sitte. "Solid state ionics: electrochemistry meets materials science." Monatshefte für Chemie - Chemical Monthly 140, no. 9 (March 31, 2009): 973–74. http://dx.doi.org/10.1007/s00706-009-0147-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Grygar, Tomáš, Frank Marken, Uwe Schröder, and Fritz Scholz. "Electrochemical Analysis of Solids. A Review." Collection of Czechoslovak Chemical Communications 67, no. 2 (2002): 163–208. http://dx.doi.org/10.1135/cccc20020163.

Full text
Abstract:
The topic of the review is the electrochemical analysis of solids aimed to identify or determine their phase or elemental composition, analyse the composition of solid mixtures, characterise their electrochemistry-related properties and analyse the redox state of the constituent elements. The ways of the electrode preparation are discussed with a special attention paid to compact and composite electrodes including carbon-paste electrodes, and direct immobilisation of powders on a working electrode. Examples are given of simultaneous electrochemical measurements combined with X-ray diffraction, optical or atomic force microscopy, and mass measurement by quartz microbalance. The state-of-art of voltammetric analysis of inorganic and organic solids achieved in the last two decades is systematically reviewed with the aim to find cases, when electrochemistry can compete successfully with other analytical techniques as for sensitivity, specificity, and sample consumption. Electrochemical methods are shown to be a perspective tool for redox analysis of catalysts, combined elemental and phase analysis of inorganic pigments and minerals, characterisation of solid solutions, metalloorganic and organic solids. A review with 196 references.
APA, Harvard, Vancouver, ISO, and other styles
21

DELMAS, Claude. "Perspectives in Solid State Intercalation Chemistry." Electrochemistry 84, no. 10 (2016): 757. http://dx.doi.org/10.5796/electrochemistry.84.757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

ITO, Yusuke, Atsushi SAKUDA, Takamasa OHTOMO, Akitoshi HAYASHI, and Masahiro TATSUMISAGO. "Bulk-type All-solid-state Lithium Secondary Batteries Using Highly Ion-conductive Sulfide Solid Electrolyte Thin Films." Electrochemistry 82, no. 7 (2014): 591–94. http://dx.doi.org/10.5796/electrochemistry.82.591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

KURIHARA, Hitoshi, Toshiki TAJIMA, and Toshio FUCHIGAMI. "Mixed-Kolbe Electrolysis Using Solid-Supported Bases." Electrochemistry 74, no. 8 (2006): 615–17. http://dx.doi.org/10.5796/electrochemistry.74.615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

YU, Kefeng, Nobuyuki SAKAI, and Tetsu TATSUMA. "Plasmon Resonance-Based Solid-State Photovoltaic Devices." Electrochemistry 76, no. 2 (2008): 161–64. http://dx.doi.org/10.5796/electrochemistry.76.161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

MINESHIGE, Atsushi, Takayuki NAKAO, Yoshiki OHNISHI, Masafumi KOBUNE, Tetsuo YAZAWA, and Hideki YOSHIOKA. "Solid Oxide Fuel Cell Employing a New Class of Solid Electrolytes, La9.33+x(Si6-yAly)O26+1.5x-0.5y." Electrochemistry 77, no. 2 (2009): 146–48. http://dx.doi.org/10.5796/electrochemistry.77.146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Doménech-Carbó, Antonio, Daiane Dias, and María Teresa Doménech-Carbó. "Cation and anion electrochemically assisted solid-state transformations of malachite green." Physical Chemistry Chemical Physics 22, no. 3 (2020): 1502–10. http://dx.doi.org/10.1039/c9cp05835d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Brunori, M., R. Santucci, L. Campanella, and G. Tranchida. "Membrane-entrapped microperoxidase as a ‘solid-state’ promoter in the electrochemistry of soluble metalloproteins." Biochemical Journal 264, no. 1 (November 15, 1989): 301–4. http://dx.doi.org/10.1042/bj2640301.

