Academic literature on the topic 'Solid Recovered Fuels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solid Recovered Fuels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solid Recovered Fuels"
Sarc, Renato, IM Seidler, L. Kandlbauer, KE Lorber, and R. Pomberger. "Design, quality and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry – Update 2019." Waste Management & Research 37, no. 9 (July 23, 2019): 885–97. http://dx.doi.org/10.1177/0734242x19862600.
Full textLorber, Karl E., and Arne Ragoßnig. "Solid recovered fuels 2.0 – ‘what’s new?’." Waste Management & Research 30, no. 4 (April 2012): 333–34. http://dx.doi.org/10.1177/0734242x12442951.
Full textVelis, Costas A., and Jeff Cooper. "Are solid recovered fuels resource-efficient?" Waste Management & Research 31, no. 2 (February 2013): 113–14. http://dx.doi.org/10.1177/0734242x13476385.
Full textKepplinger, Werner L., and Tamara Tappeiner. "Solid recovered fuels in the steel industry." Waste Management & Research 30, no. 4 (November 15, 2011): 450–53. http://dx.doi.org/10.1177/0734242x11426174.
Full textDunnu, Gregory, Jörg Maier, Uwe Schnell, and Günter Scheffknecht. "Drag coefficient of Solid Recovered Fuels (SRF)." Fuel 89, no. 12 (December 2010): 4053–57. http://dx.doi.org/10.1016/j.fuel.2010.06.039.
Full textMontané, Daniel, Sònia Abelló, Xavier Farriol, and César Berrueco. "Volatilization characteristics of solid recovered fuels (SRFs)." Fuel Processing Technology 113 (September 2013): 90–96. http://dx.doi.org/10.1016/j.fuproc.2013.03.026.
Full textArena, Umberto, and Fabrizio Di Gregorio. "Fluidized bed gasification of industrial solid recovered fuels." Waste Management 50 (April 2016): 86–92. http://dx.doi.org/10.1016/j.wasman.2016.02.011.
Full textRadojevic, Milos, Martina Balac, Vladimir Jovanovic, Dragoslava Stojiljkovic, and Nebojsa Manic. "Thermogravimetric kinetic study of solid recovered fuels pyrolysis." Chemical Industry 72, no. 2 (2018): 99–106. http://dx.doi.org/10.2298/hemind171009002r.
Full textMedic-Pejic, Ljiljana, Nieves Fernandez-Anez, Laura Rubio-Arrieta, and Javier Garcia-Torrent. "Thermal behaviour of organic solid recovered fuels (SRF)." International Journal of Hydrogen Energy 41, no. 37 (October 2016): 16556–65. http://dx.doi.org/10.1016/j.ijhydene.2016.05.201.
Full textGehrmann, H. J., H. Seifert, P. Nowak, G. Pfrang-Stotz, H. R. Paur, T. Glorius, and J. Maier. "Mitverbrennung von Solid Recovered Fuels mit Biomassen in Rostsystemen." Chemie Ingenieur Technik 84, no. 8 (July 25, 2012): 1386. http://dx.doi.org/10.1002/cite.201250267.
Full textDissertations / Theses on the topic "Solid Recovered Fuels"
Beckmann, Michael, Martin Pohl, Daniel Bernhardt, and Kathrin Gebauer. "Criteria for solid recovered fuels as a substitute for fossil fuels – a review." Sage, 2012. https://publish.fid-move.qucosa.de/id/qucosa%3A38445.
Full textRecari, Ansa Javier. "Gasification of biomass and solid recovered fuels (SRFs) for the synthesis of liquid fuels." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/450856.
Full textLa gasificación es una tecnología prometedora para el aprovechamiento energético de biomasa y residuos ya que permite convertir los combustibles sólidos en un gas de síntesis (syngas) con múltiples aplicaciones. Sin embargo, ciertas limitaciones todavía impiden la completa implementación de esta tecnología a escala industrial, en particular para la producción de combustibles líquidos a partir del proceso Fischer Tropsch (FT). Los principales inconvenientes están relacionados con la calidad del syngas, por ejemplo una baja relación H2/CO y la presencia de impurezas (tar y contaminantes menores), y dependen de la naturaleza del material y de las condiciones de operación del proceso de gasificación. Esta tesis se centra en la mejora de la calidad del syngas de gasificación de biomasa y combustibles sólidos recuperados (CSRs) para la producción de combustibles líquidos. El trabajo se divide en dos partes principales. La primera parte consiste en estudios experimentales de gasificación de biomasa y CSRs en un reactor de lecho fluidizado a escala de laboratorio para evaluar la influencia de las condiciones de operación (temperatura, materiales de lecho, agentes de gasificación, etc.) en el rendimiento del proceso y la composición del gas. Debido a que los CSRs contienen mayores cantidades de precursores de contaminantes que la biomasa, se ha desarrollado un método para determinar la concentración de HCl, H2S, HCN y NH3 en el syngas mediante potenciometría de ion selectivo. Además, se propone la aplicación de un pretratamiento térmico (torrefacción) a los materiales de gasificación como un método para mejorar las propiedades de los materiales y disminuir la emisión de contaminantes en el syngas. Por último, la segunda parte consiste en un estudio tecno-económico para estimar los costes de inversión y de operación de plantas de combustibles líquidos FT a partir de la gasificación de biomasa y residuos, partiendo de los resultados obtenidos experimentalmente.
