Dissertations / Theses on the topic 'Solid-fluid interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Solid-fluid interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
De, La Peña-Cortes Jesus Ernesto. "Development of fluid-solid interaction (FSI)." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/development-of-fluidsolid-interaction-fsi(b22b29e2-0349-44a9-ab18-eeb0717d18c8).html.
Full textHester, Eric William. "Modelling fluid-solid interactions." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25114.
Full textObadia, Benjamin. "A multimaterial Eulerian approach for fluid-solid interaction." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7270.
Full textKhodabakhshi, Goodarz. "Computational modelling of fluid-porous solid interaction systems." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/35182.
Full textPan, Kai Ph D. Massachusetts Institute of Technology. "Simulating fluid-solid interaction using smoothed particle hydrodynamics method." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/109642.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 97-102).
The fluid-solid interaction (FSI) is a challenging process for numerical models since it requires accounting for the interactions of deformable materials that are governed by different equations of state. It calls for the modeling of large deformation, geometrical discontinuity, material failure, including crack propagation, and the computation of flow induced loads on evolving fluid-solid interfaces. Using particle methods with no prescribed geometric linkages allows high deformations to be dealt with easily in cases where grid-based methods would introduce difficulties. Smoothed Particle Hydrodynamics (SPH) method is one of the oldest mesh-free methods, and it has gained popularity over the last decades to simulate initially fluids and more recently solids. This dissertation is focused on developing a general numerical modeling framework based on SPH to model the coupled problem, with application to wave impact on floating offshore structures, and the hydraulic fracturing of rocks induced by fluid pressure. An accurate estimate of forces exerted by waves on offshore structures is vital to assess potential risks to structural integrity. The dissertation first explores a weakly compressible SPH method to simulate the wave impact on rigid-body floating structures. Model predictions are validated against two sets of experimental data, namely the dam-break fluid impact on a fixed structure, and the wave induced motion of a floating cube. Following validation, this framework is applied to simulation of the mipact of large waves on an offshore structure. A new numerical technique is proposed for generating multi-modal and multi-directional sea waves with SPH. The waves are generated by moving the side boundaries of the fluid domain according to the sum of Fourier modes, each with its own direction, amplitude and wave frequency. By carefully selecting the amplitudes and the frequencies, the ensemble of wave modes can be chosen to satisfy a real sea wave spectrum. The method is used to simulate an extreme wave event, with generally good agreement between the simulated waves and the recorded real-life data. The second application is the modeling of hydro-fracture initiation and propagation in rocks. A new general SPH numerical coupling method is developed to model the interaction between fluids and solids, which includes non-linear deformation and dynamic fracture initiation and propagation. A Grady-Kipp damage model is employed to model the tensile failure of the solid and a Drucker-Prager plasticity model is used to predict material shear failures. These models are coupled together so that both shear and tensile failures can be simulated within the same scheme. Fluid and solid are treated as a single system for the entire domain, and are computed using the same stress representation within a uniform SPH framework. Two new stress coupling approaches are proposed to maintain the stress continuity at the fluid-solid interface, namely, a continuum approach and stress-boundary-condition approach. A corrected form of the density continuity equation is implemented to handle the density discontinuity of the two phases at the interface. The method is validated against analytic solutions for a hydrostatic problem and for a pressurized borehole in the presence of in-situ stresses. The simulation of hydro-fracture initiation and propagation in the presence of in-situ stresses is also presented. Good results demonstrate that SPH has the potential to accurately simulate the hydraulic-fracturing phenomenon in rocks.
by Kai Pan.
Ph. D.
Mohd, Razip Wee Farhan. "Solid-fluid interaction in a pillar based phononic crystal." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD055.
Full textPhononic crystal(PC) can be defined as an artificial structure built from periodical unit cell which could achieve interesting acoustic and elastic propagation thanks to the presence of phononic bandgap(PnBg) related to the periodicity and its intrinsic resonance of the unit cell. These mechanisms to control the wave’s propagation illustrate a huge potential that could led to several promising applications (filtering, waveguiding, resonator and sensor). Many works proposed the integration of surface acoustic wave(SAW) with PC with the purpose to manipulate the wave’s propagation at high frequency(UHF-VHF range). Nevertheless, the presence of liquid on the surface of such device induces an attenuation of the wave at the interface of solid-fluid due to the out-of-plane displacement which radiate into the fluid. For the development of such device as a sensor, its performance is usually degraded and not sufficient compared to the current state of art. The objective of this thesis is to provide a solution to the above problem through the utilization of locally-resonant mechanism in PC composed of an array of pillars to design a device which could operate in the liquid environment. First, we developed a theoretical model based on Finite Element Method (FEM) simulation for a unit cell of pillar-based structure embedded with a liquid medium. We demonstrated that local resonances of pillars with optimized dimension could decrease the phase velocity of Scholte-Stoneley wave, to produce a slow wave at the solid/fluid interface. For the experimental part, we showed the conservation of locally-resonant bandgap when the fabricated device is loaded with liquid. This conservation is attributed to the local resonance of pillars that confine the energy inside the pillar to prevent radiation of energy into the fluid. The obtained results allow us to design a waveguide persistent under liquid medium by the integration of geometrical defect in the PC in the form of a chain of pillars with a different dimension compared to the rest. Furthermore, the theoretical studies indicated also that the waveguide induced in the both type of band gap(Bragg and locally-resonant) has a close appearance as a Rayleigh SAW. The results from this study could elucidate the mechanism of the persistence of the propagation mode of locally-resonant PC. This could open a new perspective for a further investigation to develop SAW phononic especially in the in a microfluidic and lab on chip application
Gobal, Koorosh. "High-Fidelity Multidisciplinary Sensitivity Analysis for Coupled Fluid-Solid Interaction Design." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1483614152174005.
