Dissertations / Theses on the topic 'Solid Rocket Motors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Solid Rocket Motors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hovland, Douglas Lyle. "Particle sizing in solid rocket motors." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/26153.
Full textSolid propellant rocket engines
Light scattering
Theses
McCrorie, J. David. "Particle behavior in solid propellant rocket motors and plumes." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/24002.
Full textPuskulcu, Gokay. "Analysis Of 3-d Grain Burnback Of Solid Propellant Rocket Motors And Verification With Rocket Motor Tests." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605270/index.pdf.
Full textMatta, Lawrence Mark. "Investigation of the flow turning loss in unstable solid propellant rocket motors." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/15938.
Full textRomano, Federico. "Q1D unsteady ballistic model for solid rocket motors performance prediction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textYakin, Bülent. "Combustor and nozzle effects on particulate behavior in solid rocket motors /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA277304.
Full textYakin, Bulent. "Combustor and nozzle effects on particulate behavior in solid rocket motors." Thesis, Monterey, California. Naval Postgraduate School, 1993. http://hdl.handle.net/10945/39764.
Full textAn investigation was conducted using a subscale solid rocket motor to measure the effect of nozzle residence time on the behavior of Al203 particles to assess the applicability of subscale motor data to full-scale motors and to measure the effects of nozzle entrance particle size distribution on the slag accumulated with submerged nozzles. Although particles as large as 140 micrometers were present at the nozzle entrance, most of the particulate mass was contained in much smaller particles. This observation is in good agreement with the small mass that accumulated above the submerged nozzle. It was found that both particle breakup and collision coalescence occurred across the exhaust nozzle, with a significant increase in the mass fraction of small (<2 micrometers) particles. Increasing the nozzle residence time enhanced particle breakup but did not affect the maximum plume particle size. Thus, full-scale motors are expected to have a higher percentage of mass in particles less than 2 micrometers than subscale motors but with similar diameters of the largest particles.
Mini, Stefano <1991>. "Analysis of the main phenomena affecting solid rocket motors internal ballistics." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9878/1/PhD_Thesis.pdf.
Full textHasanoglu, Mehmet Sinan. "Storage Reliability Analysis Of Solid Rocket Propellants." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12609897/index.pdf.
Full textVernacchia, Matthew T. "Development of low-thrust solid rocket motors for small, fast aircraft propulsion." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127069.
Full textCataloged from the official PDF of thesis.
Includes bibliographical references (pages 281-289).
Small, uncrewed aerial vehicles (UAVs) are expanding the capabilities of aircraft systems. However, a gap exists in the size and capability of aircraft: no small aircraft are capable of sustained fast flight. A small, fast aircraft requires a propulsion system which is both miniature and high-power, requirements which current UAV propulsion technologies do not meet. Solid propellant rocket motors could be used, but must be re-engineered to operate at much lower thrust and for much longer burn times than conventional small solid rocket motors. This imposes unique demands on the motor and propellant. This work investigates technological challenges of small, low-thrust solid rocket motors: slow-burn solid propellants, motors which have low thrust relative to their size (and thus have low chamber pressure), thermal protection for the motor case, and small nozzles which can withstand long burn times.
Slow-burn propellants were developed using ammonium perchlorate oxidizer and the burn rate suppressant oxamide. By varying the amount of oxamide (from 0-20%), burn rates from 4mms⁻¹ to 1mms⁻¹ (at 1MPa) were achieved. Using these propellants, a low-thrust motor successfully operated at a (thrust / burn area) ratio 10 times less than that of typical solid rocket motors. This motor can provide 5-10N of thrust for 1-3 minutes. An ablative thermal protection liner was tested in these firings. Despite the long burn time, only a few millimeters of ablative are needed. A new ceramic-insulated nozzle was demonstrated on this motor. The nozzle has a small throat diameter (only a few millimeters) and can operate in thermal steady-state. Models were developed for the propellant burn rate, motor design, heat transfer within the motor and nozzle, and for thermal stresses in the nozzle insulation.
This work shows that small, low-thrust solid motors are feasible, by demonstrating these key technologies in a prototype motor. Further, the experimental results and models will enable engineers to design and predict the performance of solid rocket motors for small, fast aircraft. By providing insight into the physics of these motors, this thesis may help to enable a new option for aircraft propulsion.
by Matthew T. Vernacchia.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
Stabroth, Sebastian. "Dust particle impacts due to re-entry firings of solid rocket motors." Aachen Shaker, 2009. http://d-nb.info/995125457/04.
Full textFadigati, Luca. "Numerical investigation of charring thermal protection pyrolysis and ablation in solid rocket motors." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textHarris, Paul. "Experimental evaluation of pulse-triggered nonlinear combustion instability in solid propellant rocket motors." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0015/MQ53952.pdf.
Full textMcDonald, Brian Anthony. "The Development of an Erosive Burning Model for Solid Rocket Motors Using Direct Numerical Simulation." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4973.
Full textStabroth, Sebastian [Verfasser]. "Dust Particle Impacts due to Re-entry Firings of Solid Rocket Motors / Sebastian Stabroth." Aachen : Shaker, 2009. http://d-nb.info/1156518237/34.
Full textSpirnak, Jonathan R. "Development, modeling and testing of thermal protection systems in small, slow-burning solid rocket motors." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118689.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 59-60).
