Journal articles on the topic 'Solid state chemistry. Skutterudite Thermoelectric materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 46 journal articles for your research on the topic 'Solid state chemistry. Skutterudite Thermoelectric materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Guo, Lijie, Zhengwei Cai, Xiaolong Xu, Kunling Peng, Guiwen Wang, Guoyu Wang, and Xiaoyuan Zhou. "Raising the Thermoelectric Performance of Fe3CoSb12 Skutterudites via Nd Filling and In-Situ Nanostructuring." Journal of Nanoscience and Nanotechnology 16, no. 4 (April 1, 2016): 3841–47. http://dx.doi.org/10.1166/jnn.2016.11900.

Full text
Abstract:
p-type skutterudites NdxFe3CoSb12 with x equaling 0.8, 0.85, 0.9, 0.95, 1.0 have been synthesized by solid state reaction followed by spark plasma sintering. The influence of Nd filling on electrical and thermal transport properties has been investigated in the Nd-filled skutterudite compounds in the temperature range from room temperature to 800 K. It was found that the Seebeck coefficient is drastically enhanced via filling Nd in p-Type skutterudites as well as the corresponding power factor although electrical conductivity is reduced. In addition, a large reduction in thermal conductivity is achieved by Nd fillers through rattling effect along with the In-Situ nanostructured precipitate through scattering phonons with much wider frequency. These concomitant effects result in an enhanced thermoelectric performance with the dimensionless figure of merit ZT. These observations demonstrate an exciting scientific opportunity to raise the figure-of-merit of p-type skutterudites.
APA, Harvard, Vancouver, ISO, and other styles
2

Graff, J. W., X. Zeng, A. M. Dehkordi, J. He, and T. M. Tritt. "Exceeding the filling fraction limit in CoSb3 skutterudite: multi-role chemistry of praseodymium leading to promising thermoelectric performance." J. Mater. Chem. A 2, no. 23 (2014): 8933–40. http://dx.doi.org/10.1039/c4ta00600c.

Full text
Abstract:
Purposefully exceeding the FFL of the previously uninvestigated Pr-filled Co4Sb12 system resulting in state-of-the-art thermoelectric properties for the single-filled skutterudite.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Lidong. "Synthesis and Thermoelectric Properties of Filled Skutterudite by a Solid Reaction Method." Journal of the Japan Society of Powder and Powder Metallurgy 46, no. 9 (1999): 921–26. http://dx.doi.org/10.2497/jjspm.46.921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tang, X. F., L. D. Chen, T. Goto, T. Hirai, and R. Z. Yuan. "Synthesis and thermoelectric properties of p-type barium-filled skutterudite BayFexCo4−xSb12." Journal of Materials Research 17, no. 11 (November 2002): 2953–59. http://dx.doi.org/10.1557/jmr.2002.0428.

Full text
Abstract:
Single-phase barium-filled skutterudite compounds, BayFexCo4−xSb12 (x = 0 to 3.0, y = 0 to 0.7), were synthesized by a two-step solid-state reaction method. The maximum filling fraction of Ba (ymax) in BayFexCo4–xSb12 increased with increasing Fe content and was found to be rather greater than that of CeyFexCo4–xSb12. The ymax varied from 0.35 to near 1.0 when Fe content changed from 0 to 4.0. BayFexCo4–xSb12 showed p-type conduction at a composition range of x = 0 to 3.0, y = 0 to 0.7. Carrier concentration and electrical conductivity increased with increasing Fe content and decreased with increasing Ba filling fraction. The Seebeck coefficient increased with increasing Ba filling fraction and with decreasing Fe content. Lattice thermal conductivity decreased with increasing Ba filling fraction and reached a minimum at a certain Ba filling fraction (y = 0.3 to 0.4). The greatest ZT value of 0.9 was obtained at 750 K for p-type Ba0.27Fe0.98Co3.02Sb12. It is expected that further investigation on the optimization of filling fraction would result in a higher ZT value at the moderately low Fe content region.
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Suk Lae, Jui-Hung Hsu, and Choongho Yu. "Thermoelectric effects in solid-state polyelectrolytes." Organic Electronics 54 (March 2018): 231–36. http://dx.doi.org/10.1016/j.orgel.2017.12.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ur, Soon-Chul, Philip Nash, and Il-Ho Kim. "Solid-state syntheses and properties of Zn4Sb3 thermoelectric materials." Journal of Alloys and Compounds 361, no. 1-2 (October 2003): 84–91. http://dx.doi.org/10.1016/s0925-8388(03)00418-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ioannou, M., G. Polymeris, E. Hatzikraniotis, A. U. Khan, K. M. Paraskevopoulos, and Th Kyratsi. "Solid-State Synthesis and Thermoelectric Properties of Sb-Doped Mg2Si Materials." Journal of Electronic Materials 42, no. 7 (February 9, 2013): 1827–34. http://dx.doi.org/10.1007/s11664-012-2442-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Park, K., S. W. Nam, and C. H. Lim. "Thermoelectric properties of p-type Bi0.5Sb1.5Te3 for solid-state cooling devices." Intermetallics 18, no. 9 (September 2010): 1744–49. http://dx.doi.org/10.1016/j.intermet.2010.05.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Obata, Kohei, Yasunori Chonan, Takao Komiyama, Takashi Aoyama, Hiroyuki Yamaguchi, and Shigeaki Sugiyama. "Grain-Oriented Ca3Co4O9 Thermoelectric Oxide Ceramics Prepared by Solid-State Reaction." Journal of Electronic Materials 42, no. 7 (May 7, 2013): 2221–26. http://dx.doi.org/10.1007/s11664-013-2585-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Qi, Renshuang Zhai, Teng Fang, Kaiyang Xia, Yehao Wu, Feng Liu, Xinbing Zhao, and Tiejun Zhu. "Low-cost p-type Bi2Te2.7Se0.3 zone-melted thermoelectric materials for solid-state refrigeration." Journal of Alloys and Compounds 831 (August 2020): 154732. http://dx.doi.org/10.1016/j.jallcom.2020.154732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