Full textBehera, Narayana. "On the solutions of fluid flow and solid deformation interaction problems /." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487777901658103.
Full textHajishafiee, Alireza. "Finite-volume CFD modelling of fluid-solid interaction in EHL contacts." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/32100.
Full textFranci, Alessandro. "Unified Lagrangian formulation for fluid and solid mechanics, fluid-structure interaction and coupled thermal problems using the PFEM." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/291562.
Full textEl objectivo de la presente tesis es la derivación e implementación de una formulación unificada con elementos finitos para la solución de problemas de mecánica de fluidos y de sólidos, interacción fluido-estructura (Fluid-Structure Interaction (FSI)) y con acoplamiento térmico. El método unificado està basado en una formulación Lagrangiana estabilizada y las variables incognitas son las velocidades y la presión. Cada paso de tiempo se soluciona a través de un esquema de dos pasos de tipo Gauss-Seidel. Primero se resuelven las ecuaciones de momento lineal por los incrementos de velocidad, luego se calculan las presiones en la configuración actualizada usando la ecuación de continuidad. Para los dominios fluidos se utiliza el método de elementos finitos de partículas (Particle Finite Element Method (PFEM)) mientras que los sólidos se solucionan con el método de elementos finitos (Finite Element Method (FEM)). Por lo tanto, se ramalla sólo las partes del dominio ocupadas por el fluido. Los campos de velocidad y presión se interpolan con funciones de forma lineales. Para poder analizar materiales incompresibles, la formulación ha sido estabilizada con una nueva versión del método Finite Calculus (FIC). La técnica de estabilización ha sido derivada para fluidos Newtonianos casi-incompresibles. En este trabajo, la estabilización con FIC se usa también para el análisis de sólidos hipoelásticos casi-incompresibles. En la tesis se dedica particular atención al estudio de flujo con superficie libre. En particular, se analiza en profundidad el tema de las pérdidas de masa y se muestra con varios ejemplos numéricos la capacidad del método de garantizar la conservación de masa en problemas de flujos en supeficie libre. Además se estudia con detalle el condicionamiento del esquema numérico analizando particularmente el efecto del módulo de compresibilidad. Se presenta también una estrategia basada en el uso de un pseudo módulo de compresibilidad para mejorar el condicionamiento del problema. La formulación unificada ha sido validada comparando sus resultados numéricos con pruebas de laboratorio y resultados numéricos de otras formulaciones. En la mayoría de los ejemplos también se ha estudiado la convergencia del método. En la tesis también se describe una estrategia segregada para el acoplamiento de la formulación unificada con el problema de transmisión de calor. Además se presenta una simple estrategia para simular el cambio de fase. El esquema acoplado ha sido utilizado para resolver varios problemas de FSI donde se incluye la temperatura y su efecto. El esquema acoplado con el problema térmico ha sido utilizado con éxito para resolver un problema industrial. El objetivo del estudio era la simulación del daño y la fusión de la vasija de un reactor nuclear provocados por el contacto con un fluido altamente viscoso y a gran temperatura. En la tesis se describe con detalle el estudio numérico realizado para esta aplicación industrial
Chen, Zipeng. "A Smoothed Particle Hydrodynamics Approach for Modelling Meso-scale Fluid–Fracture Interaction." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/28188.
Full textKahl, Philipp. "Identification of long-range solid-like correlations in liquids and role of the interaction fluid-substrate." Thesis, Le Mans, 2016. http://www.theses.fr/2016LEMA1002/document.
