Academic literature on the topic 'Solid-fluid interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solid-fluid interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solid-fluid interaction"
Molki, Majid. "Fluid-Solid Interaction—a New Trend." Heat Transfer Engineering 29, no. 12 (December 2008): 975–76. http://dx.doi.org/10.1080/01457630802241042.
Full textMonk, Peter, and Virginia Selgas. "An inverse fluid--solid interaction problem." Inverse Problems & Imaging 3, no. 2 (2009): 173–98. http://dx.doi.org/10.3934/ipi.2009.3.173.
Full textLiu, Jinyuan, Mengdi Wang, Fan Feng, Annie Tang, Qiqin Le, and Bo Zhu. "Hydrophobic and Hydrophilic Solid-Fluid Interaction." ACM Transactions on Graphics 41, no. 6 (November 30, 2022): 1–15. http://dx.doi.org/10.1145/3550454.3555478.
Full textAltay, Gülay, and M. Cengiz Dökmeci. "Fluid–fluid and –solid interaction problems: Variational principles revisited." International Journal of Engineering Science 47, no. 1 (January 2009): 83–102. http://dx.doi.org/10.1016/j.ijengsci.2008.07.006.
Full textLiu, Tiegang, A. W. Chowdhury, and Boo Cheong Khoo. "The Modified Ghost Fluid Method Applied to Fluid-Elastic Structure Interaction." Advances in Applied Mathematics and Mechanics 3, no. 5 (October 2011): 611–32. http://dx.doi.org/10.4208/aamm.10-m1054.
Full textYang, Youqing, Pengtao Sun, and Zhen Chen. "Combined MPM-DEM for Simulating the Interaction Between Solid Elements and Fluid Particles." Communications in Computational Physics 21, no. 5 (March 27, 2017): 1258–81. http://dx.doi.org/10.4208/cicp.oa-2016-0050.
Full textChen, Mingqiang, Linsong Cheng, Renyi Cao, and Chaohui Lyu. "A Study to Investigate Fluid-Solid Interaction Effects on Fluid Flow in Micro Scales." Energies 11, no. 9 (August 22, 2018): 2197. http://dx.doi.org/10.3390/en11092197.
Full textInoue, Yohei, Junji Tanaka, Ryo Kobayashi, Shuji Ogata, and Toshiyuki Gotoh. "Multiscale Numerical Simulation of Fluid-Solid Interaction." MATERIALS TRANSACTIONS 49, no. 11 (2008): 2550–58. http://dx.doi.org/10.2320/matertrans.mb200814.
Full textLiu, Q. Q., and V. P. Singh. "Fluid–Solid Interaction in Particle-Laden Flows." Journal of Engineering Mechanics 130, no. 12 (December 2004): 1476–85. http://dx.doi.org/10.1061/(asce)0733-9399(2004)130:12(1476).
Full textElschner, Johannes, George C. Hsiao, and Andreas Rathsfeld. "An inverse problem for fluid-solid interaction." Inverse Problems & Imaging 2, no. 1 (2008): 83–120. http://dx.doi.org/10.3934/ipi.2008.2.83.
Full textDissertations / Theses on the topic "Solid-fluid interaction"
De, La Peña-Cortes Jesus Ernesto. "Development of fluid-solid interaction (FSI)." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/development-of-fluidsolid-interaction-fsi(b22b29e2-0349-44a9-ab18-eeb0717d18c8).html.
Full textHester, Eric William. "Modelling fluid-solid interactions." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25114.
Full textObadia, Benjamin. "A multimaterial Eulerian approach for fluid-solid interaction." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7270.
Full textKhodabakhshi, Goodarz. "Computational modelling of fluid-porous solid interaction systems." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/35182.
Full textPan, Kai Ph D. Massachusetts Institute of Technology. "Simulating fluid-solid interaction using smoothed particle hydrodynamics method." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/109642.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 97-102).