He, Xu, Hanlin Cheng, Shizhong Yue, and Jianyong Ouyang. "Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties." Journal of Materials Chemistry A 8, no. 21 (2020): 10813–21. http://dx.doi.org/10.1039/d0ta04100a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chen, Liangjun, Wei Liu, Yonggao Yan, Xianli Su, Shengqiang Xiao, Xinhui Lu, Ctirad Uher, and Xinfeng Tang. "Fine-tuning the solid-state ordering and thermoelectric performance of regioregular P3HT analogues by sequential oxygen-substitution of carbon atoms along the alkyl side chains." Journal of Materials Chemistry C 7, no. 8 (2019): 2333–44. http://dx.doi.org/10.1039/c8tc05938a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kosuga, Atsuko, Ken Kurosaki, Kunio Yubuta, Anek Charoenphakdee, Shinsuke Yamanaka, and Ryoji Funahashi. "Solid-State Self-Assembly of Nanostructured Oxide as a Candidate High-Performance Thermoelectric Material." Journal of Electronic Materials 38, no. 7 (February 27, 2009): 1303–8. http://dx.doi.org/10.1007/s11664-009-0716-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhang, Linli, Xue Han, Minzhi Du, Yulong Shi, and Kun Zhang. "Compliant three-dimensional thermoelectric generator filled with porous PDMS for power generation and solid-state cooling." Composites Communications 26 (August 2021): 100793. http://dx.doi.org/10.1016/j.coco.2021.100793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Srinivasan, Bhuvanesh, Régis Gautier, Francesco Gucci, Bruno Fontaine, Jean-François Halet, François Cheviré, Catherine Boussard-Pledel, Michael J. Reece, and Bruno Bureau. "Impact of Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions." Journal of Physical Chemistry C 122, no. 1 (December 22, 2017): 227–35. http://dx.doi.org/10.1021/acs.jpcc.7b10839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kadhim, A., A. Hmood, and H. Abu Hassan. "Thermoelectric generation device based on p-type Bi0.4Sb1.6Te3 and n-type Bi2Se0.6Te2.4 bulk materials prepared by solid state microwave synthesis." Solid State Communications 166 (July 2013): 44–49. http://dx.doi.org/10.1016/j.ssc.2013.04.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Królicka, A. K., M. Piersa, A. Mirowska, and M. Michalska. "Effect of sol-gel and solid-state synthesis techniques on structural, morphological and thermoelectric performance of Ca3Co4O9." Ceramics International 44, no. 12 (August 2018): 13736–43. http://dx.doi.org/10.1016/j.ceramint.2018.04.215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Gan, Yong X. "A Review on the Processing Technologies for Corrosion Resistant Thermoelectric Oxide Coatings." Coatings 11, no. 3 (February 28, 2021): 284. http://dx.doi.org/10.3390/coatings11030284.

Full text
Abstract:
Oxide coatings are corrosion resistant at elevated temperatures. They also show intensive phonon scattering and strong quantum confinement behavior. Such features allow them to be used as new materials for thermoelectric energy conversion and temperature measurement in harsh environments. This paper provides an overview on processing thermoelectric oxide coatings via various technologies. The first part deals with the thermoelectricity of materials. A comparison on the thermoelectric behavior between oxides and other materials will be made to show the advantages of oxide materials. In the second part of the paper, various processing technologies for thermoelectric metal oxide coatings in forms of thin film, superlattice, and nanograin powder will be presented. Vapor deposition, liquid phase deposition, nanocasting, solid state approach, and energy beam techniques will be described. The structure and thermoelectric property of the processed metal oxide coatings will be discussed. In addition, the device concept and applications of oxide coatings for thermoelectric energy conversion and temperature sensing will be mentioned. Perspectives for future research will be provided as well.
APA, Harvard, Vancouver, ISO, and other styles
19

Daichakomphu, Noppanut, Rachsak Sakdanuphab, Adul Harnwunggmoung, Supree Pinitsoontorn, and Aparporn Sakulkalavek. "Achieving thermoelectric improvement through the addition of a small amount of graphene to CuAlO2 synthesized by solid-state reaction." Journal of Alloys and Compounds 753 (July 2018): 630–35. http://dx.doi.org/10.1016/j.jallcom.2018.04.276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kavirajan, S., J. Archana, S. Harish, M. Navaneethan, S. Ponnusamy, K. Hayakawa, Y. Kubota, M. Shimomura, and Y. Hayakawa. "Effect of densification technique and carrier concentration on the thermoelectric properties of n-type Cu1.45Ni1.45Te2 ternary compound." CrystEngComm 22, no. 46 (2020): 8100–8109. http://dx.doi.org/10.1039/d0ce01166e.