Gasification is a promising technology for energy exploitation of biomass and waste, converting carbonaceous fuels into a synthesis gas (syngas) with multiple applications. However, technical obstacles hinder the full implementation of this technology at industrial scale, particularly for the production of liquid fuels through Fischer-Tropsch (FT) synthesis. Those challenges are mainly related to the syngas quality, such as a low H2/CO ratio and the presence of impurities (tar and minor contaminants), strongly influenced by the nature of the feedstock and the operating conditions of the gasification process. This thesis focuses on the improvement of the syngas quality from gasification of biomass and solid recovered fuels (SRFs) aiming to produce liquid fuels. The present work is divided in two main blocks. The first block corresponds to biomass and SRFs gasification experiments in a lab-scale fluidized bed reactor in order to study the influence of key operating conditions (temperature, bed materials, gasification agents, etc.) on the gasification performance and gas composition. Since SRF materials contain higher amounts of contaminants precursors than biomass, a method to assess the concentration of HCl, H2S, HCN and NH3 in the syngas by means of ion-selective potentiometry was developed. The application of a thermal pretreatment (torrefaction) to the gasification feedstocks is proposed as a way to upgrade the feedstock properties and abate the release of contaminants in the syngas. The second part of this work consists in a techno-economic analysis that estimates capital and production costs of FT liquid fuel plants based on biomass and waste gasification, using as input the experimental results.
Nowak, Piotr [Verfasser], and Helmut [Akademischer Betreuer] Seifert. "Combustion of biomass and solid recovered fuels on the grate / Piotr Nowak ; Betreuer: Helmut Seifert." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2019. http://d-nb.info/1205736999/34.
Full textDunnu, Gregory [Verfasser]. "Characterisation of Solid Recovered Fuels for Direct Co-firing in Large-Scale PF Power Plants / Gregory Dunnu." Aachen : Shaker, 2013. http://d-nb.info/1051574951/34.
Full textBalampanis, Dimitris E. "Comparative study on the combustion and gasification of solid recovered fuels. Emphasis on residues characterisation and chlorine partitioning." Thesis, Cranfield University, 2009. http://dspace.lib.cranfield.ac.uk/handle/1826/4692.
Full textVonk, Gwendal. "Caractérisation de la gazéfication de combustibles solides de récupération (CSR) en vue d'optimiser leur utilsation dans une unité de cogénération par gazogène." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S075/document.
Full textGasification is a thermochemical conversion process converting solid fuel into synthetic gas (syngas), containing H2 and CO. Sorting waste to produce SRF aims to allow a better energy recovery of waste, while satisfying environmental regulations. This study focuses on energetic and environmental performances of the air gasification of SRF (wood, tire, plastics, sewage sludge) using downdraft fixed bed reactors at pilot and industrial scale. Analytical procedures allow quantification of syngas composition as well as pollutant contents (sulfur, nitrogen, tars, heavy metals) in gasification outlet streams, considering raw wood as a reference. SRF Wood gasification performances are identical to Raw Wood. However adding 20%w of SRF Tire, Plastics or Sewage Sludge to SRF Wood leads to a decrease in H2 and CO contents, balanced by an increase in light hydrocarbons (CH4, C2), resulting in a similar syngas calorific value, ranging between 4.9 and 5.4 MJ/Nm3. Gasification performances are slightly lower with SRF mixes, ranging between 35 and 49%, while reaching 48 to 52% for Raw Wood and SRF Wood. Compared to Wood, only nitrogen containing pollutants are in higher concentrations with SRF Wood. In the case of SRF mixes, tars, sulfur and nitrogen containing pollutants are in higher concentrations. Moreover, heavy metals contents are higher in fine particles than in chars, resulting in a particular post-treatment
Velis, C. A. "Solid recovered fuel production through the mechanical-biological treatment of wastes." Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/8354.