Currently, a void exists in the development of small, unmanned aerial vehicles (UAVs) that can fly at speeds faster than 100 meters per second while maximizing endurance. Operating in such a regime requires the use of a slow-burning solid rocket motor. To achieve long burn times, an end-burning grain configuration is required in addition to a burn rate suppressant. Such a propulsion system presents unique thermal challenges due to the long exposure times and the close proximity of temperature sensitive vehicle components to the combustion reactions. This thesis presents the development of a thermal management system appropriate for small, slow burning solid rocket motors. Thermal protection is provided primarily by a thermally ablative liner with additional layers of fibrous insulation to protect the motor casing and avionics. Due to the complex nature of thermochemical ablation and scarcity of previous research in slow, end burning solid rockets, this problem is approached through both experimental and computational means. Experimental tests are performed on a full-scale model of an end-burning motor. Experimental results are used to validate a computational model of ablation. The ultimate goal is to provide an adequate amount of thermal insulation to protect the vehicle casing and avionics while maximizing propellant volume and hence endurance. Building such thermal management schemes requires innovative materials and machining methods to incorporate thermal protection in a tight space. This thesis adds to the greater body of knowledge of thermal protection design in slow-burning solid rockets, especially as it applies to a new class of small, fast UAVs.
by Jonathan R. Spirnak.
S.M.
Li, Hung-Peng. "Investigation of the Stability of Metallic/Composited-Cased Solid Propellant Rocket Motors under External Pressure." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/29323.
Full textPh. D.
Andriulli, Raoul. "Development of an OpenFOAM solver for particle migration in the casting process of solid rocket motors." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24352/.
Full textDoisneau, François. "Eulerian modeling and simulation of polydisperse moderately dense coalescing spray flows with nanometric-to-inertial droplets : application to Solid Rocket Motors." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2013. http://www.theses.fr/2013ECAP0030/document.
Full textIn solid rocket motors, the internal flow depends strongly on the alumina droplets, which have a high mass fraction. The droplet size distribution, which is wide and spreads up with coalescence, plays a key role. Solving for unsteady polydisperse two- phase flows with high accuracy on the droplet sizes is a challenge for both modeling and scientific computing: (1) very small droplets, e.g. resulting from the combustion of nanoparticles of aluminum fuel, encounter Brownian motion and coalescence, (2) small droplets have their velocity conditioned by size so they coalesce when having different sizes, (3) bigger droplets have an inertial behavior and may cross each other’s trajectory, and (4) all droplets interact in a two-way coupled manner with the carrier phase. As an alternative to Lagrangian approaches, some Eulerian models can describe the disperse phase at a moderate cost, with an easy coupling to the carrier phase and with massively parallel codes: they are well-suited for industrial computations. The Multi- Fluid model allows the detailed description of polydispersity, size/velocity correlations and coalescence by separately solving “fluids” of size-sorted droplets, the so-called sections. In the present work, we assess an ensemble of models and we develop a numerical strategy to perform industrial computations of solid rocket motor flows. (1) The physics of nanoparticles is assessed and included in a polydisperse coalescing model. High order moment methods are then developed: (2) a Two-Size moment method is ex- tended to coalescence to treat accurately the physics of polydispersity and coalescence and the related numerical developments allow to perform applicative computations in the industrial code CEDRE; (3) a second order velocity moment method is developed, together with a second order transport scheme, to evaluate a strategy for a moderately inertial disperse phase, and academic validations are performed on complex flow fields; (4) a time integration strategy is developed and implemented in CEDRE to treat efficiently two-way coupling, in unsteady polydisperse cases including very small particles. The developments are carefully validated, either through purposely derived analytical formulae (for coalescence and two-way acoustic coupling), through numerical cross-comparisons (for coalescence with a Point-Particle DNS, for applicative cases featuring coalescence and two-way coupling with a Lagrangian method), or through available experimental results (for coalescence with an academic experiment, for the overall physics with a sub-scale motor firing). The whole strategy allows to perform applicative computations in a cost effective way. In particular, a solid rocket motor with nanoparticles is computed as a feasibility case and to guide the research effort on motors with nanoparticle fuel propellants
Rousseau, Charle Werner. "Establishing a cost effective method to quantify and predict the stability of solid rocket motors using pulse tests." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6793.
Full textSalvioli, Emanuel. "Simulazione di una combustione non isotropa in motori a propellente solido." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textAnil, Kumar K. R. "Computational Studies On Certain Problems Of Combustion Instability In Solid Propellants." Thesis, Indian Institute of Science, 2001. http://hdl.handle.net/2005/244.
Full textDupif, Valentin. "Modélisation et simulation de l’écoulement diphasique dans les moteurs-fusées à propergol solide par des approches eulériennes polydispersées en taille et en vitesse." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC050/document.