Full text
Abstract:
Cu1.45Ni1.45Te2 ternary compound was synthesized by solid-state ball-milling method and densified via spark plasma sintering (SPS) and cold-pressing with annealing (CPA) techniques.
APA, Harvard, Vancouver, ISO, and other styles
21

Huang, Heming, Pengfei Wen, Shu Deng, Xilong Zhou, Bo Duan, Yao Li, and Pengcheng Zhai. "The thermoelectric and mechanical properties of Mg2(Si0.3Sn0.7)0.99Sb0.01 prepared by one-step solid state reaction combined with hot-pressing." Journal of Alloys and Compounds 881 (November 2021): 160546. http://dx.doi.org/10.1016/j.jallcom.2021.160546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Nam, Gnu, Woongjin Choi, Hongil Jo, Kang Min Ok, Kyunghan Ahn, and Tae-Soo You. "Influence of Thermally Activated Solid-State Crystal-to-Crystal Structural Transformation on the Thermoelectric Properties of the Ca5–xYbxAl2Sb6(1.0 ≤x≤ 5.0) System." Chemistry of Materials 29, no. 3 (January 23, 2017): 1384–95. http://dx.doi.org/10.1021/acs.chemmater.6b05281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Chao-hong, Mei-hau Li, Chun-wei Chiu, and Tai-yu Chang. "Kinetic study of solid-state interfacial reactions of p-type (Bi,Sb)2Te3 thermoelectric materials with Sn and Sn–Ag–Cu solders." Journal of Alloys and Compounds 767 (October 2018): 1133–40. http://dx.doi.org/10.1016/j.jallcom.2018.07.148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Singh, Rini, Pooja Kumari, Manoj Kumar, Takayuki Ichikawa, and Ankur Jain. "Implementation of Bismuth Chalcogenides as an Efficient Anode: A Journey from Conventional Liquid Electrolyte to an All-Solid-State Li-Ion Battery." Molecules 25, no. 16 (August 15, 2020): 3733. http://dx.doi.org/10.3390/molecules25163733.

Full text
Abstract:
Bismuth chalcogenide (Bi2X3; X = sulfur (S), selenium (Se), and tellurium (Te)) materials are considered as promising materials for diverse applications due to their unique properties. Their narrow bandgap, good thermal conductivity, and environmental friendliness make them suitable candidates for thermoelectric applications, photodetector, sensors along with a wide array of energy storage applications. More specifically, their unique layered structure allows them to intercalate Li+ ions and further provide conducting channels for transport. This property makes these suitable anodes for Li-ion batteries. However, low conductivity and high-volume expansion cause the poor electrochemical cyclability, thus creating a bottleneck to the implementation of these for practical use. Tremendous endeavors have been devoted towards the enhancement of cyclability of these materials, including nanostructuring and the incorporation of a carbon framework matrix to immobilize the nanostructures to prevent agglomeration. Apart from all these techniques to improve the anode properties of Bi2X3 materials, a step towards all-solid-state lithium-ion batteries using Bi2X3-based anodes has also been proven as a key approach for next-generation batteries. This review article highlights the main issues and recent advances associated with Bi2X3 anodes using both solid and liquid electrolytes.
APA, Harvard, Vancouver, ISO, and other styles
25

Prado-Gonjal, J., C. López, R. Pinacca, F. Serrano-Sánchez, N. Nemes, O. Dura, J. L. Martínez, M. T. Fernández-Díaz, and J. A. Alonso. "Correlation between Crystal Structure and Thermoelectric Properties of Sr1−xTi0.9Nb0.1O3−δ Ceramics." Crystals 10, no. 2 (February 9, 2020): 100. http://dx.doi.org/10.3390/cryst10020100.

Full text
Abstract:
Polycrystalline Sr1−xTi0.9Nb0.1O3−δ (x = 0, 0.1, 0.2) ceramics have been prepared by the solid state method and their structural and thermoelectric properties have been studied by neutron powder diffraction (NPD), thermal, and transport measurements. The structural analysis of Sr1-xTi0.9Nb0.1O3−δ (x = 0.1, 0.2) confirms the presence of a significant amount of oxygen vacancies, associated with the Sr-deficiency of the materials. The analysis of the anisotropic displacement parameters (ADPs) indicates a strong softening of the overall phonon modes for these samples, which is confirmed by the extremely low thermal conductivity value (κ ≈ 1.6 W m-1 K−1 at 823 K) found for Sr1−xTi0.9Nb0.1O3−δ (x = 0.1, 0.2). This approach of introducing A-site cation vacancies for decreasing the thermal conductivity seems more effective than the classical substitution of strontium by rare-earth elements in SrTiO3 and opens a new optimization scheme for the thermoelectric properties of oxides.
APA, Harvard, Vancouver, ISO, and other styles
26

Zhang, Linli, Xue Han, Minzhi Du, Yulong Shi, and Kun Zhang. "Corrigendum to “Compliant three-dimensional thermoelectric generator filled with porous PDMS for power generation and solid-state cooling”. [Composites Communications Volume 26, August 2021, 100793]." Composites Communications 27 (October 2021): 100834. http://dx.doi.org/10.1016/j.coco.2021.100834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kim, Hyun-Sik, TaeWan Kim, Jiwoo An, Dongho Kim, Ji Hoon Jeon, and Sang-il Kim. "Segregation of NiTe2 and NbTe2 in p-Type Thermoelectric Bi0.5Sb1.5Te3 Alloys for Carrier Energy Filtering Effect by Melt Spinning." Applied Sciences 11, no. 3 (January 20, 2021): 910. http://dx.doi.org/10.3390/app11030910.