Full textLiquids differ from solids by a delayed response to a shear mechanical solicitation; i.e. they have no shearelasticity and exhibit a flow behaviour at low frequency (<1 Hz). This postulate might be not verified at thesub-millimeter scale. By optimizing the measurement in particular by improving the liquid/substrate interactions (wetting), a low frequency shear elasticity has been found in liquids including molten polymers, glass-formers, H-bond polar, ionic or van der Waals liquids. This result implies that molecules in the liquid state may not be dynamically free but weaklyelastically correlated. Using the birefringent properties of the pretransitional fluctuations coexisting in the isotropic phase of liquid crystals, we show that it is possible to visualize these “hidden” shear-elastic correlations. We detect a synchronized birefringent optical response in the isotropic phase that is observable at frequencies as low as 0.01 Hz and at temperatures far away from anyphase transition. The low-frequency birefringence exhibits a strain dependence similar to the low frequency elasticity: An optical signal that is in-phase with the strain at low strain amplitudes and in-phase with the strain-rate at larger strain amplitudes. The birefringent response is strong, defect-free, reversible and points out a collective response. This long-range ordering rules out the condition of an isotropic liquid and its synchronized response supports the existenceof long-range elastic (solid-like) correlations. In the light of this, the strain dependence of the harmonic birefringent signal and the shear elasticity may correspond to an entropy-driven transition
Chan, Weng Yew, and chanwengyew@gmail com. "Simulation of arterial stenosis incorporating fluid-structural interaction and non-Newtonian blood flow." RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070108.164458.
Full textWu, Ke. "Computational modelling of fluid-solid interaction problems by coupling smoothed particles hydrodynamics and the discrete element method." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/19544/.
Full textRakotonirina, Andriarimina. "Fluid-solid interaction in a non-convex granular media : application to rotating drums and packed bed reactors." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN047/document.
Full textNon convex granular media are involved in many industrial processes as, e.g., particle calcination/drying in rotating drums or solid catalyst particles in chemical reactors. In the case of optimizing the shape of catalysts, the experimental discrimination of new shapes based on packing density and pressure drop proved to be difficult due to the limited control of size distribution and loading procedure. There is therefore a strong interest in developing numerical tools to predict the dynamics of granular media made of particles of arbitrary shape and to simulate the flow of a fluid (either liquid or gas) around these particles. Non-convex particles are even more challenging than convex particles due to the potential multiplicity of contact points between two solid bodies. In this work, we implement new numerical strategies in our home made high-fidelity parallel numerical tools: Grains3D for granular dynamics of solid particles and PeliGRIFF for reactive fluid/solid flows. The first part of this work consists in extending the modelling capabilities of Grains3D from convex to non-convex particles based on the decomposition of a non-convex shape into a set of convex particles. We validate our numerical model with existing analytical solutions and experimental data on a rotating drum filled with 2D cross particle shapes. We also use Grains3D to study the loading of semi-periodic small size reactors with trilobic and quadralobic particles. The second part of this work consists in extending the modelling capabilities of PeliGRIFF to handle poly-lobed (and hence non-convex) particles. Our Particle Resolved Simulation (PRS) method is based on a Distributed Lagrange Multiplier / Fictitious Domain (DLM/FD) formulation combined with a Finite Volume / Staggered Grid (FV/SG) discretization scheme. Due to the lack of analytical solutions and experimental data, we assess the accuracy of our PRS method by examining the space convergence of the computed solution in assorted flow configurations such as the flow through a periodic array of poly-lobed particles and the flow in a small size packed bed reactor. Our simulation results are overall consistent with previous experimental work
Cao, Shunxiang. "Numerical Methods for Fluid-Solid Coupled Simulations: Robin Interface Conditions and Shock-Dominated Applications." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/93514.
Full textDoctor of Philosophy
Numerical simulations that couple computational fluid dynamics (CFD) solvers and computational solid dynamics (CSD) solvers have been widely used in the solution of nonlinear fluid-solid interaction (FSI) problems underlying many engineering applications. This is primarily because they are based on partitioned solutions of fluid and solid subsystems, which facilitates the use of existing numerical methods and computational codes developed for each subsystem. The first part of this dissertation focuses on developing advanced numerical algorithms for coupling the two subsystems. The aim is to resolve a major numerical instability issue that occurs when solving problems involving incompressible, heavy fluids and thin, lightweight structures. Specifically, this work first presents a new coupling algorithm based on a one-parameter Robin interface condition. An embedded boundary method is developed to enforce the Robin interface condition, which can be advantageous in solving problems involving complex geometry and large deformation. The new coupling algorithm has been shown to significantly improve numerical stability when the constant parameter is carefully selected. Next, the constant parameter is generalized into a spatially varying function whose local value is determined by the local material and geometric properties of the structure. Numerical studies show that when solving FSI problems involving non-uniform structures, using this spatially varying Robin interface condition can outperform the constant-parameter version in both stability and accuracy under the same computational cost. In the second part of this dissertation, a recently developed three-dimensional multiphase CFD - CSD coupled solver is extended to simulate complex FSI problems featuring shock wave, bubbles, and material damage and fracture. The aim is to understand the material’s response to loading induced by a shock wave and the collapse of nearby bubbles, which is important for advancing the beneficial use of shock wave and bubble collapse for material modification. Two computational studies are presented. The first one investigates the dynamic response and failure of a brittle material exposed to a prescribed shock wave. The causal relationship between shock loading and material failure, and the effects of the shock wave’s profile on material damage are discussed. The second study investigates the shock-induced bubble collapse near various solid and soft materials. The two-way interaction between bubble dynamics and materials response, and the reciprocal effects of the material’s properties are discussed in detail.