Full text
Abstract:
Immobilization of biological systems in solid matrices is presently of great interest, in view of the many potential advantages associated with both the higher stability of the immobilized macromolecules and the potential utilization for biotechnology. In the present paper the electrochemical behaviour of the undecapeptide from cytochrome c (called microperoxidase) tightly entrapped in cellulose triacetate membrane is reported; its utilization as ‘solid-state’ promoter in the electrochemistry of soluble metalloproteins is presented. The results obtained indicate that: (i) membrane-entrapped microperoxidase undergoes rapid reversible electron transfer at a glassy carbon electrode; (ii) the electrochemical process is diffusion-controlled; (iii) entrapped microperoxidase acts as ‘solid-state’ promoter in the electrochemistry of soluble cytochrome c and of azurin.
APA, Harvard, Vancouver, ISO, and other styles
28

Khaleel, M. A., D. R. Rector, Z. Lin, K. Johnson, and K. Recknagle. "Multiscale Electrochemistry Modeling of Solid Oxide Fuel Cells." International Journal for Multiscale Computational Engineering 3, no. 1 (2005): 33–48. http://dx.doi.org/10.1615/intjmultcompeng.v3.i1.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tsiplakides, D. "The absolute potential scale in solid state electrochemistry." Solid State Ionics 152-153 (December 2002): 625–39. http://dx.doi.org/10.1016/s0167-2738(02)00396-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rozier, P., M. Morcrette, P. Martin, L. Laffont, and J.-M. Tarascon. "Solid Solution (Li1.3-yCuy)V3O8: Structure and Electrochemistry." Chemistry of Materials 17, no. 5 (March 2005): 984–91. http://dx.doi.org/10.1021/cm048518f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

FERLONI, P., and A. MAGISTRIS. "ChemInform Abstract: New Materials for Solid State Electrochemistry." ChemInform 26, no. 14 (August 18, 2010): no. http://dx.doi.org/10.1002/chin.199514337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ramakrishnan, Sridevi, and Curtis Shannon. "Display of Solid-State Materials Using Bipolar Electrochemistry." Langmuir 26, no. 7 (April 6, 2010): 4602–6. http://dx.doi.org/10.1021/la100292u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lovrić, M. "Solid state electrochemistry (1995) Peter G. Bruce (ed)." Journal of Solid State Electrochemistry 1, no. 1 (July 11, 1997): 116. http://dx.doi.org/10.1007/s100080050032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Vijh, A. K. "Solid state electrochemistry ? electrochemical physics: genesis and scope." Journal of Solid State Electrochemistry 4, no. 1 (November 3, 1999): 1–2. http://dx.doi.org/10.1007/s100080050185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Villain, S., J. Cabané, and P. Knauth. "Study of nanostructured materials by solid state electrochemistry." Ionics 2, no. 5-6 (September 1996): 459–62. http://dx.doi.org/10.1007/bf02375827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

YOKOKAWA, Harumi, Natsuko SAKAI, Teruhisa HORITA, Katsuhiko YAMAJI, and Manuel E. BRITO. "Solid Oxide Electrolytes for High Temperature Fuel Cells." Electrochemistry 73, no. 1 (January 5, 2005): 20–30. http://dx.doi.org/10.5796/electrochemistry.73.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

YAMAZOE, Noboru, and Norio MIURA. "Solid State Gas Sensor Design Using Foreign Receptors." Electrochemistry 67, no. 3 (March 5, 1999): 224–31. http://dx.doi.org/10.5796/electrochemistry.67.224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

OSAKA, Tetsuya, Toshiyuki MOMMA, and Ken NISHIMURA. "Rechargeable Lithium/Polypyrrole Battery Using Solid Polymer Electrolyte." Denki Kagaku oyobi Kogyo Butsuri Kagaku 61, no. 7 (July 5, 1993): 722–23. http://dx.doi.org/10.5796/electrochemistry.61.722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yi, Jin, Shaohua Guo, Ping He, and Haoshen Zhou. "Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries." Energy & Environmental Science 10, no. 4 (2017): 860–84. http://dx.doi.org/10.1039/c6ee03499c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