Full text
Abstract:
The formation of secondary phases of NiTe2 and NbTe2 in p-type Bi0.5Sb1.5Te3 thermoelectric alloys was investigated through in situ phase separation by using the melt spinning process. Adding stoichiometric Ni, Nb, and Te in a solid-state synthesis process of Bi0.5Sb1.5Te3, followed by rapid solidification by melt spinning, successfully segregated NiTe2 and NbTe2 in the Bi0.5Sb1.5Te3 matrix. Since heterointerfaces of Bi0.5Sb1.5Te3 with NiTe2 and NbTe2 form potential barriers of 0.26 and 0.08 eV, respectively, a low energy carrier filtering effect can be expected; higher Seebeck coefficients and power factors were achieved for Bi0.5Sb1.5Te3(NiTe2)0.01 (250 μV/K and 3.15 mW/mK2), compared to those of Bi0.5Sb1.5Te3 (240 μV/K and 2.69 mW/mK2). However, there was no power factor increase for NbTe2 segregated samples. The decrease in thermal conductivity was seen due to the possible additional phonon scattering by the phase segregations. Consequently, zT at room temperature was enhanced to 0.98 and 0.94 for Bi0.5Sb1.5Te3(NiTe2)0.01 and Bi0.5Sb1.5Te3(NbTe2)0.01, respectively, compared to 0.79 for Bi0.5Sb1.5Te3. The carrier filtering effect induced by NiTe2 segregations with an interface potential barrier of 0.26 eV effectively increased the Seebeck coefficient and power factor, thus improving the zT of p-type Bi0.5Sb1.5Te3, while the interface potential barrier of 0.08 eV of NbTe2 segregation appeared to be too small to induce an effective carrier filtering effect.
APA, Harvard, Vancouver, ISO, and other styles
28

Mukhtarova, Ziyafat. "Фазовые равновесия в системе Sm2Te3–GeTe." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no. 2 (June 15, 2019): 328–33. http://dx.doi.org/10.17308/kcmf.2019.21/770.