Wang, Chao. "Static, dynamic and levitation characteristics of squeeze film air journal bearing : designing, modelling, simulation and fluid solid interaction." Thesis, Brunel University, 2011. http://bura.brunel.ac.uk/handle/2438/5832.
Full textHosseini, Kordkheili Seyed. "A new continuum based non-linear finite element formulation for modeling of dynamic response of deep water riser behavior." Thesis, Brunel University, 2009. http://bura.brunel.ac.uk/handle/2438/4068.
Full textRolle, Trenicka. "Lung Alveolar and Tissue Analysis Under Mechanical Ventilation." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3398.
Full textBalakrishnan, Mahalingam III. "The Role of Turbulence on the Entrainment of a Single Sphere and the Effects of Roughness on Fluid-Solid Interaction." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30732.
Full textPh. D.
Ndanou, Serge. "Etude mathématique et numérique des modèles hyperélastiques et visco-plastiques : applications aux impacts hypervéloces." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4347/document.
Full textA mathematical model of diffuse interface for the interaction of N elasto-plastic solidS was built. It is an extension of the model developed by Favrie & Gavrilyuk (2012) for a fluid-solid interaction. Despite the large number of equations present in this model, two remarkable properties have been demonstrated: it is hyperbolic for any admissible deformations and satisfies the second principle of thermodynamics. In this model, the internal energy of each solid is taken in separable form: it is the sum of a hydrodynamic energy (which depends only on the density and entropy) and shear energy. The equation of state of each solid is such that if we take the shear modulus of the solid vanishes, we find the equations of fluid mechanics. This model allows, in particular:- predict the deformation of elastic-plastic solids in small and very large deformations.- predict the interaction of an arbitrary number of elasto-plastic solids and fluids.The ability of this model to solve complex problems has been demonstrated. Without being exhaustive, one can mention:- the spall phenomenon in solids.- fracturing and fragmentation in solids
Selino, Anthony Frank. "Coherent Turbulence: Synthesizing tree motion in the wind using CFD and noise." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/3015.
Full textAger, Christoph Franz [Verfasser], Wolfgang A. [Akademischer Betreuer] Wall, Wolfgang A. [Gutachter] Wall, and Marek [Gutachter] Behr. "Computational Methods for Fluid-Structure Interaction including Porous Media and Solid Contact / Christoph Franz Ager ; Gutachter: Wolfgang A. Wall, Marek Behr ; Betreuer: Wolfgang A. Wall." München : Universitätsbibliothek der TU München, 2021. http://d-nb.info/1230985131/34.
Full textBergström, Stina. "Added Properties in Kaplan Turbine - a preliminary investigation." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-60925.
Full textEn preliminär undersökning av de adderade egenskaperna kallade, adderad massa, adderad dämpning och adderad styvhet har utförts för en Kaplan turbin. Magnituden av dimensionslösa tal har använts för att klassificera interaktionen av fluiden och soliden. Klassificeringen görs för att bringa klarhet i vilka av de adderade egenskaperna är av betydelse för systemet. Diametrarna för löphjulet och navet har beräknats utifrån effekt och fallhöjd för en Kaplan turbin. Dessa längder har använts för att bestämma magnituden av de dimensionslösa talen tillsammans med fluidens hastighet. Det visade sig att alla adderade egenskaper påverkar turbinen, men omfattningen av dem är helt annorlunda. Magnituden av den adderade massan och den adderade dämpningen är större än den adderade styvheten, som ofta försummas. Den adderade massan kan bestämmas om de naturliga frekvenserna av strukturen i luft och vatten är kända. Skillnaden i egenfrekvenser kan användas för att bestämma faktorn av den adderade massan och därigenom den adderade massan. Den adderade dämpningen kan bestämmas genom ändringen i dämpningsförhållande för olika omgivande fluider. Detta gjordes med hjälp av simuleringsprogrammet ANSYS Workbench v.17.1, där två olika typer av simulering användes, ”acoustic coupled simulation” och ”two way coupled simulation”. Komplexiteten i geometrin för en Kaplan turbin förenklades till en skiva och en axel. Resultatet för den adderade massan validerades med resultat från ett experiment [1]. Den adderade dämpningen kunde bestämmas, men inte valideras. De olika typerna av simulering har jämförts och det visade sig att den adderade massan kan bestämmas med hjälp av både ”acoustic coupled simulation” och ”two way coupled simulation”, men den adderade dämpningen kunde endast bestämmas med hjälp av ”two way coupled simulation”.
Sirivolu, Dushyanth. "Marine Composite Panels under Blast Loading." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1467993101.
Full textJunior, Rubens Augusto Amaro. "Simulação computacional do comportamento elástico de materiais pelo método de partículas Moving Particle Semi-implicit (MPS)." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/3/3146/tde-10072014-170459/.