Full textRogier, Eric Nicolas. "Simulating Heat Recovery of a Solid Oxide Fuel Cell using EES." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2258.
Full textSteer, Julian Mark. "Research into material recovery techniques and the utilisation of solid fuels in an industrial context." Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/88344/.
Full textSerutla, Bokhabane Tlotliso Violet. "Potential for energy recovery and its economic evaluation from a municipal solid wastes landfill in Cape Town." Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2463.
Full textLandfill gases, principally methane, CH4 are produced from the decomposition of the municipal solid wastes deposited on landfill sites. These gases can be captured and converted into usable energy or electricity which will assist in addressing energy needs of South Africa. Its capture also reduces the problems associated with greenhouse gases. The aim of this study is to estimate gases that can be produced from the Bellville landfill site in Cape Town. The landfill gas capacity was estimated using Intergovernmental Panel on Climate Change (IPCC) model. The IPCC model showed that 48 447m3/year of landfill gas capacity was determined only in 2013. The LFGTE process plant is designed in a manner of purifying landfill gas, which at the end methane gets up being the only gas combusted. As a matter of fact 14 544kg/year of gases which consists mainly methane gets combusted. The average energy that can be produced based on the generated landfill gas capacity (methane gas) is 1,004MWh/year. This translates to R1. 05million per year at Eskom’s current tariff of R2.86 /kWh) including sales from CO2 which is a by-product from the designed process plant. A LFGTE process plant has been developed from the gathered information on landfill gas capacity and the amount of energy that can be generated from the gas. In order, to start-up this project the total fixed capital costs of this project required amounted up to R2.5 million. On the other hand, the project made a profit amounted to R3.9million, the Net profit summed up to R1. 3million and the payback time of Landfill Gas ToEnergy (LFGTE) project is 4years.The break-even of the project is on second year of the plant’s operation. The maximum profit that this project can generate is around R1. 1million. The life span of the plant is nine years. Aspen plus indicated that about 87% of pure methane was separated from CO2 and H2S for combustion at theabsorption gas outletstream. I would suggest this project to be done because it is profitable when by-products such as CO2 sales add to the project’s revenues.
Books on the topic "Solid Recovered Fuels"
Hall, Fred. Evaluation of fabric filter performance at Ames solid waste recovery system. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1985.
Find full textYoung, Gary C. Municipal solid waste to energy conversion processes: Economic, technical, and renewable comparisons. Hoboken, N.J: John Wiley, 2010.
Find full textYoung, Gary C. Municipal solid waste to energy conversion processes: Economic, technical, and renewable comparisons. Hoboken, N.J: Wiley, 2010.
Find full textKerstetter, James D. Municipal solid waste to energy: Analysis of a national survey : for Washington communities interested in energy recovery as an alternative to landfilling municipal solid waste. Olympia, WA (809 Legion Way S.E., FA 11, Olympia 98504-1211): Washington State Energy Office, 1987.
Find full textKerstetter, James D. Municipal solid waste to energy: An analysis of a national survey : for Washington communities interested in energy recovery as an alternative to landfilling municipal solid waste. Olympia, WA (809 Legion Way S.E., FA-11, Olympia 98504-1211): Washington State Energy Office, 1987.
Find full textHegberg, Bruce A. Municipal solid waste incineration with energy recovery: Technologies, facilities, and vendors for less than 550 tons per day. Chicago, Ill. (Box 6998, Chicago 60680): University of Illinois Center for Solid Waste Management and Research, Office of Technology Transfer, School of Public Health, 1990.
Find full textGershman, Brickner & Bratton., ed. Small-scale municipal solid waste energy recovery systems. New York: Van Nostrand Reinhold Co., 1986.
Find full textMontana. Biomass Utilization and Cogeneration Program. and Matney Franz Engineering (Bozeman, Mont.), eds. A Municipal solid waste recovery station feasibility report. Helena, Mont. (32 South Ewing, Helena 59620): The Program, 1985.
Find full textReddy, P. Jayarama. Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies. Taylor & Francis Group, 2020.
Find full textReddy, P. Jayarama. Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies. Taylor & Francis Group, 2016.
Find full textBook chapters on the topic "Solid Recovered Fuels"
Maier, Jörg, Alexander Gerhardt, and Gregory Dunnu. "Experiences on Co-firing Solid Recovered Fuels in the Coal Power Sector." In Solid Biofuels for Energy, 75–94. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-393-0_4.
Full textSosa, L. V., S. L. Galván, S. M. Lusich, and R. O. Bielsa. "Use of Solid Recovered Fuels to Address Energy and Environmental Problems in Argentina." In Energy and Environmental Security in Developing Countries, 331–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63654-8_13.