Full text
Abstract:
Методами физико-химического анализа – дифференциально-термическим, высокотемпературным дифференциально-термическим, рентгенофазовым, микроструктурным, а также измерением микротвердости изучена система Sm2Te3–GeTe, которая является квазибинарным сечением тройной системы Ge–Sm–Te. При соотношении исходных теллуридов 1:1 (50 мол. %) и температуре 1100 К по перитектической реакции ж+Sm2Te3→ GeSm2Te4 образуется тройное соединение GeSm2Te4. Образцы системы, богатые GeTe, представляют собой компактные слитки блестяще-серого цвета, а сплавы, бо-гатые Sm2Te3 – спек черного цвета. Ликвидус системы Sm2Te3–GeTe состоит из трех ветвей: Sm2Te3, GeSm2Te4 и a-твердых растворов на основе GeTe. Рентгенофазовый анализ закристаллизованных образцов показал, что набор рентгеновских отражений соответствует фазам Sm2Te3, GeSm2Te4 и a-твердых растворов на основе GeTe. Установлено образование инконгруэнтно плавящегося соединения состава GeSm2Te4, которое может использоваться как термоэлектрический материал. На основе GeTe образуется узкая область твердого раствора REFERENCES Kohri H., Shiota , Kato M., Ohsugi J., Goto T. Synthesis and Thermolelectric Properties of Bi2Te3–GeTe Pseudo Binary System. Advances in Science and Technology, 2006, v. 46, pp. 168-173. https://doi.org/10.4028/www.scientifi c.net/ST.46.168 Gelbstein Y., Dado B., Ben-Yehuda O., Sadia Y., Dashevsky Z. and Dariel M. P. Highly effi cient Ge-Rich GexPb1-x Te thermoelectric alloys. Journal of Electronic Materials, 2010, v. 39(9), pp. 2049–2052. https://doi.org/10.1007/s11664-009-1012-z Gelbstein Y., Davidow J., Girard S.N., Chung D. Y. and Kanatzidis M. Controlling Metallurgical Phase Separation Reactions of the Ge0.87 Pb0.13Te Alloy for High Thermoelectric Performance. Advanced Energy Materials, 2013, v. 3, pp. 815–820. https://doi.org/10.1002/aenm.201200970 Gelbstein Y., Dashevsky Z. and Dariel M. P. Highly efficient bismuth telluride doped p-type Pb0.13Ge0.87Te for thermoelectric applications. Physical Status Solidi, 2007, v. 1(6), pp. 232–234. https://doi.org/10.1002/pssr.200701160 Gelbstein Y., Ben-Yehuda O., Dashevsky Z. and Dariel M. P. Phase transitions of p-type (Pb,Sn,Ge)Tebased alloys for thermoelectric applica tions. Journal of Crystal Growth, 2009, v. 311(18), pp. 4289–4292. https://doi.org/10.1007/s11664-008-0652-8 Gelbstein Y., Ben-Yehuda O., Pinhas E., et al. Thermoelectric properties of (Pb,Sn,Ge) Te-based alloys. Journal of Electronic Materials, 2009, v. 38(7), 1478–1482. https://doi.org/10.1007/s11664-008-0652-8 Li J., Chen Z., Zhang X., Sun Y., Yang J., Pei Y. Electronic origin of the high thermo- electric performance of GeTe among the p-type group IV monotellurides. NPG Asia Materials, 2017, v. 9, p. 353. https://doi.org/10.1038/am.2017.8 Sante D. Di., Barone P., Bertacco R., Picozzi S. Electric control of the giant rashba effect in bulk GeTe. Advanced materials, 2013, v. 25(27), pp. 3625–3626. https://doi.org/10.1002/adma.201203199 Li J., Zhang X., Lin S., Chen Z., Pei Y. Realizing the high thermoelectric performance of GeTe by Sbdoping and Se-alloying. Mater., 2017, v. 29(2), pp. 605–611. https://doi.org/10.1021/acs.chemmater.6b04066 Abrikosov N. Kh., Shelimova L. B. Poluprovodnikovye materialy na osnove soedineniy AIV BVI. [Semiconductor materials based on compounds АIV В]. Moscow, Nauka Publ., 1975, 195 p. (in Russ.) Korzhuev M. A. Vliyaniye legirovaniya na parametric of GeTe. Series 6. [Effect of doping on GeTe Series 6]. Moscow, 1983, no. 6 (179), pp. 33–36. (in Russ.) Okoye I. Electronic and optical properties of SnTe and GeTe. Journal of Physics: Condensed Matter, 2002, 14(36), pp. 8625–8637. https://doi.org/10.1088/0953-8984/14/36/318 Gelbstein Y., Rosenberg Y., Sadia Y. and Dariel M. P. Thermoelectric properties evolution of spark plasma sintered (Ge0.6Pb0.3Sn0.1)Te following a spinodal decomposition. Journal of Physical Chemistry, 2010, v. 114(30), pp. 13126–13131. https://doi.org/10.1021/jp103697s Rosenthal T., Schneider N., Stiewe C., Düblinger M., Oeckler O. Real Structure and thermoelectric properties of GeTe-rich germanium antimony tellurides. Mater., 2011, v. 23(19), pp. 4349–4356. https://doi.org/10.1021/cm201717z Li J., Chen Z., Zhang X., Yu H., Wu Z., Xie H., Chen Y., Pei Y. Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh. Mater., 2017, v. 4(12), p. 341. https://doi.org/10.1002/advs.201700341 Bletskan D. I. Phase equilibrium in the system AIV-BVI-part II: systems germanium-chalcogen. Journal of Ovonic Research, 2005, v. 1(5), p. 53–60. Li S. P., Li J. Q., Wang Q. B., Wang L., Liu F. S., Ao W. Q. Synthesis and thermoelectric properties of the (GeTe)1-x(PbTe)x alloys. Solid State Sciences, 2011, v. 13(2), pp. 399–403. https://doi.org/10.1016/j.solidstatesciences. 2010.11.045 Gelbstein Y., Dado B., Ben-Yehuda O., Sadia Y., Dashevsky Z., Dariel M. P. High thermoelectric fi gure of merit and nanostructuring in bulk p-type Gex(SnyPb1–y)1–x Te alloys following a spinodal decomposition reaction. Chemistry of Materials, 2010, v. 22(3), pp. 1054–1058. https://doi.org/10.1021/cm902009t Yarembash E. I., Eliseev A. A. Khal’kogenidy redkozemel’nykh elementov: sintez i kristallokhimiya [Chalcogenides of rare-earth elements: synthesis and crystal chemistry]. Moscow, Nauka Publ., 1975, p. 258. (in Russ.) Mukhtarova Z. M., Bakhtiyarly I. B., Azhdarova D. S. Politermicheskoye secheniye Ge0.80 Te0.20–Sm0.80 Te0.20. khim. zhurn., 2010, no. 4, pp. 144–146. Mukhtarova Z. M., Bakhtiyarly I. B., Azhdarova D. S. Issledovaniye politermicheskogo secheniye Ge0.84Te0.16–Sm5Ge2Te7 v troynoy sisteme Ge–Te–Sm. Aze-rb. khim. zhurn., 2011, no. 4, pp. 57–59.
APA, Harvard, Vancouver, ISO, and other styles
29

Imamaliyeva, Samira Zakir. "New Thallium Tellurides with Rare Earth Elements." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no. 4 (December 15, 2020): 460–65. http://dx.doi.org/10.17308/kcmf.2020.22/3117.