Full textIn this work a particle method to simulate the dynamics of elastic solids and fluid-structure interaction is implemented. It is based on the Moving Particle Semi-implicit Method (MPS), which was originally developed for incompressible flows with free surface. The main strategy of the MPS is to replace the differential operators of the governing equations by discrete differential operators on irregular nodes, which are derived from a model of interaction between particles. Initially details of the method and constitutive equations are shown. A simplified condition of fragmentation and collision between solids are proposed to allow the investigation of fragmentation amount multiple solids. In case of fluid-structure interaction, the solid\'s surface particles are treated as a fluid particle and the pressures of the surface particles are computed by solving Poisson equation for the pressure, just as the fluid particles. Therefore, the coupling between solid and fluid is done by using the displacement and velocity of elastic solid as the boundary conditions of the fluid, and the pressure at the interface, which is obtained when solving the fluid motion, is used to calculate the motion of the elastic solid. The algorithms for elastic solid, fragmentation, collision and fluid-structure interaction are presented and detailed. The qualitative and quantitative validations of the method are carried out herein considering static and dynamic cases subjected to deferent boundary conditions by comparing the numerical results from MPS with other numerical, analytical and experimental results available in the literature.
Jentsch, L., and D. Natroshvili. "Interaction between Thermoelastic and Scalar Oscillation Fields (general anisotropic case)." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801162.
Full textSabbagh, Lamis Marlyn Kenedy. "Study of rigid solids movement in a viscous fluid." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS103/document.
Full textThis thesis is devoted to the mathematical analysis of the problem of motion of afinite number of homogeneous rigid bodies within a homogeneous incompressible viscous fluid. Viscous fluids are classified into two categories: Newtonian fluids, and non-Newtonian fluids. First, we consider the system formed by the incompressible Navier-Stokes equations coupled with Newton’s laws to describe the movement of several rigid disks within a homogeneous viscous Newtonian fluid in the whole space R^2. We show the well-posedness of this system up to the occurrence of the first collision. Then we eliminate all type of contacts that may occur if the fluid domain remains connected at any time. With this assumption, the considered system is well-posed globally in time. In the second part of this thesis, we prove the non-uniqueness of weak solutions to the fluid-rigid body interaction problem in 3D in Newtonian fluid after collision. We show that there exist some initial conditions such that we can extend weak solutions after the time for which contact has taken place by two different ways. Finally, in the last part, we study the two-dimensional motion of a finite number of disks immersed in a cavity filled with a viscoelastic fluid such as polymeric solutions. The incompressible Navier–Stokes equations are used to model the flow of the solvent, in which the elastic extra stress tensor appears as a source term. In this part, we suppose that the extra stress tensor satisfies either the Oldroyd or the regularized Oldroyd constitutive differential law. In both cases, we prove the existence and uniqueness of local-in-time strongsolutions of the considered moving-boundary problem
Cerqueira, Stéphane. "Étude du couplage aéro-mécanique au sein des moteurs à propergol solide." Thesis, Paris, ENMP, 2012. http://www.theses.fr/2012ENMP0011/document.
Full textFluid Structure Interaction of an inhibitor with the internal flow induced by wall injection was studied in an axisymmetric cold flow apparatus. Experiments were carried out over a wide range of injection velocities in order to underline how the obstacle not only modifies the mean flowfield but also its entire dynamic behaviour.The resulting instability (from the interaction of the unstable shear layer with the Taylor-Culick flow) exhibits a significant shift with respect to the Taylor-Culick instability and therefore emphasizes the strong impact of the inhibitor on hydrodynamics.The mecanisms responsible of such behaviour are studied in this thesis with the help of global linear stability analysis and multi-physics numerical computations
Gineau, Audrey Nathalie. "Modélisation multi-échelle de l'interaction fluide-structure dans les systèmes tubulaires." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066651/document.
Full textVibration of tubes arrays is a matter of safety assessments of nuclear reactor cores or steam generators. Such systems count up thousands of slender-bodies immersed in viscous flow, involving multi-physics mechanisms caused by nonlinear dynamic interactions between the fluid and the solid materials. Direct numerical simulations for predicting these phenomena could derive from continuum mechanics, but require expensive computing resources. Therefore, one alternative to the costly micro-scale simulations consists in describing the interstitial fluid dynamics at the same scale as the structures one. Such approach rely on homogenization techniques intended to model mechanics of multi-phase systems. Homogenization results in coupled governing equations for the fluid and solid dynamics, whose solution provides individual tubes displacements and average fluid fields for each periodic unit cell. An hydrodynamic force term arises from the formulation within this set of homogenized equations: it depends on the micro-scale flow in the vicinity of a given tube-wall, but needs to be estimated as a function of the macro-scale fields in order to close the homogenized problem. The fluid force estimation relies on numerical micro-scale solutions of fluid-solid interactions over a tube array of small size. The multi-scale model is assessed for arrays made up of hundreds tubes, and is compared with solutions coming from the numerical micro-scale simulations. The macro-scale solution reproduces with good agreement the averaged solution of the micro-scale simulation, indicating that the homogenization method and the hydrodynamic force closure are suitable for such tube array configurations
Djellouli, Abderrahmane. "Nage par flambage de coque sphérique." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY043/document.