Full textThe massive amount of aluminum oxide particles carried in the internal flow of solid rocket motors significantly influences their behavior.The objective of this PhD thesis is to improve the two-phase flow Eulerian models available in the semi-industrial CFD code for energeticsCEDRE at ONERA by introducing the possibility of a local velocity dispersion in addition to the size dispersion already taken into accountin the code, while keeping the well-posed characteristics of the system of equations. Such a new feature enables the model to treat anisotropicparticle trajectory crossings, which is a key issue of Eulerian models for droplets of moderately large inertia.In addition to the design and detailed analysis of a class of models based on moment methods, the conducted work focuses on the resolution ofthe system of equations for industrial configurations. To do so, a new class of accurate and realizable numerical schemes for the transport ofthe particles in both the physical and the phase space is proposed. It ensures the robustness of the simulation despite the presence of varioussingularities (including shocks, -shocks, zero pressure area and vacuum...), while keeping a second order accuracy for regular solutions. Thesedevelopments are conducted in two and three dimensions, including the two dimensional axisymmetric framework, in the context of generalunstructured meshes.The ability of the numerical schemes to maintain a high level of accuracy in any condition is a key aspect in an industrial simulation of theinternal flow of solid rocket motors. In order to assess this, the in-house code SIERRA, originally designed at ONERA in the 90’s for solidrocket simulation purpose, has been rewritten, restructured and augmented in order to compare two generations of models and numericalschemes, to provide a basis for the integration of the features developed in CEDRE. The obtained results assess the efficiency of the chosennumerical strategy and confirm the need to introduce a new specific boundary condition in the context of axisymmetric simulations. Inparticular, it is shown that the model and numerical scheme can have an impact in the context of the simulation of the internal flow ofsolid rocket motors and their instabilities. Through our approach, the shed light on the links between fundamental aspects of modeling andnumerical schemes and their consequences on the applications
Lacassagne, Laura. "Simulations et analyses de stabilité linéaire du détachement tourbillonnaire d'angle dans les moteurs à propergol solide." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/17932/1/Lacassagne_Laura_INPT.pdf.
Full textWang, Lei. "Investigations into deep cracks in rocket motor propellant models." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/42146.
Full textMaster of Science
Acik, Sevda. "Internal Ballistic Design Optimization Of A Solid Rocket Motor." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611981/index.pdf.
Full textRacine, John A. "Subscale solid rocket motor infrared signature and particle behavior." Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/26801.
Full textGomes, Marc Faria. "Internal ballistics simulation of a solid propellant rocket motor." Master's thesis, Universidade da Beira Interior, 2013. http://hdl.handle.net/10400.6/1980.
Full textNa concepção e desenvolvimento de motores foguete sólidos, o uso de ferramentas numéricas capazes de simular, prever e reconstruir o comportamento de um dado do motor em todas as condições operativas ´e particularmente importante, a fim de diminuir todos os custos e planeamento. Este estudo ´e dedicado a apresentar uma abordagem para a simulação numérica de balística interna de um determinado motor foguete de propelente sólido, Naval Air Warfare Center no. 13, durante a fase quasi steady state por meio de uma ferramenta numérica comercial, ANSYS FLUENT. O modelo de balística interna construído neste estudo é um modelo axissimétrico 2-D. Tem por base vários pressupostos. Entre eles, está o pressuposto de que não há contribuição da queima erosiva e da queima dinâmica no modelo da taxa de queima. Os resultados da simulação balística interna são comparados com os resultados encontrados na pesquisa bibliográfica, validando assim, o modelo que foi construído. A validação dos resultados também nos permite concluir que os pressupostos assumidos na construção do modelo são razoáveis. Sugestões e recomendações para um estudo mais aprofundado são delineadas.
Qian, Xin. "Flow field investigation in pulse 1 motor of a two-pulse solid rocket motor." Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-03122009-040826/.
Full textHainline, Roger. "DESIGN OPTIMIZATION OF SOLID ROCKET MOTOR GRAINS FOR INTERNAL BALLISTIC PERFORMANCE." Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2838.
Full textM.S.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
Wu, Jenq-dah. "Time-dependent, mixed-mode fracture of solid rocket motor bondline systems /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textYilmaz, Okan. "Service Life Assessment Of Solid Rocket Propellants Considering Random Thermal And Vibratory Loads." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614555/index.pdf.
Full texts cumulative damage model. Moreover, to include aging effect of the propellant, Layton model is used. To determine the effects of induced stress and strains under variations and uncertainties in the random loads and material constants, mathematical surrogate models are constructed using response surface method. Limit state functions are utilized to predict failure modes of the solid rocket motor. First order reliability method is used to calculate reliability and probability of failure of the propellant grain. With the proposed methodology, instantaneous reliability of the propellant grain is determined within a confidence interval.
Boyer, Germain. "Étude de stabilité et simulation numérique de l’écoulement interne des moteurs à propergol solide simplifiés." Thesis, Toulouse, ISAE, 2012. http://www.theses.fr/2012ESAE0029/document.
Full textThe current work deals with the modeling of the hydrodynamic instabilities that play a major role in the triggering of the Pressure Oscillations occurring in large segmented solid rocket motors. These instabilities are responsible for the emergence of Parietal Vortex Shedding (PVS) and they interact with the boosters acoustics. They are first modeled as eigenmodes of the internal steady flowfield of a cylindrical duct with sidewall injection within the global linear stability theory framework. Assuming that the related parietal structures emerge from a baseflow disturbance, discrete meshindependant eigenmodes are computed. In this purpose, a multi-domain spectral collocation technique is implemented in a parallel solver to tackle numerical issues such as the eigenfunctions polynomial axial amplification and the existence of boundary layers. The resulting eigenvalues explicitly depend on the location of the boundaries, namely those of the baseflow disturbance and the duct exit, and are then validated by performing Direct Numerical Simulations. First, they successfully describe flow response to an initial disturbance with sidewall velocity injection break. Then, the simulated forced response to acoustics consists in vortical structures wihich discrete frequencies that are in good agreement with those of the eigenmodes. These structures are reflected into upstream pressure waves with identical frequencies. Finally, the PVS, which response to a compressible forcing such as the acoustic one is linear, is understood as the driving phenomenon of the Pressure Oscillations thanks to both numerical simulation and stability theory
Kyriakides, Steven Alan. "Characterization of Shear Strengths and Microstructures for Solid Rocket Motor Insulation Materials." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/35974.