Full text
Abstract:
Compounds of the Tl4LnTe3 (Ln-Nd, Sm, Tb, Er, Tm) composition were synthesized by the direct interaction of stoichiometric amounts of thallium telluride Tl2Te elementary rare earth elements (REE) and tellurium in evacuated (10-2 Pa) quartz ampoules. The samples obtained were identified by differential thermal and X-ray phase analyses. Based on the data from the heating thermograms, it was shown that these compounds melt with decomposition by peritectic reactions. Analysis of powder diffraction patterns showed that they were completely indexed in a tetragonal lattice of the Tl5Te3 type (space group I4/mcm). Using the Le Bail refinement, the crystal lattice parameters of the synthesized compounds were calculated.It was found that when the thallium atoms located in the centres of the octahedra were substituted by REE atoms, there occurred a sharp decrease in the а parameter and an increase in the с parameter. This was due to the fact that the substitution of thallium atoms with REE cations led to the strengthening of chemical bonds with tellurium atoms. This was accompanied by some distortion of octahedra and an increase in the с parameter. A correlation between the parameters of the crystal lattices and the atomic number of the lanthanide was revealed: during the transition from neodymium to thulium, therewas an almost linear decrease in both parameters of the crystal lattice, which was apparently associated with lanthanide contraction. The obtained new compounds complement the extensive class of ternary compounds - structural analogues of Tl5Te3 and are of interest as potential thermoelectric and magnetic materials. References1. Berger L. I., Prochukhan V. D. Troinye almazopodobnyepoluprovodniki [Ternary diamond-like semiconductors].Moscow: Metallurgiya; 1968. 151 p. (In Russ.)2. Villars P, Prince A. Okamoto H. Handbook ofternary alloy phase diagrams (10 volume set). MaterialsPark, OH: ASM International; 1995. 15000 p.3. Tomashyk V. N. Multinary Alloys Based on III-VSemiconductors. CRC Press; 2018. 262 p. DOI: https://doi.org/10.1201/97804290553484. Babanly M. B., Chulkov E. V., Aliev Z. S. et al. Phasediagrams in materials science of topological insulatorsbased on metal chalkogenides. Russian Journal ofInorganic Chemistry. 2017;62(13): 1703–1729. DOI:https://doi.org/10.1134/S00360236171300345. Imamaliyeva S. Z., Babanly D. M., Tagiev D. B.,Babanly M. B. Physicochemical aspects of developmentof multicomponent chalcogenide phases having theTl5Te3 structure. A Review. Russian Journal of InorganicChemistry. 2018;63(13): 1703–1724 DOI: https://doi.org/10.1134/s00360236181300416. Asadov M. M., Babanly M. B., Kuliev A. A. Phaseequilibria in the system Tl–Te. Izvestiya Akademii NaukSSSR, Neorganicheskie Materialy. 1977;13(8): 1407–1410.7. Okamoto H. Te-Tl (Tellurium-Thallium). Journalof Phase Equilibria. 2001;21(5): 501. DOI: https://doi.org/10.1361/1054971007703398338. Schewe I., Böttcher P., Schnering H. G. The crystalstructure of Tl5Te3 and its relationship to the Cr5B3.Zeitschrift für Kristallographie. 1989;188(3-4): 287–298.DOI: https://doi.org/10.1524/zkri.1989.188.3-4.2879. Böttcher P., Doert Th., Druska Ch., Brandmöller S.Investigation on compounds with Cr5B3 and In5Bi3structure types. Journal of Alloys and Compounds.1997;246(1-2): 209–215. DOI: https://doi.org/10.1016/S0925-8388(96)02455-310. Imamalieva S. Z., Sadygov F. M., Babanly M. B.New thallium neodymium tellurides. InorganicMaterials. 2008;44(9): 935–938. DOI: https://doi. org/10.1134/s002016850809007011. Babanly M. B., Imamalieva S. Z., Babanly D. М.,Sadygov F. M. Tl9LnTe6 (Ln-Ce, Sm, Gd) novel structuralTl5Te3 analogues. Azerbaijan Chemical Journal. 2009(1):122–125. (In Russ., abstract in Eng.)12. Imamaliyeva S. Z., Tl4GdTe3 and Tl4DyTe3 –novel structural Tl5Te3 analogues. Physics andChemistry of Solid State. 2020;21(3): 492–495. DOI:https://doi.org/10.15330/pcss.21.3.492-49513. Wacker K. Die kristalstrukturen von Tl9SbSe6und Tl9SbTe6. Z. Kristallogr. Supple. 1991;3: 281.14. Doert T., Böttcher P. Crystal structure ofbismuthnonathalliumhexatelluride BiTl9Te6. Zeitschrift für Kristallographie - Crystalline Materials. 1994;209(1):95. DOI: https://doi.org/10.1524/zkri.1994.209.1.9515. Bradtmöller S., Böttcher P. Darstellung undkristallostructur von SnTl4Te3 und PbTl4Te3. Zeitschriftfor anorganische und allgemeine Chemie. 1993;619(7):1155–1160. DOI: https://doi.org/10.1002/zaac.1993619070216. Voroshilov Yu. V., Gurzan M. I., Kish Z. Z.,Lada L. V. Fazovye ravnovesiya v sisteme Tl-Pb-Te ikristallicheskaya struktura soedinenii tipa Tl4BIVX3 iTl9BVX6 [Phase equilibria in the Tl-Pb-Te system andthe crystal structure of Tl4BIVX3 and Tl9BVX6 compounds].Izvestiya Akademii nauk SSSR. Neorganicheskiematerialy. 