Full textMicroswimmers, and among them aspirant microrobots, are generally bound to cope with flows where viscous forces are dominant, characterized by a low Reynolds number (Re). This implies constraints on the possible sequences of body motion, which have to be nonreciprocal. Furthermore, the presence of a strong drag limits the range of resulting velocities.Here, we propose a swimming mechanism which uses the buckling instability triggered by pressure waves to propel a spherical hollow shell. The particularity of this mechanism is that it fulfills naturally the necessary condition of swimming at low Re. In addition, the swiftness of the instability might produce inertial effects even at the microscopic scale.With a macroscopic experimental model we show that a net displacement is produced at all Re regimes. We put in evidence the role of geometrical parameters, shell material properties and rheology of the surrounding fluid on the swimming efficiency.An optimal displacement is reached at intermediate Re. Using time-resolved PIV measurements, we explain that non-trivial history effects take place during the instability and enhance net displacement.Using a simple model, derived from the study of shell dynamics, we show that due to the fast activation induced by the instability, this regime is reachable by microscopic shells. The rapid dynamics would also allow high frequency excitation with standard traveling ultrasonic waves. Scale considerations predict a swimming velocity of order 1 cm/s for a remote controlled microrobot, a suitable value for biological applications such as drug delivery
Valkov, Boris Ivanov. "A blurred interface formulation of The Reference Map Technique for Fluid-Solid Interactions and Fluid-Solid-Solid Interactions." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92123.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 143-144).
In this work we present a blurred interface method for Fluid-Solid Interactions (FSI) and multiple solids immersed in a fluid or FSSI (Fluid-Solid-Solid Interactions) based on the reference map technique as presented by Kamrin and Rycroft. I will follow the chain of thought which lead from the initial sharp interface technique to the newer blurred interface one. We will present its capabilities of doing fully-coupled simulations of a compressible Navier-Stokes fluid and highly non-linear solid undergoing large deformations all performed on a single Eulerian grid with no Lagrangian particles whatsoever. The Reference Map Technique (RMT) provides an Eulerian simulation framework allowing to compute fully coupled fluid/soft-solid interactions. However, due to the extrapolations inherent to the Ghost Fluid Method (GFM) for fluid/fluid interactions, on which the RMT is based, numerical artifacts get created in the resulting pressure and velocity fields whenever the levelset defining the interface crosses a gridpoint from the fixed cartesian grid utilized in this method. We will therefore follow the creation and propagation of these artifacts as well as analyze how the blurred technique solves or avoids these problems.
by Boris Ivanov Valkov.
S.M.
Svahnberg, Henrik. "Deformation behaviour and chemical signatures of anorthosites: : Examples from southern West Greenland and south-central Sweden." Doctoral thesis, Stockholms universitet, Institutionen för geologiska vetenskaper, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-42854.
Full textAt the time of the doctoral defence the following papers were unpublished and had a status as follows: Paper 1: Manuscript; Paper 2 Manuscript; Paper 3 Manuscript.
Heneghan, Peter. "fluid -solid-chemical interactions of the nucleus pulposus." Thesis, University of Strathclyde, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488795.
Full textGartner, Nicolas. "Identification de paramètres hydrodynamiques par simulation avec Smoothed Particle Hydrodynamics." Electronic Thesis or Diss., Toulon, 2020. http://www.theses.fr/2020TOUL0004.
Full textThis thesis focuses on techniques that allows the simulation of dynamic interactions between an underwater vehicle and the surrounding water. The main objective is to propose a satisfactory solution to be able to test control algorithms and hull shapes for underwater vehicles upstream of the design process. In those cases, it would be interesting to be able to simulate solid and fluid dynamics at the same time. The idea developed in this thesis is to use the Smoothed Particles Hydrodynamics (SPH) technique, which is very recent, and which models the fluid as a set of particles without mesh. In order to validate the simulation results a first study has been performed with a hydrodynamic pendulum. This study allowed the development of an innovative method for estimating the hydrodynamic parameters (friction forces and added mass) which is more robust than previous existing methods when it is necessary to use numerical derivatives of the measured signal. Then, the use of two types of SPH solver: Weakly Compressible SPH and Incompressible SPH, is validated following the validation approach proposed in this thesis. Firstly, the behaviour of the fluid alone is studied, secondly, a hydrostatic case, and finally a dynamic case. The use of two methods for modelling the fluid-solid interaction: the pressure mirroring method and the extrapolation method is studied. The ability to reach a limit velocity due to friction forces is demonstrated. The results of the hydrodynamic parameters estimation from simulation tests are finally discussed. The simulated added mass of the solid approaches reality, but the friction forces currently seem not to correspond to reality. Possible improvements to overcome this problem are proposed
Cerpa, Gilvonio Nestor. "Interaction lithosphère-manteau en contexte de subduction 3D. Relations entre déformation de surface et processus profonds." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4045/document.