Full textMaster of Science
Squire, Daniel E. "Flow study of the nozzle region of the space shuttle solid rocket motor." Thesis, This resource online, 1988. http://scholar.lib.vt.edu/theses/available/etd-04122010-083741/.
Full textSnaza, Clay J. "Investigation of the effects of solid rocket motor propellant composition on plume signature." Thesis, Monterey, California. Naval Postgraduate School, 1994. http://hdl.handle.net/10945/28309.
Full textThree propellants with aluminum/silicon weight percentages of 18/0%, 13.5/4.5%, and 12/6% were fired in a subscale motor to determine if the plume infrared signature could be reduced without a significant loss in specific impulse. Spectral measurements from 2.5 to 5.5 micrometers and thermal measurements from 3.5 to 5.0 micrometers were made. Plume particle size measurements showed that only particles with small diameters (less than 1.93 micrometers) were present with any significant volume. Replacing a portion of the aluminum in a highly metallized solid propellant with silicon was found to eliminate the Al2O3 in favor of SiO2 and Al6SiOl3, without any change in particulate mass concentration or any large change in particle size distribution. These particulates were found to have significantly lower absorptivity than Al2O3. An additional investigation was conducted to determine the particle size distribution at the nozzle entrance. Malvern ensemble scattering, phase-Doppler single particle scattering and laser transmittance measurements made through windows in the combustion chamber at the nozzle entrance indicated that large particles were present (to 250 micrometers). However, most of the mass of the particles was contained in particles with diameters smaller than 5 micrometers. Approximate calculations made with the measured data showed that if 100 micrometers particles are present with the smoke (particles with diameters less than 2 micrometers) they could account for only approximately 10% of the article volume
Kertadidjaja, Abubakar. "Particle sizing in a solid rocket motor using the measurement of scattered light." Thesis, Monterey, California. Naval Postgraduate School, 1985. http://hdl.handle.net/10945/21483.
Full textMathesius, Kelly J. "Manufacturing methods for a solid rocket motor propelling a small, fast flight vehicle." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122377.
Full textThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 97-100).
A gap exists in the design space for aircraft mass and speed: no flight vehicles with a mass of less than 10 kg and speed greater than 100 m/s are available. The small, fast "Firefly" flight vehicle is being developed to explore the capabilities and challenges for aircraft in this gap. The compact Firefly aircraft is configured around a long-endurance, end-burning solid rocket motor that provides 2-3 minutes of powered flight. Challenges exist for manufacturing solid rocket motors for small, fast aircraft such as Firefly. Achieving desired motor performance requires a void-free propellant grain and thermal liner and a strong propellant-to-liner bond. However, observations and tests following several motor manufacturing attempts have revealed voids in the propellant and liner and delamination at the propellant-to-liner interface. Manufacturing defects such as these have led to large increases in chamber pressure and thrust during a static fire test of a motor. This thesis describes the development and implementation of manufacturing methods for slow-burning, long-endurance motors used in small, fast aircraft. Innovative tooling and rigorous procedures have been developed to help ensure the consistent production of a long-endurance solid rocket motor. Successful static firings of a test motor validate the effectiveness of many of the developed manufacturing methods.
by Kelly J. Mathesius.
S.M.
S.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
Manser, John R. "Solid rocket motor plume particle size measurements using multiple optical techniques in a probe." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA296046.
Full textScholtz, Kelly Burchell. "Optimisation of solid rocket motor blast tube and nozzle assemblies using computational fluid dynamics." Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2487.
Full textA framework for optimising a tactical solid rocket motor nozzle is established and investigated within the ANSYS Workbench environment. Simulated results are validated against thrust measurements from the static bench firing of a full-scale rocket. Grid independence is checked and achieved using inflation based meshing. A rocket nozzle contour is parametrized using multiple control points along a spline contour. The design of experiments table is populated by a central composite design method and the resulting response surfaces are used to find a thrust optimised rocket nozzle geometry. CFD results are based on Favre-mass averaged Navier-Stokes equations with turbulence closure implemented with the Menter SST model. Two optimisation algorithms (Shifted Hammersley Sampling and Nonlinear Programming by Quadratic Lagrangian) are used to establish viable candidates for maximum thrust. Comparisons are made with a circular arc, Rao parabolic approximation and conical nozzle geometries including the CFD simulation there-off. The effect of nozzle length on thrust is simulated and optimised within the framework. Results generally show increased thrust as well as demonstrating the framework's potential for further investigations into nozzle geometry optimisation and off-design point characterisation.
Hetreed, Christopher F. "Internal flow investigation of an aft finocyl grain configuration in a solid rocket motor." Thesis, Virginia Tech, 1989. http://hdl.handle.net/10919/46038.