1988;24: 1479–1484. (In Russ.)17. Bradtmöller S., Böttcher P. Crystal structure ofcopper tetrathallium tritelluride, CuTl4Te3. CuTl4Te3.Zeitschrift für Kristallographie - Crystalline Materials.1994;209(1): 97. DOI: https://doi.org/10.1524/zkri.1994.209.1.9718. Bradtmöller S., Böttcher P. Crystal structure ofmolybdenum tetrathallium tritelluride, MoTl4Te3.Zeitschrift für Kristallographie – Crystalline Materials.1994;209(1): 75. DOI: https://doi.org/10.1524/zkri.1994.209.1.7519. Babanly M. B., Imamalieva S. Z., Sadygov F. M.New thallium tellurides with indium and aurum.Chemical Problems (Kimya Problemlәri). 2009; 171–174.(In Russ., abstract in Eng.)20. Guo Q., Chan M., Kuropatwa B. A., Kleinke H.Enhanced thermoelectric properties of variants ofTl9SbTe6 and Tl9BiTe6. Chemistry of Materials.2013;25(20): 4097–4104. DOI: https://doi.org/10.1021/cm402593f21. Guo Q., Assoud A., Kleinke H. Improved bulkmaterials with thermoelectric figure-of-merit greaterthan 1: Tl10–xSnxTe6 and Tl10–xPbxTe6. Advanced EnergyMaterials. 2014;4(14): 1400348-8. DOI: https://doi.org/10.1002/aenm.20140034822. Bangarigadu-Sanasy S., Sankar C. R., SchlenderP., Kleinke H. Thermoelectric properties of Tl10-xLnxTe6, with Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Hoand Er, and 0.25<x<1.32. Journal of Alloys andCompounds. 2013;549: 126–134. DOI: https://doi.org/10.1016/j.jallcom.2012.09.02323. Shi Y., Sturm C., Kleinke H. Chalcogenides asthermoelectric materials. Journal of Solid StateChemistry. 2019; 270: 273–279. DOI: https://doi.org/10.1016/j.jssc.2018.10.04924. Piasecki M., Brik M. G., Barchiy I. E., Ozga K.,Kityk I. V., El-Naggar A. M., Albassam A. A.,Malakhovskaya T. A., Lakshminarayana G. Bandstructure, electronic and optical features of Tl4SnX3(X= S, Te) ternary compounds for optoelectronicapplications. Journal of Alloys and Compounds.2017;710: 600–607. DOI: https://doi.org/10.1016/j.jallcom.2017.03.28025. Reshak A. H., Alahmed Z. A., Barchij I. E.,Sabov M. Yu., Plucinski K. J., Kityk I. V., Fedorchuk A. O.The influence of replacing Se by Te on electronicstructure and optical properties of Tl4PbX3 (X = Se orTe): experimental and theoretical investigations. RSCAdvances. 2015;5(124): 102173–102181. DOI: https://doi.org/10.1039/C5RA20956K26. Malakhovskay-Rosokha T. A., Filep M. J.,Sabov M. Y., Barchiy I. E., Fedorchuk A. O. Plucinski K. J.IR operation by third harmonic generation of Tl4PbTe3and Tl4SnS3 single crystals. Journal of Materials Science:Materials in Electronics. 2013;24(7): 2410–2413. DOI:https://doi.org/10.1007/s10854-013-1110-927. Isaeva A., Schoenemann R., Doert T. Syntheses,crystal structure and magnetic properties of Tl9RETe6(RE = Ce, Sm, Gd). Crystals. 2020;10(4): 277–11. DOI:https://doi.org/10.3390/cryst1004027728. Bangarigadu-Sanasy S., Sankar C. R., Dube P. A.,Greedan J. E., Kleinke H. Magnetic properties ofTl9LnTe6, Ln = Ce, Pr, Tb and Sm. Journal of Alloys andCompounds. 2014;589: 389–392. DOI: https://doi.org/10.1016/j.jallcom.2013.11.22929. Arpino K. E., Wasser B. D., and McQueen T. M.Superconducting dome and crossover to an insulatingstate in [Tl4]Tl1-xSnxTe3. APL Materials. 2015;3(4):041507. DOI: https://doi.org/10.1063/1.491339230. Arpino K. E., Wallace D. C., Nie Y. F., Birol T.,King P. D. C., Chatterjee S., Uchida M., Koohpayeh S.M., Wen J.-J., Page K., Fennie C. J., Shen K. M.,McQueen T. M. Evidence for topologically protectedsurface states and a superconducting phase in [Tl4](Tl1-xSnx)Te3 using photoemission, specific heat, andmagnetization measurements, and density functionaltheory. Physical Review Letters. 2014;112(1): 017002-5.DOI: https://doi.org/10.1103/physrevlett.112.01700231. Niu C., Dai Y., Huang B. et al. Natural threedimensionaltopological insulators in Tl4PbTe3 andTl4SnTe3. Frühjahrstagung der Deutschen PhysikalischenGesellschaft. Dresden, Germany, 30 Mar 2014 – 4 Apr2014.32. Imamalieva S. Z. Phase diagrams in thedevelopment of thallium-REE tellurides with Tl5Te3structure and multicomponent phases based on them.Overview. Kondensirovannye sredy i mezhfaznye granitsy =Condensed Matter and Interphases. 2018;20(3): 332–347.DOI: https://doi.org/10.17308/kcmf.2018.20/57033. Jia Y.Q. Crystal radii and effective ionic radii ofthe rare earth ions. Journal of Solid State Chemistry.1991; 95(1): 184-187. DOI: https://doi.org/10.1016/0022-4596(91)90388-X
APA, Harvard, Vancouver, ISO, and other styles
30