The fluid-solid interaction (FSI) is a challenging process for numerical models since it requires accounting for the interactions of deformable materials that are governed by different equations of state. It calls for the modeling of large deformation, geometrical discontinuity, material failure, including crack propagation, and the computation of flow induced loads on evolving fluid-solid interfaces. Using particle methods with no prescribed geometric linkages allows high deformations to be dealt with easily in cases where grid-based methods would introduce difficulties. Smoothed Particle Hydrodynamics (SPH) method is one of the oldest mesh-free methods, and it has gained popularity over the last decades to simulate initially fluids and more recently solids. This dissertation is focused on developing a general numerical modeling framework based on SPH to model the coupled problem, with application to wave impact on floating offshore structures, and the hydraulic fracturing of rocks induced by fluid pressure. An accurate estimate of forces exerted by waves on offshore structures is vital to assess potential risks to structural integrity. The dissertation first explores a weakly compressible SPH method to simulate the wave impact on rigid-body floating structures. Model predictions are validated against two sets of experimental data, namely the dam-break fluid impact on a fixed structure, and the wave induced motion of a floating cube. Following validation, this framework is applied to simulation of the mipact of large waves on an offshore structure. A new numerical technique is proposed for generating multi-modal and multi-directional sea waves with SPH. The waves are generated by moving the side boundaries of the fluid domain according to the sum of Fourier modes, each with its own direction, amplitude and wave frequency. By carefully selecting the amplitudes and the frequencies, the ensemble of wave modes can be chosen to satisfy a real sea wave spectrum. The method is used to simulate an extreme wave event, with generally good agreement between the simulated waves and the recorded real-life data. The second application is the modeling of hydro-fracture initiation and propagation in rocks. A new general SPH numerical coupling method is developed to model the interaction between fluids and solids, which includes non-linear deformation and dynamic fracture initiation and propagation. A Grady-Kipp damage model is employed to model the tensile failure of the solid and a Drucker-Prager plasticity model is used to predict material shear failures. These models are coupled together so that both shear and tensile failures can be simulated within the same scheme. Fluid and solid are treated as a single system for the entire domain, and are computed using the same stress representation within a uniform SPH framework. Two new stress coupling approaches are proposed to maintain the stress continuity at the fluid-solid interface, namely, a continuum approach and stress-boundary-condition approach. A corrected form of the density continuity equation is implemented to handle the density discontinuity of the two phases at the interface. The method is validated against analytic solutions for a hydrostatic problem and for a pressurized borehole in the presence of in-situ stresses. The simulation of hydro-fracture initiation and propagation in the presence of in-situ stresses is also presented. Good results demonstrate that SPH has the potential to accurately simulate the hydraulic-fracturing phenomenon in rocks.
by Kai Pan.
Ph. D.
Mohd, Razip Wee Farhan. "Solid-fluid interaction in a pillar based phononic crystal." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD055.
Full textPhononic crystal(PC) can be defined as an artificial structure built from periodical unit cell which could achieve interesting acoustic and elastic propagation thanks to the presence of phononic bandgap(PnBg) related to the periodicity and its intrinsic resonance of the unit cell. These mechanisms to control the wave’s propagation illustrate a huge potential that could led to several promising applications (filtering, waveguiding, resonator and sensor). Many works proposed the integration of surface acoustic wave(SAW) with PC with the purpose to manipulate the wave’s propagation at high frequency(UHF-VHF range). Nevertheless, the presence of liquid on the surface of such device induces an attenuation of the wave at the interface of solid-fluid due to the out-of-plane displacement which radiate into the fluid. For the development of such device as a sensor, its performance is usually degraded and not sufficient compared to the current state of art. The objective of this thesis is to provide a solution to the above problem through the utilization of locally-resonant mechanism in PC composed of an array of pillars to design a device which could operate in the liquid environment. First, we developed a theoretical model based on Finite Element Method (FEM) simulation for a unit cell of pillar-based structure embedded with a liquid medium. We demonstrated that local resonances of pillars with optimized dimension could decrease the phase velocity of Scholte-Stoneley wave, to produce a slow wave at the solid/fluid interface. For the experimental part, we showed the conservation of locally-resonant bandgap when the fabricated device is loaded with liquid. This conservation is attributed to the local resonance of pillars that confine the energy inside the pillar to prevent radiation of energy into the fluid. The obtained results allow us to design a waveguide persistent under liquid medium by the integration of geometrical defect in the PC in the form of a chain of pillars with a different dimension compared to the rest. Furthermore, the theoretical studies indicated also that the waveguide induced in the both type of band gap(Bragg and locally-resonant) has a close appearance as a Rayleigh SAW. The results from this study could elucidate the mechanism of the persistence of the propagation mode of locally-resonant PC. This could open a new perspective for a further investigation to develop SAW phononic especially in the in a microfluidic and lab on chip application
Gobal, Koorosh. "High-Fidelity Multidisciplinary Sensitivity Analysis for Coupled Fluid-Solid Interaction Design." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1483614152174005.
Full textBehera, Narayana. "On the solutions of fluid flow and solid deformation interaction problems /." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487777901658103.
Full textHajishafiee, Alireza. "Finite-volume CFD modelling of fluid-solid interaction in EHL contacts." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/32100.
Full textFranci, Alessandro. "Unified Lagrangian formulation for fluid and solid mechanics, fluid-structure interaction and coupled thermal problems using the PFEM." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/291562.