HARADA, Hisashi, and Koji SUDA. "Solid-solid Photocatalytic Reaction of Malonic Acid. Allowed Limit Amount of H2O to Give Characteristic Product Selectivity." Electrochemistry 70, no. 6 (June 5, 2002): 435–37. http://dx.doi.org/10.5796/electrochemistry.70.435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Trnovcová, V., P. P. Fedorov, and I. Furár. "Fluoride solid electrolytes." Russian Journal of Electrochemistry 45, no. 6 (June 2009): 630–39. http://dx.doi.org/10.1134/s1023193509060020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Uvarov, N. F., V. G. Ponomareva, and G. V. Lavrova. "Composite solid electrolytes." Russian Journal of Electrochemistry 46, no. 7 (July 2010): 722–33. http://dx.doi.org/10.1134/s1023193510070025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

YOO, Han-Ill. "Increasing Importance of Basic Knowledge in Solid State Electrochemistry." Electrochemistry 68, no. 6 (June 5, 2000): 393. http://dx.doi.org/10.5796/electrochemistry.68.393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

SAKUDA, Atsushi, Akitoshi HAYASHI, and Masahiro TATSUMISAGO. "Metastable Materials for All-Solid-State Batteries." Electrochemistry 87, no. 5 (September 5, 2019): 247–50. http://dx.doi.org/10.5796/electrochemistry.19-h0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

KASUYA, Motohiro, and Kazue KURIHARA. "Novel Surface Forces Apparatus for Characterizing Solid-Liquid Interfaces." Electrochemistry 82, no. 5 (2014): 317–21. http://dx.doi.org/10.5796/electrochemistry.82.317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Scholz, Fritz, Heike Kahlert, Ulrich Hasse, Anja Albrecht, Alain C. Tagne Kuate, and Klaus Jurkschat. "A solid-state redox buffer as interface of solid-contact ISEs." Electrochemistry Communications 12, no. 7 (July 2010): 955–57. http://dx.doi.org/10.1016/j.elecom.2010.04.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

McCreery, Richard, Adam Bergren, Amin Morteza-Najarian, Sayed Youssef Sayed, and Haijun Yan. "Electron transport in all-carbon molecular electronic devices." Faraday Discuss. 172 (2014): 9–25. http://dx.doi.org/10.1039/c4fd00172a.

Full text
Abstract:
Carbon has always been an important electrode material for electrochemical applications, and the relatively recent development of carbon nanotubes and graphene as electrodes has significantly increased interest in the field. Carbon solids, both sp2 and sp3 hybridized, are unique in their combination of electronic conductivity and the ability to form strong bonds to a variety of other elements and molecules. The Faraday Discussion included broad concepts and applications of carbon materials in electrochemistry, including analysis, energy storage, materials science, and solid-state electronics. This introductory paper describes some of the special properties of carbon materials useful in electrochemistry, with particular illustrations in the realm of molecular electronics. The strong bond between sp2 conducting carbon and aromatic organic molecules enables not only strong electronic interactions across the interface between the two materials, but also provides sufficient stability for practical applications. The last section of the paper discusses several factors which affect the electron transfer kinetics at highly ordered pyrolytic graphite, some of which are currently controversial. These issues bear on the general question of how the structure and electronic properties of the carbon electrode material control its utility in electrochemistry and electron transport, which are the core principles of electrochemistry using carbon electrodes.
APA, Harvard, Vancouver, ISO, and other styles
48

MAEKAWA, Toru, Yuka KAWABATA, Yoshihiro NAKAZATO, Hiroshi ISHIKAWA, Shinji TAMURA, Nobuhito IMANAKA, and Gin-ya ADACHI. "A Smart Carbon Dioxide Gas Sensor Based on Solid Electrolytes." Electrochemistry 74, no. 2 (2006): 118–20. http://dx.doi.org/10.5796/electrochemistry.74.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

IMANISHI, Nobuyuki, Masaki MATSUI, Yasuo TAKEDA, and Osamu YAMAMOTO. "Lithium Ion Conducting Solid Electrolytes for Aqueous Lithium-air Batteries." Electrochemistry 82, no. 11 (2014): 938–45. http://dx.doi.org/10.5796/electrochemistry.82.938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

YAMAMOTO, Hideo, Kazuyuki KANEMOTO, Masashi OSHIMA, and Isao ISA. "Self-healing Characteristics of Solid Electrolytic Capacitor with Polypyrrole Electrolyte." Electrochemistry 67, no. 8 (August 5, 1999): 855–61. http://dx.doi.org/10.5796/electrochemistry.67.855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography