To see the other types of publications on this topic, follow the link: Solid oxide fuel cells Electrochemistry.

Journal articles on the topic 'Solid oxide fuel cells Electrochemistry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Solid oxide fuel cells Electrochemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Singhal, Subhash C. "Solid Oxide Fuel Cells." Electrochemical Society Interface 16, no. 4 (2007): 41–44. http://dx.doi.org/10.1149/2.f06074if.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

TAKEDA, Yasuo, Yoshinori SAKAKI, Heng Young TU, Michael Brian PHILLIPPS, Nobuyuki IMANISHI, and Osamu YAMAMOTO. "Perovskite Oxides for the Cathode in Solid Oxide Fuel Cells." Electrochemistry 68, no. 10 (2000): 764–70. http://dx.doi.org/10.5796/electrochemistry.68.764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Khaleel, M. A., D. R. Rector, Z. Lin, K. Johnson, and K. Recknagle. "Multiscale Electrochemistry Modeling of Solid Oxide Fuel Cells." International Journal for Multiscale Computational Engineering 3, no. 1 (2005): 33–48. http://dx.doi.org/10.1615/intjmultcompeng.v3.i1.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

YOKOKAWA, Harumi, Natsuko SAKAI, Teruhisa HORITA, Katsuhiko YAMAJI, and Manuel E. BRITO. "Solid Oxide Electrolytes for High Temperature Fuel Cells." Electrochemistry 73, no. 1 (2005): 20–30. http://dx.doi.org/10.5796/electrochemistry.73.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wachsman, Eric D. "Solid Oxide Fuel Cells: Increasing Efficiency with Conventional Fuels." Electrochemical Society Interface 18, no. 3 (2009): 37. http://dx.doi.org/10.1149/2.f02093if.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Traversa, Enrico. "Toward the Miniaturization of Solid Oxide Fuel Cells." Electrochemical Society Interface 18, no. 3 (2009): 49–52. http://dx.doi.org/10.1149/2.f05093if.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dong, Dehua, Xin Shao, Kui Xie, Xun Hu, Gordon Parkinson, and Chun-Zhu Li. "Microchanneled anode supports of solid oxide fuel cells." Electrochemistry Communications 42 (May 2014): 64–67. http://dx.doi.org/10.1016/j.elecom.2014.02.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ISHIHARA, Tatsumi, Hiroyuki ETO, Hao ZHONG, and Hiroshige MATSUMOTO. "Intermediate Temperature Solid Oxide Fuel Cells Using LaGaO3 Based Perovskite Oxide for Electrolyte." Electrochemistry 77, no. 2 (2009): 115–22. http://dx.doi.org/10.5796/electrochemistry.77.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

EGUCHI, Koichi. "Current Status and Issues for Development of Solid Oxide Fuel Cells." Electrochemistry 77, no. 2 (2009): 114. http://dx.doi.org/10.5796/electrochemistry.77.114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bredikhin, I. S., F. S. Napol’skii, E. V. Korovkin, S. Ya Istomin, E. V. Antipov, and S. I. Bredikhin. "Calcium-containing cathodic material for solid oxide fuel cells." Russian Journal of Electrochemistry 45, no. 4 (2009): 434–38. http://dx.doi.org/10.1134/s1023193509040120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yamamoto, Osamu. "Solid oxide fuel cells: fundamental aspects and prospects." Electrochimica Acta 45, no. 15-16 (2000): 2423–35. http://dx.doi.org/10.1016/s0013-4686(00)00330-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zhu, Huayang, Robert J. Kee, Vinod M. Janardhanan, Olaf Deutschmann, and David G. Goodwin. "Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells." Journal of The Electrochemical Society 152, no. 12 (2005): A2427. http://dx.doi.org/10.1149/1.2116607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Villarreal, I., C. Jacobson, A. Leming, Y. Matus, S. Visco, and L. De Jonghe. "Metal-Supported Solid Oxide Fuel Cells." Electrochemical and Solid-State Letters 6, no. 9 (2003): A178. http://dx.doi.org/10.1149/1.1592372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wagner, N., W. Schnurnberger, B. Müller, and M. Lang. "Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells." Electrochimica Acta 43, no. 24 (1998): 3785–93. http://dx.doi.org/10.1016/s0013-4686(98)00138-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Suzuki, Toshio, Bo Liang, Toshiaki Yamaguchi, Koichi Hamamoto, and Yoshinobu Fujishiro. "Development of novel micro flat-tube solid-oxide fuel cells." Electrochemistry Communications 13, no. 7 (2011): 719–22. http://dx.doi.org/10.1016/j.elecom.2011.04.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rath, Manasa Kumar, Alexey Kossenko, Alexander Kalashnikov, and Michael Zinigrad. "Novel anode current collector for hydrocarbon fuel solid oxide fuel cells." Electrochimica Acta 331 (January 2020): 135271. http://dx.doi.org/10.1016/j.electacta.2019.135271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Murray, Erica Perry, Stephen J. Harris, and Hungwen Jen. "Solid Oxide Fuel Cells Utilizing Dimethyl Ether Fuel." Journal of The Electrochemical Society 149, no. 9 (2002): A1127. http://dx.doi.org/10.1149/1.1496484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Van Herle, J., and K. Ravindranathan Thampi. "Laboratory techniques for evaluating solid oxide fuel cells." Journal of Applied Electrochemistry 24, no. 10 (1994): 970–76. http://dx.doi.org/10.1007/bf00241186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

MATSUI, Toshiaki, Jin-young KIM, Ryuji KIKUCHI, and Koichi EGUCHI. "Sudden Deterioration in Performance During Discharge of Anode-supported Solid Oxide Fuel Cells." Electrochemistry 77, no. 2 (2009): 123–26. http://dx.doi.org/10.5796/electrochemistry.77.123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bi, Lei, Emiliana Fabbri, and Enrico Traversa. "Solid oxide fuel cells with proton-conducting La0.99Ca0.01NbO4 electrolyte." Electrochimica Acta 260 (January 2018): 748–54. http://dx.doi.org/10.1016/j.electacta.2017.12.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yang, Chenghao, Chao Jin, and Fanglin Chen. "Micro-tubular solid oxide fuel cells fabricated by phase-inversion method." Electrochemistry Communications 12, no. 5 (2010): 657–60. http://dx.doi.org/10.1016/j.elecom.2010.02.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tang, Haidi, Zongzi Jin, Yusen Wu, Wei Liu, and Lei Bi. "Cobalt-free nanofiber cathodes for proton conducting solid oxide fuel cells." Electrochemistry Communications 100 (March 2019): 108–12. http://dx.doi.org/10.1016/j.elecom.2019.01.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Solov’ev, A. A., N. S. Sochugov, I. V. Ionov, A. V. Shipilova, and A. N. Koval’chuk. "Magnetron formation of Ni/YSZ anodes of solid oxide fuel cells." Russian Journal of Electrochemistry 50, no. 7 (2014): 647–55. http://dx.doi.org/10.1134/s1023193514070155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kromp, A., A. Weber, and E. Ivers-Tiffee. "Electrochemistry of Reformate Fueled Ni/8YSZ Anodes for Solid Oxide Fuel Cells." ECS Transactions 57, no. 1 (2013): 3063–75. http://dx.doi.org/10.1149/05701.3063ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wang, Baoyuan, Yixiao Cai, Chen Xia, et al. "Semiconductor-ionic Membrane of LaSrCoFe-oxide-doped Ceria Solid Oxide Fuel Cells." Electrochimica Acta 248 (September 2017): 496–504. http://dx.doi.org/10.1016/j.electacta.2017.07.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Willich, C., C. Westner, M. Henke, F. Leucht, J. Kallo, and K. A. Friedrich. "Pressurized Solid Oxide Fuel Cells with Reformate as Fuel." Journal of The Electrochemical Society 159, no. 11 (2012): F711—F716. http://dx.doi.org/10.1149/2.031211jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Piccardo, Paolo, Roberta Amendola, Sébastien Fontana, Sébastien Chevalier, Gilles Caboches, and Paul Gannon. "Interconnect materials for next-generation solid oxide fuel cells." Journal of Applied Electrochemistry 39, no. 4 (2009): 545–51. http://dx.doi.org/10.1007/s10800-008-9743-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Iwahara, H., H. Uchida, and S. Tanaka. "High temperature-type proton conductive solid oxide fuel cells using various fuels." Journal of Applied Electrochemistry 16, no. 5 (1986): 663–68. http://dx.doi.org/10.1007/bf01006916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Li, Ting Shuai, Cheng Xu, Tao Chen, He Miao, and Wei Guo Wang. "Chlorine contaminants poisoning of solid oxide fuel cells." Journal of Solid State Electrochemistry 15, no. 6 (2010): 1077–85. http://dx.doi.org/10.1007/s10008-010-1166-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jiang, S. P. "Resistance Measurement in Solid Oxide Fuel Cells." Journal of The Electrochemical Society 148, no. 8 (2001): A887. http://dx.doi.org/10.1149/1.1383776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang, Yanxiang, and Changrong Xia. "Film percolation for composite electrodes of solid oxide fuel cells." Electrochimica Acta 56, no. 13 (2011): 4763–69. http://dx.doi.org/10.1016/j.electacta.2011.03.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Solov’ev, A. A., N. S. Sochugov, A. V. Shipilova, K. B. Efimova, and A. E. Tumashevskaya. "Mid-temperature solid oxide fuel cells with thin film ZrO2: Y2O3 electrolyte." Russian Journal of Electrochemistry 47, no. 4 (2011): 494–502. http://dx.doi.org/10.1134/s1023193511040185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ye, Xiao-Feng, S. R. Wang, Q. Hu, Z. R. Wang, T. L. Wen, and Z. Y. Wen. "Improvement of multi-layer anode for direct ethanol Solid Oxide Fuel Cells." Electrochemistry Communications 11, no. 4 (2009): 823–26. http://dx.doi.org/10.1016/j.elecom.2009.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Droushiotis, Nicolas, Mohd Hafiz Dzarfan Othman, Uttam Doraswami, Zhentao Wu, Geoff Kelsall, and Kang Li. "Novel co-extruded electrolyte–anode hollow fibres for solid oxide fuel cells." Electrochemistry Communications 11, no. 9 (2009): 1799–802. http://dx.doi.org/10.1016/j.elecom.2009.07.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhou, Qingjun, Leilei Zhang, and Tianmin He. "Cobalt-free cathode material SrFe0.9Nb0.1O3− for intermediate-temperature solid oxide fuel cells." Electrochemistry Communications 12, no. 2 (2010): 285–87. http://dx.doi.org/10.1016/j.elecom.2009.12.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Schuler, J. Andreas, Pietro Tanasini, Aïcha Hessler-Wyser, Christos Comninellis, and Jan Van herle. "Cathode thickness-dependent tolerance to Cr-poisoning in solid oxide fuel cells." Electrochemistry Communications 12, no. 12 (2010): 1682–85. http://dx.doi.org/10.1016/j.elecom.2010.09.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yang, Zhibin, Chenghao Yang, Chao Jin, Minfang Han та Fanglin Chen. "Ba0.9Co0.7Fe0.2Nb0.1O3−δ as cathode material for intermediate temperature solid oxide fuel cells". Electrochemistry Communications 13, № 8 (2011): 882–85. http://dx.doi.org/10.1016/j.elecom.2011.05.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mazo, G. N., S. N. Savvin, A. M. Abakumov, J. Hadermann, Yu A. Dobrovol’skii, and L. S. Leonova. "Lanthanum-strontium cuprate: A promising cathodic material for solid oxide fuel cells." Russian Journal of Electrochemistry 43, no. 4 (2007): 436–42. http://dx.doi.org/10.1134/s1023193507040106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bobrenok, O. F., and M. R. Predtechenskii. "Solid oxide fuel cells with film electrolytes prepared by chemical vapor deposition." Russian Journal of Electrochemistry 46, no. 7 (2010): 798–804. http://dx.doi.org/10.1134/s102319351007013x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mogensen, M. B., M. Chen, H. L. Frandsen, et al. "Reversible solid-oxide cells for clean and sustainable energy." Clean Energy 3, no. 3 (2019): 175–201. http://dx.doi.org/10.1093/ce/zkz023.