Full textEl objectivo de la presente tesis es la derivación e implementación de una formulación unificada con elementos finitos para la solución de problemas de mecánica de fluidos y de sólidos, interacción fluido-estructura (Fluid-Structure Interaction (FSI)) y con acoplamiento térmico. El método unificado està basado en una formulación Lagrangiana estabilizada y las variables incognitas son las velocidades y la presión. Cada paso de tiempo se soluciona a través de un esquema de dos pasos de tipo Gauss-Seidel. Primero se resuelven las ecuaciones de momento lineal por los incrementos de velocidad, luego se calculan las presiones en la configuración actualizada usando la ecuación de continuidad. Para los dominios fluidos se utiliza el método de elementos finitos de partículas (Particle Finite Element Method (PFEM)) mientras que los sólidos se solucionan con el método de elementos finitos (Finite Element Method (FEM)). Por lo tanto, se ramalla sólo las partes del dominio ocupadas por el fluido. Los campos de velocidad y presión se interpolan con funciones de forma lineales. Para poder analizar materiales incompresibles, la formulación ha sido estabilizada con una nueva versión del método Finite Calculus (FIC). La técnica de estabilización ha sido derivada para fluidos Newtonianos casi-incompresibles. En este trabajo, la estabilización con FIC se usa también para el análisis de sólidos hipoelásticos casi-incompresibles. En la tesis se dedica particular atención al estudio de flujo con superficie libre. En particular, se analiza en profundidad el tema de las pérdidas de masa y se muestra con varios ejemplos numéricos la capacidad del método de garantizar la conservación de masa en problemas de flujos en supeficie libre. Además se estudia con detalle el condicionamiento del esquema numérico analizando particularmente el efecto del módulo de compresibilidad. Se presenta también una estrategia basada en el uso de un pseudo módulo de compresibilidad para mejorar el condicionamiento del problema. La formulación unificada ha sido validada comparando sus resultados numéricos con pruebas de laboratorio y resultados numéricos de otras formulaciones. En la mayoría de los ejemplos también se ha estudiado la convergencia del método. En la tesis también se describe una estrategia segregada para el acoplamiento de la formulación unificada con el problema de transmisión de calor. Además se presenta una simple estrategia para simular el cambio de fase. El esquema acoplado ha sido utilizado para resolver varios problemas de FSI donde se incluye la temperatura y su efecto. El esquema acoplado con el problema térmico ha sido utilizado con éxito para resolver un problema industrial. El objetivo del estudio era la simulación del daño y la fusión de la vasija de un reactor nuclear provocados por el contacto con un fluido altamente viscoso y a gran temperatura. En la tesis se describe con detalle el estudio numérico realizado para esta aplicación industrial
Books on the topic "Solid-fluid interaction"
Kovačević, Ahmed. Screw compressors: Three dimensional computational fluid dynamics and solid fluid interaction. Berlin: Springer, 2007.
Find full textWang, Xiaodong Sheldon. Fundamentals of fluid-solid interactions: Analytical and computational approaches. Amsterdam: Elsevier, 2008.
Find full textFranci, Alessandro. Unified Lagrangian Formulation for Fluid and Solid Mechanics, Fluid-Structure Interaction and Coupled Thermal Problems Using the PFEM. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45662-1.
Full textChargin, Mladen. A finite element procedure for calculating fluid-structure interaction using MSC/NASTRAN. Moffett Field, Calif: NASA Ames Research Center, 1990.
Find full textCrawley, Edward F. The Middeck O-gravity Dynamics Experiment: Summary report. Hampton, Va: Langley Research Center, 1993.
Find full textAharonov, Einat. Solid-fluid interactions in porous media: Processes that form rocks. [Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1996.
Find full textAharonov, Einat. Solid-fluid interactions in porous media: Processes that form rocks. [Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1996.
Find full textLayton, Anita T., and Sarah D. Olson. Biological fluid dynamics: Modeling, computations, and applications : AMS Special Session, Biological Fluid Dynamics : Modeling, Computations, and Applications : October 13, 2012, Tulane University, New Orleans, Louisiana. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textFluid-Solid Interaction Dynamics. Elsevier, 2019. http://dx.doi.org/10.1016/c2018-0-05102-6.
Full textundifferentiated, Ian Smith, Ahmed Kovacevic, and Nikola Stosic. Screw Compressors: Three Dimensional Computational Fluid Dynamics and Solid Fluid Interaction. Springer, 2006.
Find full textBook chapters on the topic "Solid-fluid interaction"
Gao, S., and T. G. Liu. "Modified Ghost Fluid Method for the Fluid Elastic-Perfectly Plastic Solid Interaction." In 30th International Symposium on Shock Waves 2, 1245–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44866-4_79.
Full textDušek, Jan, Wei Zhou, and Marcin Chrust. "Solid-Fluid Interaction in Path Instabilities of Sedimenting Flat Objects." In Fluid-Structure-Sound Interactions and Control, 57–62. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4960-5_9.
Full textDimaki, Andrey V., and Evgeny V. Shilko. "Theoretical Study of Physico-mechanical Response of Permeable Fluid-Saturated Materials Under Complex Loading Based on the Hybrid Cellular Automaton Method." In Springer Tracts in Mechanical Engineering, 485–501. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_21.