Full textOver the time scale of tens of millions of years, a subduction system involves large deformations of tectonics plates, as one plate sinks into the Earth's mantle. The aim of this work was to develop a soli-fluid coupling method applied to the lithosphere-asthenosphere interaction in the context of subduction zones. Plates were assumed to behave as viscoelastic bodies, while the upper mantle was assimilated to a newtonian fluid. The method developped here is based on the use of non-matching interface meshes and a fictitious domain method (FDM) for the fluid problem. To optimize the computational efficiency of 3D model, we used a simplified version of the Lagrange multipliers fictitious domain method. The developped FDM has been benchmarked with analytical solutions and we showed that this FDM is a first-order method. The coupling method has also been compared to other fluid-solid coupling methods using matching interfaces meshes. A first two-dimensional study was performed in order to evaluate the influence of some rheological and kinematic parameters on the dynamics of a subduction controlled by the velocity of the plates. This study aimed at investigating cyclic slab folding over a rigid 660 km depth transition zone. This folding mechanism induces variations in slab dip that generate variations in the stress state of the overriding plate. We focussed on the influence of the upper mantle viscosity on slab folding. We also applied this model to the Andean subduction zone. Several studies have determined a cyclic variation of the South-American tectonic regime (period of 30-40~Myrs) which may have been related to the slab dip evolution
Aharonov, Einat. "Solid-fluid interactions in porous media : processes that form rocks." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/53026.
Full textMcCorquodale, Mark W. "Interaction between oscillating-grid turbulence and a solid impermeable boundary." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/49971/.
Full textPark, Heungsup. "Drop impingement and interaction with a solid surface." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/8236.
Full textSchiffer, Andreas. "The response of submerged structures to underwater blast." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:4503e2e9-c712-4f8a-a6bb-9986981d56ab.
Full textNiaki, Seyed Reza Amini. "Effects of inter particle friction on the meso-scale hydrodynamics of dense gas-solid fluidized flows." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18147/tde-10122018-165927/.
Full textReatores de leito fluidizado de escoamento gás-sólido são largamente utilizados nas indústrias química e de energia, e o seu projeto e escalonamento são virtualmente empíricos, extremamente caros e demorados. Este cenário tem motivado o desenvolvimento de ferramentas teóricas alternativas, e a modelagem de dois fluidos, onde gás e particulado são ambos tratados com fases contínuas interpenetrantes, tem surgido como uma aproximação muito promissora. Devido aos grandes domínios a serem resolvidos em reatores de leito fluidizado de escala real, apenas aproximações de modelagem filtradas são viáveis, e modelos de fechamento tornam-se necessários para recuperar efeitos sub-malha que são filtrados pelas malhas numéricas grosseiras que são impostas devido as limitações computacionais. Estes modelos de fechamento, que em formulações hidrodinâmicas respondem principalmente por trocas de momentum filtradas entre fases e tensões filtradas e residuais nas fases, podem ser obtidos de resultados de simulações altamente resolvidas (SAR) realizadas em domínios de dimensões reduzidas sob malhas numéricas refinadas. Uma aproximação largamente praticada consiste na aplicação de modelagem de dois fluidos sob fechamentos definidos na micro-escala, genericamente conhecida como modelagem microscópica de dois fluidos. Esta aproximação inclui fechamentos microscópicos para tensões da fase sólida obtidos da teoria cinética dos escoamentos granulares (TCEG), que considera apenas efeitos cinéticos-colisionais, e é adequada para escoamentos diluídos. Por outro lado, a TCEG convencional não leva em conta efeitos de fricção interpartículas, e sua aplicação para condições densas de escoamento é bastante questionável. Neste trabalho aplica-se uma versão modificada da TCEG disponível na literatura que também leva em conta fricção interpartículas, e simulações altamente resolvidas são realizadas para condições de escoamentos densos visando avaliar os efeitos da fricção sobre os parâmetros filtrados relevantes (coeficiente de arrasto efetivo, tensões filtradas e residuais). Considera-se faixas de frações volumétricas de sólido e números de Reynolds do gás médios no domínio (condições de macro-escala) abrangendo escoamentos gás-sólido fluidizados densos desde suspensões até transporte pneumático. O código aberto MFIX é utilizado em todas as simulações, que foram executadas sobre domínios periódicos 2D para um único particulado monodisperso. Os resultados das SAR (i.e., campos de escoamento de meso-escala) foram filtrados sobre regiões compatíveis com tamanhos de malha praticados em simulações de grandes escalas, e os parâmetros filtrados relevantes de interesse são calculados e classificados por faixas de outros parâmetros filtrados tomados como variáveis independentes (fração volumétrica de sólido filtrada, velocidade de deslizamento filtrada, e energia cinética das flutuações de velocidade da fase sólida filtrada, que são referidos como marcadores). Os resultados mostram que os parâmetros filtrados relevantes de interesse são bem correlacionados com todos os marcadores, e também com todas as condições de macro-escala impostas. Por outro lado, a fricção interpartículas não mostrou efeitos significativos sobre qualquer parâmetro filtrado. Reconhece-se que este aspecto claramente requer investigações adicionais, notadamente com respeito à adequação dos marcadores que foram considerados para classificação dos resultados filtrados. O trabalho corrente é posto como uma contribuição para o desenvolvimento futuro de modelos de fechamento mais acurados para simulações de grandes escalas de escoamentos gás-sólido fluidizados.
Zhang, Yonghao. "Particle-gas interactions in two-fluid models of gas-solid flows." Thesis, University of Aberdeen, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367375.
Full textPino, Munoz Daniel Humberto. "High-performance computing of sintering process at particle scale." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2012. http://tel.archives-ouvertes.fr/tel-00843105.
Full textBiamino, Laurent. "Etude expérimentale de l'interaction d'une onde de choc avec une structure mobile autour d'un axe." Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10093/document.
Full textThis thesis is based on an experimental study carried out in shock tube; in particular, this is an experimental approach to the study of fluid-structure interaction. Consider a rigid body which is allowed to rotate only around an axis and which closes a confined space. If a shock wave crosses the content of the confined space, the body will accelerate and rotate around its axis. Specifically, the shock wave will increase the physical characteristics, especially its pressure, of the fluid acting on the impacted face of the door. The opposite side of the door is not influenced by the incident shock wave, only one of its faces is subjected to overpressure. Following the first impact, the resulting imbalance imposes a mechanical action on the door that will increase its speed and make it turn around its rotation axis. The difficulty comes when the door begins to open: the volume boundaries in which the fluid is contained are modified. Leaks occur and the gas kept in this closed volume can now flow to the atmosphere. Communication between the gas acting on each side of the door is created modifying their properties and consequently the pressure acting on each side of the door.The mechanical actions that apply to the door are no more the same with time, and therefore the acceleration of the door is changing. As the door moves, the fluid problem continues to be changed and in turn it changes its action on the door. This interaction process continues until either the limits of the problem ceases to be changed, the door cannot move, or when the mechanical actions acting on the door are in equilibrium, fluids on each side of the door are in the same physical state. The presented work is a study of the parameters of the fluid or the solid motion which are main actors in the behavioral law managing this complex system. In this aim, we designed an experimental device involving the physics that we have described and we have adapted it to a shock tube. Testing many experimental configurations, we could determine how the internal flow of a shock tube evolves when the end of this shock tube is more or less open.How a closed door reacts to the impact of a shock wave and what are the implications for the evolution of the involved fluids? What are the consequences of a different position of the door at the instant of the impact with the incident shock wave? What role plays the intensity of the incident shock wave or the inertia of the door on this dynamic?
Mutch, Greg Alexander. "Carbon capture and storage optimisation in solid oxides : understanding surface-fluid interactions." Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=231044.
Full textMichelin, Sébastien Honoré Roland. "Falling, flapping, flying, swimming,... high-Re fluid-solid interactions with vortex shedding /." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3369655.
Full textTitle from first page of PDF file (viewed September 17, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 200-210).
Zhao, Shunzi. "The numerical study of fluid-solid interactions for modelling blood flow in arteries." Thesis, City University London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312951.
Full textPersson, Eva. "Drug Dissolution under Physiologically Relevant Conditions In Vitro and In Vivo." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7195.
Full textCoudouel, Guillaume. "Toward a numerical predictive method based on fatigue analysis for droplet impingement erosion." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI101/document.
Full textThe goal of this work is the comprehension and the numerical simulation of erosion caused by repeated droplet impact on Pelton turbine buckets, to predict the lifetime of these components. First, waves propagation phenomenon inside fluid and solid domains are presented, which allows determining the time evolution and spatial distribution of contact pressure, and the birth of lateral microjets by supersonic ejection of the fluid on the contact. Experimental studies of erosion by droplet impact highlight a fatigue cracking-based erosion mechanism. Then, coupled FSI computation are performed. The solid subdomain is discretized by the Finite Element Method (FEM), and the fluid subdomain by the Smoothed Particle Hydrodynamics (SPH), which is a particle method (meshless) effectively recommended for large distortions and free surface tracking. Stress analysis confirms the cyclic nature of the damage mechanism, and erosion simulation is performed using multiaxial fatigue criteria. The first selected criterion is a general one from the American Society of Mechanical Engineers (ASME) using principal values of stress differences over time. The second one is the Dang van 2 criterion, belonging to the family of critical plane criteria. This criterion considers separately the effects due to hydrostatic stress on one hand, and the ones induced by maximum local shear on the other. These two criteria are used to building the equivalent eroded zones of the solid subdomain for a given number of impacts, which allows to qualify this procedure as a predictive predictive. Finally, a parametric study for different droplet sizes and velocites is computed, and the effects of a coating layer are investigated
Gnanasambandham, Chandramouli [Verfasser]. "Particle Dampers- Enhancing Energy Dissipation using Fluid/Solid Interactions and Rigid Obstacle-Grids / Chandramouli Gnanasambandham." Düren : Shaker, 2021. http://d-nb.info/124085367X/34.
Full text