Full text
Abstract:
Abstract This review gives first a brief view of the potential availability of sustainable energy. It is clear that over 100 times more solar photovoltaic energy than necessary is readily accessible and that practically available wind alone may deliver sufficient energy supply to the world. Due to the intermittency of these sources, effective and inexpensive energy-conversion and storage technology is needed. Motivation for the possible electrolysis application of reversible solid-oxide cells (RSOCs), including a comparison of power-to-fuel/fuel-to-power to other energy-conversion and storage
APA, Harvard, Vancouver, ISO, and other styles
41

Smith, Brandon H., and Michael D. Gross. "A Highly Conductive Oxide Anode for Solid Oxide Fuel Cells." Electrochemical and Solid-State Letters 14, no. 1 (2011): B1. http://dx.doi.org/10.1149/1.3505101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Armstrong, Eric N., Jae-Woo Park, and Nguyen Q. Minh. "High-Performance Direct Ethanol Solid Oxide Fuel Cells." Electrochemical and Solid-State Letters 15, no. 5 (2012): B75. http://dx.doi.org/10.1149/2.010206esl.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pradhan, Sanjaya K., Sudip K. Mazumder, Joseph Hartvigsen, and Michele Hollist. "Effects of Electrical Feedbacks on Planar Solid Oxide Fuel Cell." Journal of Fuel Cell Science and Technology 4, no. 2 (2006): 154–66. http://dx.doi.org/10.1115/1.2713773.

Full text
Abstract:
Planar-solid-oxide-fuel-cell stacks (PSOFCSs), in PSOFC-based power-conditioning systems (PCSs), are subjected to electrical feedbacks due to the switching power electronics and the application loads. These feedbacks (including load transient, current ripple due to load power factor and inverter operation, and load harmonic distortion) affect the electrochemistry and the thermal properties of the planar cells thereby potentially deteriorating the performance and reliability of the cells. In this paper, a detailed study on the impact of these electrical effects on the performance of the PSFOC i
APA, Harvard, Vancouver, ISO, and other styles
44

Droushiotis, N., U. Doraswami, G. H. Kelsall, and K. Li. "Micro-tubular solid oxide fuel cells fabricated from hollow fibres." Journal of Applied Electrochemistry 41, no. 9 (2011): 1005–12. http://dx.doi.org/10.1007/s10800-011-0334-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lefebvre-Joud, Florence, Gilles Gauthier, and Julie Mougin. "Current status of proton-conducting solid oxide fuel cells development." Journal of Applied Electrochemistry 39, no. 4 (2009): 535–43. http://dx.doi.org/10.1007/s10800-008-9744-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Park, Beom-Kyeong, Jong-Won Lee, Seung-Bok Lee, et al. "La0.8Ca0.2CrO3Interconnect Materials for Solid Oxide Fuel Cells: Combustion Synthesis and Reduced-Temperature Sintering." Journal of Electrochemical Science and Technology 2, no. 1 (2011): 39–44. http://dx.doi.org/10.5229/jecst.2011.2.1.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Suzuki, Toshio, Shinichi Sugihara, Toshiaki Yamaguchi, Hirofumi Sumi, Koichi Hamamoto, and Yoshinobu Fujishiro. "Effect of anode functional layer on energy efficiency of solid oxide fuel cells." Electrochemistry Communications 13, no. 9 (2011): 959–62. http://dx.doi.org/10.1016/j.elecom.2011.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Cook, Ronald L., Robert C. MacDuff, and Anthony F. Sammells. "Perovskite Solid Electrolytes for Intermediate Temperature Solid Oxide Fuel Cells." Journal of The Electrochemical Society 137, no. 10 (1990): 3309–10. http://dx.doi.org/10.1149/1.2086209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hwang, J. J. "Mass/Charge Transfer in Mono-Block-Layer-Built-Type Solid-Oxide Fuel Cells." Journal of Fuel Cell Science and Technology 2, no. 3 (2005): 164–70. http://dx.doi.org/10.1115/1.1895965.

Full text
Abstract:
The mass/charge transfer characteristics in a simulated MOLB (mono-block-layer built)-type solid-oxide fuel cells have been studied numerically. The transport phenomena within a linear MOLB module, including flow channels, active porous electrodes, electrolyte, and interconnections, are simulated using the finite volume method. The gas flow in the porous electrodes is governed by the isotropic linear resistance model with constant porosity and permeability. The diffusions of reactant species in the porous electrodes are described by the Stefan-Maxwell relation. Effective diffusivities for poro
APA, Harvard, Vancouver, ISO, and other styles
50

SUMI, Hirofumi, Toshiaki YAMAGUCHI, Koichi HAMAMOTO, Toshio SUZUKI, and Yoshinobu FUJISHIRO. "Effect of Operating Temperature on Durability for Direct Butane Utilization of Microtubular Solid Oxide Fuel Cells." Electrochemistry 81, no. 2 (2013): 86–91. http://dx.doi.org/10.5796/electrochemistry.81.86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!