Full textCold-flow tests were conducted in mediums of air and water to investigate the internal flow field about the nozzle region of a proposed solid rocket motor (SRM) configuration that would potentially replace the current external boosters on NASA's Space Shuttle. One-eighth-scale clear acrylic models of the proposed submerged aft-dome and aft finned grain elements were constructed to simulate the aft segment of the SRM at ignition and 35 seconds into the firing sequence. Pressure, velocity, and turbulence profiles were obtained during cold air testing, while air bubbles and dye were used for flow visualization during water tunnel testing.
The flow visualization experiments indicated the presence of strong inlet vortices, alternating vortex shedding from both grain models' fins, circumferential flow in the aft-dome and around the nozzle, and recirculatory flow in the aft-dome and near an upstream portion of the 35-second grain model. Data acquired during cold air testing showed a turbulent low-velocity flow field in the aft-dome for both grain models. With respect to pressure and mean velocity virtually the entire nozzle/aft-dome region exhibited a minimal sensitivity to nozzle vectoring.
Master of Science
Yildirim, Cengizhan. "Analysis Of Grain Burnback And Internal Flow In Solid Propellant Rocket Motor In 3-dimensions." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12608283/index.pdf.
Full textGrant, Edwin H. "A study of the ignition process of composite solid propellants in a small rocket motor." Princeton University, 2013.
Find full textJung, Jackson H. (Jackson Hoa-Wai). "Modeling, and classical and advanced control of a solid rocket motor thrust vector control system." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12473.
Full textIncludes bibliographical references (leaves 119-124).
by Jackson H. Jung.
M.S.
Ward, Jami. "REDUCTION OF VORTEX-DRIVEN OSCILLATIONS IN A SOLID ROCKET MOTOR COLD FLOW SIMULATION THROUGH ACTIVE CONTROL." Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4310.
Full textM.S.A.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Aerospace Engineering
Hamp, Niko. "The modelling of IR emission spectra and solid rocket motor parameters using neural networks and partial least squares." Thesis, Stellenbosch : University of Stellenbosch, 2003. http://hdl.handle.net/10019.1/16334.
Full textENGLISH ABSTRACT: The emission spectrum measured in the middle infrared (IR) band from the plume of a rocket can be used to identify rockets and track inbound missiles. It is useful to test the stealth properties of the IR fingerprint of a rocket during its design phase without needing to spend excessive amounts of money on field trials. The modelled predictions of the IR spectra from selected rocket motor design parameters therefore bear significant benefits in reducing the development costs. In a recent doctorate study it was found that a fundamental approach including quantum-mechanical and computational fluid dynamics (CFD) models was not feasible. This is first of all due to the complexity of the systems and secondly due to the inadequate calculation speeds of even the most sophisticated modern computers. A solution was subsequently investigated by use of the ‘black-box’ model of a multi-layer perceptron feed-forward neural network with a single hidden layer consisting of 146 nodes. The input layer of the neural network consists of 18 rocket motor design parameters and the output layer consists of 146 IR absorbance variables in the range from 2 to 5 μm wavelengths. The results appeared promising for future investigations. The available data consist of only 18 different types of rocket motors due to the high costs of generating the data. The 18 rocket motor types fall into two different design classes, the double base (DB) and composite (C) propellant types. The sparseness of the data is a constraint in building adequate models of such a multivariate nature. The IR irradiance spectra data set consists of numerous repeat measurements made per rocket motor type. The repeat measurements form the pure error component of the data, which adds stability to training and provides lack-of-fit ANOVA capabilities. The emphasis in this dissertation is on comparing the feed-forward neural network model to the linear and neural network partial least squares (PLS) modelling techniques. The objective is to find a possibly more intuitive and more accurate model that effectively generalises the input-output relationships of the data. PLS models are known to be robust due to the exclusion of redundant information from projections made to primary latent variables, similarly to principal components (PCA) regression. The neural network PLS techniques include feed-forward sigmoidal neural network PLS (NNPLS) and radial-basis functions PLS (RBFPLS). The NNPLS and RBFPLS algorithms make use of neural networks to find non-linear functional relationships for the inner PLS models of the NIPALS algorithm. Error-based neural network PLS (EBNNPLS) and radial-basis function network PLS (EBRBFPLS) are also briefly investigated, as these techniques make use of non-linear projections to latent variables. A modification to the orthogonal least squares (OLS) training algorithm of radial-basis functions is developed and applied. The adaptive spread OLS algorithm (ASOLS) allows for the iterative adaptation of the Gaussian spread parameters found in the radial-basis transfer functions. Over-fitting from over-parameterisation is controlled by making use of leaveone- out cross-validation and the calculation of pseudo-degrees of freedom. After cross-validation the overall model is built by training on the entire data set. This is done by making use of the optimum parameterisation obtained from cross-validation. Cross-validation also gives an indication of how well a model can predict data unseen during training. The reverse problem of modelling the rocket propellant chemical compositions and the rocket physical design parameters from the IR irradiance spectra is also investigated. This problem bears familiarity to the field of spectral multivariate calibration. The applications in this field readily make use of PLS and neural network modelling. The reverse problem is investigated with the same modelling techniques applied to the forward modelling problem. The forward modelling results (IR spectrum predictions) show that the feedforward neural network complexity can be reduced to two hidden nodes in a single hidden layer. The NNPLS model with eleven latent dimensions outperforms all the other models with a maximum average R2-value of 0.75 across all output variables for unseen data from cross-validation. The explained variance for the output data of the overall model is 94.34%. The corresponding explained variance of the input data is 99.8%. The RBFPLS models built using the ASOLS training algorithm for the training of the radialbasis function inner models outperforms those using K-means and OLS training algorithms. The lack-of-fit ANOVA tests show that there is reason to doubt the adequacy of the NNPLS model. The modelling results however show promise for future development on larger, more representative data sets. The reverse modelling results show that the feed-forward neural network model, NNPLS and RBFPLS models produce similar results superior to the linear PLS model. The RBFPLS model with ASOLS inner model training and 5 latent dimensions stands out slightly as the best model. It is found that it is feasible to separately find the optimum model complexity (number of latent dimensions) for each output variable. The average R2-value across all output variables for unseen data is 0.43. The average R2-value for the overall model is 0.68. There are output variables with R2-values of over 0.8. The forward and reverse modelling results further show that dimensional reduction in the case of PLS does produce the best models. It is found that the input-output relationships are not highly non-linear. The non-linearities are largely responsible for the compensation of both the DB- and C-class rocket motor designs predictions within the overall model predictions. For this reason it is suggested that future models can be developed by making use of a simpler, more linear model for each rocket class after a class identification step. This approach however requires additional data that must be acquired.