Full textMartin, Katharina, Dennis Daub, Burkard Esser, Ali Gülhan, and Stefanie Reese. "Numerical Modelling of Fluid-Structure Interaction for Thermal Buckling in Hypersonic Flow." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 341–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_22.
Full textCao, Zhenglin, Jun Li, Konghui Guo, and Qun Zhang. "Simulation Research on Strong Fluid–Solid Interaction of Hydraulic Engine Mount." In Lecture Notes in Electrical Engineering, 1235–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33738-3_26.
Full textJiao, Shaoni, Yaqing Zheng, and Gui Lin. "The Fluid-Solid Interaction Analysis of WDPSS-8 Based on ANSYS." In Informatics in Control, Automation and Robotics, 795–802. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25992-0_106.
Full textvan Brummelen, E. H., and R. de Borst. "Conservation under Incompatibility for Fluid-Solid-Interaction Problems: the NPCL Method." In IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 413–32. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_24.
Full textGötze, Karoline. "Maximal L p -regularity for a 2D Fluid-Solid Interaction Problem." In Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations, 373–84. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0297-0_19.
Full textDe Bari, Benjamin, and James A. Dixon. "Circular Causality and Function in Self-Organized Systems with Solid-Fluid Interactions." In Recent Advances in Mechanics and Fluid-Structure Interaction with Applications, 249–64. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14324-3_11.
Full textMojra, Afsaneh, M. Tafazzoli-Shadpour, and E. Y. Tafti. "Computational Analysis of Asymmetric Arterial Stenosis with Applications of Fluid-Solid Interaction." In 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, 567–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68017-8_142.
Full textConference papers on the topic "Solid-fluid interaction"
Kojima, Tomohisa, Kazuaki Inaba, and Kosuke Takahashi. "Wave Propagation Across Solid-Fluid Interface With Fluid-Structure Interaction." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45752.
Full textFeng, Xiaobing, Juan Zhang, Dengming Zhu, Min Shi, and Zhaoqi Wang. "Depth Camera Based Fluid Reconstruction and its Solid-fluid Interaction." In CASA '19: Computer Animation and Social Agents. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3328756.3328761.
Full textCerqueira, S., F. Feyel, and G. Avalon. "A first step to Fluid-Structure interaction inside Solid Propellant Rocket Motors." In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090141.
Full textROACH, R., K. GRAMOLL, M. WEAVER, and G. FLANDRO. "Fluid-structure interaction of solid rocket motor inhibitors." In 28th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-3677.
Full textYu, P., K. S. Yeo, X. Y. Wang, and S. J. Ang. "A singular value decomposition based generalized finite difference method for fluid solid interaction problems." In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090031.
Full textKim, Kyung Sung. "A new particle interaction method for fluid-solid particles." In 2020 International Conference on Electronics, Information, and Communication (ICEIC). IEEE, 2020. http://dx.doi.org/10.1109/iceic49074.2020.9051110.
Full textWee, M. F. Mohd Razip, Kim S. Siow, Ahmad Rifqi Md Zain, Mahmoud Addouche, and Abdelkrim Khelif. "Solid-fluid interaction in a pillar-based phononic crystal." In 2016 IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2016. http://dx.doi.org/10.1109/smelec.2016.7573587.
Full textTemis, Joury M., Alexey V. Selivanov, and Ivan J. Dzeva. "Finger Seal Design Based on Fluid-Solid Interaction Model." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95701.
Full textMalavasi, S., E. Zappa, and A. Cigada. "Fluid structure around a tilted rectangular cylinder near a solid wall and induced loading." In FLUID STRUCTURE INTERACTION/MOVING BOUNDARIES 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/fsi070191.
Full textYu, Yue, Mengmeng Hu, Fengxia Li, and Yiming Zhao. "Physics-Based Fluid-Solid Interaction of Ocean Simulation Using SPH." In 2016 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2016. http://dx.doi.org/10.1109/icvrv.2016.60.
Full textReports on the topic "Solid-fluid interaction"
Johnson, G., K. R. Rajagopal, and M. Massoudi. A review of interaction mechanisms in fluid-solid flows. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6443951.
Full textSchunk, Peter Randall, David R. Noble, Thomas A. Baer, Rekha Ranjana Rao, Patrick K. Notz, and Edward Dean Wilkes. Large deformation solid-fluid interaction via a level set approach. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/918218.
Full textKingston, A. W., O. H. Ardakani, G. Scheffer, M. Nightingale, C. Hubert, and B. Meyer. The subsurface sulfur system following hydraulic stimulation of unconventional hydrocarbon reservoirs: assessing anthropogenic influences on microbial sulfate reduction in the deep subsurface, Alberta. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330712.
Full text