Full textVainikka, P., J. Silvennoinen, P. Yrjas, A. Frantsi, L. Hietanen, M. Hupa, and R. Taipale. "Bromine and Chlorine in Aerosols and Fly Ash when Co-Firing Solid Recovered Fuel, Spruce Bark and Paper Mill Sludge in a 80MWth BFB Boiler." In Proceedings of the 20th International Conference on Fluidized Bed Combustion, 1061–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02682-9_165.
Full textMartinez-Guerra, Edith, Tapaswy Muppaneni, Veera Gnaneswar Gude, and Shuguang Deng. "Non-Conventional Feedstock and Technologies for Biodiesel Production." In Advanced Solid Catalysts for Renewable Energy Production, 96–118. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3903-2.ch004.
Full textHasib, Aziz, Abdellah Ouigmane, Otmane Boudouch, Rida Kacmi, Mustapha Bouzaid, and Mohamed Berkani. "Sustainable Solid Waste Management in Morocco: Co-Incineration of RDF as an Alternative Fuel in Cement Kilns." In Solid Waste Management [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93936.
Full textAzizul Moqsud, M. "Bioelectricity from Organic Solid Waste." In Strategies of Sustainable Solid Waste Management. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95297.
Full textDiaz, Luis F., George M. Savage, and Clarence G. Golueke. "Production and Utilization of Refuse-Derived Fuel." In Resource Recovery from Municipal Solid Wastes, 29–50. CRC Press, 2018. http://dx.doi.org/10.1201/9781351076371-2.
Full textMätzing, H., H. J. Gehrmann, H. Seifert, D. Stapf, and R. Keune. "Modelling Biomass and Solid Recovered Fuel Combustion on Reciprocating Grates with CFD-application." In 28. Deutscher Flammentag, 143–50. VDI Verlag, 2017. http://dx.doi.org/10.51202/9783181023020-143.
Full textCLEMENS, T., M. HAINES, and W. HEIDUG. "Optimised CO2 Avoidance Through Integration of Enhanced Oil and Gas Recovery with Solid Oxide Fuel Cells." In Greenhouse Gas Control Technologies - 6th International Conference, 1319–24. Elsevier, 2003. http://dx.doi.org/10.1016/b978-008044276-1/50209-9.
Full textConference papers on the topic "Solid Recovered Fuels"
Breckel, Alex C., John R. Fyffe, and Michael E. Webber. "Net Energy and CO2 Emissions Analysis of Using MRF Residue as Solid Recovered Fuel at Coal Fired Power Plants." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88092.
Full textChen, Lin, Shuzhong Wang, Wu Zhiqiang, Haiyu Meng, Jun Zhao, and Lin Zonghu. "Investigation on Thermal and Kinetic Characteristics During Pyrolysis and Co-Pyrolysis of Recovered Fuels Obtained From Municipal Solid Waste in China." In ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/power2015-49257.
Full textHu, Jianhang, Hua Wang, and Fang He. "Experimental Research on Direct Gasification and Melting Incineration of Municipal Solid Waste." In ASME 2005 Power Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pwr2005-50336.
Full textSwithenbank, Jim. "SUWIC Innovations in Thermal Waste to Energy Technologies." In 12th Annual North American Waste-to-Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nawtec12-2199.
Full textIzenson, Michael G., and Jay C. Rozzi. "Demonstration of Efficient Water Recovery for Fuel Cell Power Systems." In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85002.
Full textCampanari, Stefano, Matteo Gazzani, and Matteo C. Romano. "Analysis of Direct Carbon Fuel Cell (DCFC) Based Coal Fired Power Cycles With CO2 Capture." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69778.
Full textPaisley, Mark A., and Mark Millspaugh. "A Novel Approach to the Generation of Sustainable Energy From Biomass and Wastes." In 19th Annual North American Waste-to-Energy Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/nawtec19-5405.
Full textSantin, Marco, Alberto Traverso, and Aristide Massardo. "Solid Oxide Fuel Cell Hybrid Systems Fed by Liquid Fuels for Distributed Power Generation." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50615.
Full textZhou, Xian, Hua Liu, Lin Fu, and Shigang Zhang. "Experimental Study of Natural Gas Combustion Flue Gas Waste Heat Recovery System Based on Direct Contact Heat Transfer and Absorption Heat Pump." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18316.
Full textKlein, Alexander, and Nickolas J. Themelis. "Energy Recovery From Municipal Solid Wastes by Gasification." In 11th North American Waste-to-Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/nawtec11-1692.
Full textReports on the topic "Solid Recovered Fuels"
Geiger, Gail E. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1196763.
Full text