AFRIKAANSE OPSOMMING: Die emissiespektra van die uitlaatpluime van vuurpyle in die middel-infrarooi (IR) band kan gebruik word om die vuurpyle te herken en om inkomende vuurpyle op te spoor. Dit is nuttig om die uitstralingseienskappe van ‘n vuurpyl se IR afdruk te toets, sonder om groot bedrae geld op veldtoetse te spandeer. Die gemodelleerde IR spektrale voorspellings vir ‘n bepaalde stel vuurpylmotor ontwerpsparameters kan dus grootliks bydra om motorontwikkelingskostes te bemoei. In ‘n onlangse doktorale studie is gevind dat ‘n fundamentele benadering van kwantum-meganiese en vloeidinamika-modelle nie lewensvatbaar is nie. Dit is hoofsaaklik as gevolg van die onvoldoende vermoë van selfs die mees gesofistikeerde moderne rekenaars. ‘n Moontlike oplossing tot die probleem is ondersoek deur gebruik te maak van ‘n multilaag perseptron voorwaartse neurale netwerk met 146 nodes in ‘n enkele versteekte laag. Die laag van invoer veranderlikes bestaan uit agtien vuurpylmotor ontwerpsparameters en die uitvoerlaag bestaan uit 146 IR-absorbansie veranderlikes in die reeks golflengtes vanaf 2 tot 5 μm. Dit het voorgekom dat die resultate belowend lyk vir toekomstige ondersoeke. Weens die hoë kostes om die data te genereer bestaan die beskikbare data uit slegs agtien verskillende tipes vuurpylmotors. Die agtien vuurpyl tipes val verder binne twee ontwerpsklasse, naamlik die dubbelbasis (DB) en saamgestelde (C) dryfmiddeltipes. Die yl data bemoeilik die bou van doeltreffende multiveranderlike modelle. Die datastel van IR uitstralingspektra bestaan uit herhaalde metings per vuurpyltipe. Die herhaalde metings vorm die suiwer fout komponent van die data. Dit verskaf stabilitieit tot die opleiding op die data en verder die vermoë om ‘n analise van variansie (ANOVA) op die data uit te voer. In hierdie tesis lê die klem op die vergelyking tussen die voorwaartse neurale netwerk en die lineêre en neurale netwerk parsiële kleinste kwadrate (PLS) modelleringstegnieke. Die doel is om ‘n moontlik meer insiggewende en akkurate model te vind wat effektief die in- en uitvoer verhoudings kan veralgemeen. Dit is bekend dat PLS modelle meer robuus kan wees weens die weglating van oortollige inligting deur projeksies op hoof latente veranderlikes. Dit is analoog aan hoofkomponente (PCA) regressie. Die neurale netwerk PLS-tegnieke sluit in voorwaartse sigmoïdale neurale netwerk PLS (NNPLS) en radiale-basis funksies PLS (RBFPLS). Die NNPLS en RBFPLS algoritmes maak gebruik van die neurale netwerke om nie-lineêre funksionele verbande te kry vir die binne PLS-modelle van die nie-lineêre iteratiewe parsiële kleinste kwadrate (NIPALS) algoritme. Die fout-gebaseerde neurale netwerk PLS (EBNNPLS) en radiale-basis funksies PLS (EBRBFPLS) is ook weens hulle nie-lineêre projeksies na latente veranderlikes kortiliks ondersoek. ‘n Aanpassing tot die ortogonale kleinste kwadrate (OLS) opleidingsalgoritme vir radiale-basis funksies is ontwikkel en toegepas. Die aangepaste algoritme (ASOLS) behels die iteratiewe aanpassing van die verspreidingsparameters binne die Gauss-funksies van die radiale-basis transformasie funksies. Die oormatige parameterisering van ‘n model word beheer deur kruisvalidering met enkele weglatings en die berekening van pseudo-vryheidsgrade. Na kruisvalidering word die algehele model gebou deur opleiding op die volledige datastel. Dit word gedoen deur van die optimale parameterisering gebruik te maak wat deur kruisvalidering bepaal is. Kruisvalidering gee ook ‘n goeie aanduiding van hoe goed ‘n model ongesiende data kan voorspel. Die modellering van die vuurpyle se chemiese en fisiese ontwerpsparameters (omgekeerde probleem) is ook ondersoek. Hierdie probleem is verwant aan die veld van spektrale multiveranderlike kalibrasie. Die toepassings in die veld maak gebruik van PLS en neurale netwerk modelle. Die omgekeerde probleem word dus ondersoek met dieselfde modelleringstegnieke wat gebruik is vir die voorwaartse probleem. Die voorwaartse modelleringsresultate (IR voorspellings) toon dat die kompleksiteit van die voorwaartse neurale netwerk tot twee versteekte nodes in ‘n enkele versteekte laag gereduseer kan word. Die NNPLS model met elf latente dimensies vaar die beste van alle modelle, met ‘n maksimum R2-waarde van 0.75 oor alle uitvoer veranderlikes vir die ongesiende data (kruisvalidering). Die verklaarde variansie vir die uitvoer data vanaf die algehele model is 94.34%. Die verklaarde variansie van die ooreenstemmende invoer data is 99.8%. Die RBFPLS modelle wat gebou is deur van die ASOLS algoritme gebruik te maak om die PLS binne modelle op te lei, vaar beter in vergelyking met die K-gemiddeldes en OLS opleidingsalgoritmes. Die toetse wat ‘n ‘tekort-aan-passing’ ANOVA behels, toon dat daar rede is om die geskiktheid van die NNPLS model te wantrou. Die modelleringsresultate lyk egter belowend vir die toekomstige ontwikkeling van modelle op groter, meer verteenwoordigde datastelle. Die omgekeerde modellering toon dat die voorwaartse neurale netwerk, NNPLS en RBFPLS modelle soortgelyke resultate produseer wat die lineêre PLS model s’n oortref. Die RBFPLS model met ASOLS opleiding van die PLS binne modelle word beskou as die beste model. Dit is lewensvatbaar om die optimale modelkompleksiteite van elke uitvoerveranderlike individueel te bepaal. Die gemiddelde R2-waarde oor alle uitvoerveranderlikes vir ongesiende data is 0.43. Die gemiddelde R2-waarde vir die algehele model is 0.68. Daar is van die uitvoer veranderlikes wat R2-waardes van 0.8 oortref. Die voor- en terugwaartse modelleringsresultate toon verder dat dimensionele reduksie in die geval van PLS die beste modelle lewer. Daar is ook gevind dat die nie-lineêriteite grootliks vergoed vir die voorspellings van beide DB- en Ctipe vuurpylmotors binne die algehele model. Om die rede word voorgestel dat toekomstige modelle ontwikkel kan word deur gebruik te maak van eenvoudiger, meer lineêre modelle vir elke vuurpylklas nadat ‘n klasidentifikasiestap uitgevoer is. Die benadering benodig egter addisionele praktiese data wat verkry moet word.
Tóth, Balázs. "Two-phase flow investigation in a cold-gas solid rocket motor model through the study of the slag accumulation process." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210575.
Full textThe first stage of spacecrafts (e.g. Ariane 5, Vega, Shuttle) generally consists of large solid propellant rocket motors (SRM), which often consist of segmented structure and incorporate a submerged nozzle. During the combustion, the regression of the solid propellant surrounding the nozzle integration part leads to the formation of a cavity around the nozzle lip. The propellant combustion generates liquefied alumina droplets coming from chemical reaction of the aluminum composing the propellant grain. The alumina droplets being carried away by the hot burnt gases are flowing towards the nozzle. Meanwhile the droplets may interact with the internal flow. As a consequence, some of the droplets are entrapped in the cavity forming an alumina puddle (slag) instead of being exhausted through the throat. This slag reduces the performances.
The aim of the present study is to characterize the slag accumulation process in a simplified model of the MPS P230 motor using primarily optical experimental techniques. Therefore, a 2D-like cold-gas model is designed, which represents the main geometrical features of the real motor (presence of an inhibitor, nozzle and cavity) and allows to approximate non-dimensional parameters of the internal two-phase flow (e.g. Stokes number, volume fraction). The model is attached to a wind-tunnel that provides quasi-axial flow (air) injection. A water spray device in the stagnation chamber realizes the models of the alumina droplets, which are accumulating in the aft-end cavity of the motor.
To be able to carry out experimental investigation, at first the the VKI Level Detection and Recording(LeDaR) and Particle Image Velocimetry (PIV) measurement techniques had to be adapted to the two-phase flow condition of the facility.
A parametric liquid accumulation assessment is performed experimentally using the LeDaR technique to identify the influence of various parameters on the liquid deposition rate. The obstacle tip to nozzle tip distance (OT2NT) is identified to be the most relevant, which indicates how much a droplet passing just at the inhibitor tip should deviate transversally to leave through the nozzle and not to be entrapped in the cavity.
As LeDaR gives no indication of the driving mechanisms, the flow field is analysed experimentally, which is supported by numerical simulations to understand the main driving forces of the accumulation process. A single-phase PIV measurement campaign provides detailed information about the statistical and instantaneous flow structures. The flow quantities are successfully compared to an equivalent 3D unsteady LES numerical model.
Two-phase flow CFD simulations suggest the importance of the droplet diameter on the accumulation rate. This observation is confirmed by two-phase flow PIV experiments as well. Accordingly, the droplet entrapment process is described by two mechanisms. The smaller droplets (representing a short characteristic time) appear to follow closely the air-phase. Thus, they may mix with the air-phase of the recirculation region downstream the inhibitor and can be carried into the cavity. On the other hand, the large droplets (representing a long characteristic time) are not able to follow the air-phase motion. Consequently, a large mean velocity difference is found between the droplets and the air-phase using the two-phase flow measurement data. Therefore, due to the inertia of the large droplets, they may fall into the cavity in function of the OT2NT and their velocity vector at the level of the inhibitor tip.
Finally, a third mechanism, dripping is identified as a contributor to the accumulation process. In the current quasi axial 2D-like set-up large drops are dripping from the inhibitor. In this configuration they are the main source of the accumulation process. Therefore, additional numerical simulations are performed to estimate the importance of dripping in more realistic configurations. The preliminary results suggest that dripping is not the main mechanism in the real slag accumulation process. However, it may still lead to a considerable contribution to the final amount of slag.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Genot, Aurélien. "Instabilités thermoacoustiques dans les moteurs à propergol solide." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC032/document.
Full textIn a solid rocket motor, self-sustained thermo-acoustic instabilities, induced by the coupling of the combustion dynamics of aluminum droplets released by the burning propellant with the acoustic field can induce pressure oscillations.The analysis conducted throughout this manuscript relies thus on a set of simplifying hypothesis by assuming (i) that the response of the combustion of aluminum droplets to acoustic perturbations is controlled by the oscillating drag exerted by the local flow around the droplet, (ii) that this unsteady combustion process can be assumed quasi-steady for the range of frequencies and acoustic amplitudes studied and (iii) that aluminum combustion is abruptly quenched when the aluminum droplet diameter falls below a residual diameter.The thermo-acoustic instability is studied first by numerical flow simulations in a generic solid rocket motor and theoretical analyses. The post-combustion residual diameter of the aluminum particles, the amplitude of acoustic perturbation and the lifetime of the burning aluminum droplets are among the main parameters altering the instability. Also, three combustion response behaviors to acoustics are identified : a linear behavior for small acoustic pressure levels followed by a quadratic behavior then a highly non-linear behavior when the pressure amplitude increases in the motor chamber. Moreover, two important features of the response of aluminum droplets are identified. They are associated to oscillations of the droplet lifetime at the boundary of the droplet cloud and to fluctuations of the droplet evaporation rate, controlled by convection. The dynamics of the droplets highly depends on gas and droplet velocity fields and on droplet diameter. Taking these features into account, yields analytical expressions that allow to reproduce with accuracy the numerical results from the flow simulations. Four dimension less numbers are then identified. They govern the dynamics of these instabilities. Inspired from the previous theoretical analysis, a weakly nonlinear low-order numerical model is finally developed to predict limit cycles
Poubeau, Adèle. "Simulation des émissions d'un moteur à propergol solide : vers une modélisation multi-échelle de l'impact atmosphérique des lanceurs." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30039/document.
Full textRockets have an impact on the chemical composition of the atmosphere, and particularly on stratospheric ozone. Among all types of propulsion, Solid-Rocket Motors (SRMs) have given rise to concerns since their emissions are responsible for a severe decrease in ozone concentration in the rocket plume during the first hours after a launch. The main source of ozone depletion is due to the conversion of hydrogen chloride, a chemical compound emitted in large quantities by ammonium perchlorate based propellants, into active chlorine compounds, which then react with ozone in a destructive catalytic cycle, similar to those responsible for the Antartic "Ozone hole". This conversion occurs in the hot, supersonic exhaust plume, as part of a strong second combustion between chemical species of the plume and air. The objective of this study is to evaluate the active chlorine concentration in the far-field plume of a solid-rocket motor using large-eddy simulations (LES). The gas is injected through the entire nozzle of the SRM and a local time-stepping method based on coupling multi-instances of the fluid solver is used to extend the computational domain up to 400 nozzle exit diameters downstream of the nozzle exit. The methodology is validated for a non-reactive case by analyzing the flow characteristics of the resulting supersonic co-flowing under-expanded jet. Then the chemistry of chlorine is studied off-line using a complex chemistry solver applied on trajectories extracted from the LES time-averaged flow-field. Finally, the online chemistry is analyzed by means of the multi-species version of the LES solver using a reduced chemical scheme. To the best of our knowledge, this represents one of the first LES of a reactive supersonic jet, including nozzle geometry, performed over such a long computational domain. By capturing the effect of mixing of the exhaust plume with ambient air and the interactions between turbulence and combustion, LES offers an evaluation of chemical species distribution in the SRM plume with an unprecedented accuracy. These results can be used to initialize atmospheric simulations on larger domains, in order to model the chemical reactions between active chlorine and ozone and to quantify the ozone loss in SRM plumes
Ertugrul, Suat Erdem. "The Effects Of Geometric Design Parameters On The Flow Behavior Of A Dual Pulse Solid Rocket Motor During Secondary Firing." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615184/index.pdf.
Full textetc.) with each other. With the selected PSD geometry alternative the effects of L/D ratio (Length/Diameter ratio) of first pulse chamber, Achamb/APSD ratio (Chamber area/PSD opening area) and APSD/Ath ratio (PSD opening area/Throat area) on the flow behavior is investigated. Flow analyses are performed by simulating the unsteady flow of second pulse operation. With the performed analyses, it is aimed to identify generic geometric definitions for a dual pulse rocket motor.