Алиев, Озбек Мисирхан, Сабина Телман Байрамова, Дильбар Самед Аждарова, Валида Мурад Рагимова, and Шарафат Гаджиага Мамедов. "Синтез и свойства синтетического айкинита PbCuBiS3." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no. 2 (June 25, 2020): 182–89. http://dx.doi.org/10.17308/kcmf.2020.22/2821.

Full text
Abstract:
Целью данной работы является синтез и исследование свойств синтетического айкинита, PbCuBiS3.Синтез проводили в откачанных кварцевых ампулах в течение 7–8 ч, максимальная температура составляла 1250–1325 К. Далее образцы охлаждали и выдерживали при 600 К в течение недели. Потом ампулы вскрывали, образцы тщательно перетирали и после плавки отжигали при 600–800 К в зависимости от состава не менее двух недель для приведения образцов в равновесное состояние. Отожженные образцы исследовали методами дифференциально-термического (ДТА), рентгенофазового (РФА), микроструктурного (МСА) анализов, а также измерением микротвердости и определением плотности. РФА проводили на рентгеновском приборе модели Д 2 PHASER с использованием CuKa- излучении Ni-фильтр.Комплексом методов физико-химического анализа изучены разрезы CuBiS2–PbS, Cu2S–PbCuBiS3, Bi2S3–PbCuBiS3, PbBi2S4–PbCuBiS3, PbBi4S7–PbCuBiS3 квазитройной системы Cu2S–Bi2S3–PbS и построены их фазовые диаграммы.Установлено, что кроме сечения PbBi2S4–PbCuBiS3 все разрезы квазибинарные и характеризуются наличием ограниченных областей растворимости на основе исходных компонентов.При изучении разреза CuBiS2–PbS установлено образование четверного соединения состава PbCuBiS3, встречающееся в природе в виде минерала айкинита, плавящегося конгруэнтно при 980 К. Установлено, что соединение PbCuBiS3 кристаллизуется в ромбической сингонии с параметрами решетки: а = 1.1632, b = 1.166, с = 0.401 нм, прост. группа Pnma, Z = 4. Методами ДТА и РФА установлено, что соединение PbCuBiS3 является фазой переменного состава с областью гомогенности от 45 до 52 мол. % PbS. Соединение PbCuBiS3 является дырочным полупроводником с шириной запрещенной зоны ΔЕ = 0.84 эВ. ЛИТЕРАТУРА 1. Zhang Y-X., Ge Z-H., Feng J. Enhanced thermoelectric properties of Cu1.8S via introducing Bi2S3 andBi2S3/Bi core-shell nanorods. Journal of Alloys and Compounds. 2017;727: 1076–1082. DOI: https://doi.org/10.1016/j.jallcom.2017.08.2242. Mahuli N., Saha D., Sarkar S. K. Atomic layer deposition of p-type Bi2S3. Journal of Physical ChemistryC. 2017;121(14): 8136–8144. DOI: https://doi.org/10.1021/acs.jpcc.6b126293. Ge Z-H, Qin P., He D, Chong X., Feng D., Ji Y-H., Feng J., He J. Highly enhanced thermoelectric propertiesof Bi/Bi2S3 nano composites. ACS Applied Materials & Interfaces. 2017;9(5): 4828–4834. DOI: https://doi.org/10.1021/acsami.6b148034. Savory C. N., Ganose A. M., Scanlon D. O. Exploring the PbS–Bi2S3 series for next generation energyconversion materials. Chemistry of Materials. 2017;29(12): 5156–5167. DOI: https://doi.org/10.1021/acs.chemmater.7b006285. Li X., Wu Y, Ying H., Xu M., Jin C., He Z., Zhang Q., Su W., Zhao S. In situ physical examination of Bi2S3 nanowires with a microscope. Journal of Alloys and Compounds. 2019;798: 628–634. DOI: https://doi.org/10.1016/j.jallcom.2019.05.3196. Patila S. A., Hwanga Y-T., Jadhavc V. V., Kimc K. H., Kim H-S. Solution processed growth andphotoelectrochemistry of Bi2S3 nanorods thin fi lm. Journal of Photochemistry & Photobiology, A: Chemistry.2017;332: 174–181. DOI: https://doi.org/10.1016/j.jphotochem.2016.07.0377. Yang M., Luo Y. Z., Zeng M. G., Shen L., Lu Y. H., Zhou J., Wang S. J., Souf I. K., Feng Y. P. Pressure inducedtopological phase transition in layered Bi2S3. Physical Chemistry Chemical Physics. 2017;19(43):29372–29380. DOI: https://doi.org/10.1039/C7CP04583B8. Kоhatsu I., Wuensch B. J. The crystal structure of aikinite, PbCuBiS3. Acta Crystallogr. 1971;27(6):1245–1252. DOI: https://doi.org/10.1107/s05677408710038199. Ohmasa M., Nowacki W. A redetermination on the crystal structure of aikinite (BiS2/S/S/CuIVPbVII).Z. Krystallogr. 1970;132(1-6): 71-86. DOI: https://doi.org/10.1524/zkri.1970.132.1-6.7110. Strobel S., Sohleid T. Three structures for strontium copper (I) lanthanidis (III) selinidesSrCuMeSe3 (M = La, Gd, Lu). J. Alloys and Compounds. 2006;418(1–2): 80–85. DOI: https://doi.org/10.1016/j.jallcom.2005.09.09011. Сикерина Н. В., Андреев О. В. Кристаллическая структура соединений SrLnCuS3(Ln = Gd, Lu).Журн. неорган. химии. 2007;52(4): 641–644. Режим доступа: https://www.elibrary.ru/item.asp?id=959411112. Edenharter A., Nowacki W., Takeuchi Y. Verfeinerung der kristallstructur von Bournonit [(SbS3)1/CuPbPb2IV VIIVIII] und von seligmannit [(AsS3)2/CuPbPb2IVVIIVIII]. Z. Kristallogr. 1970;131(1): 397–417.DOI: https://doi.org/10.1524/zkri.1970.131.1-6.39713. Каплунник Л. Н. Кристаллические структуры минералов великита, акташита, швацита, теннантита, галхаита, линдстремита-крупкаита и синтетической Pb, Sn сульфосоли. Автореф. дисс. … канд.геол.-минер. наук. М.: Изд-во Моск. ун-та; 1978. 25 с.Режим доступа: https://search.rsl.ru/ru/record/0100780541514. Гасымов В. А., Мамедов Х. С. О кристаллохимии промежуточных фаз системы висмутинайкинит (Bi2 S3–CuPbBiS3). Азерб. хим. журн.1976;(1): 121–125. Режим доступа: https://cyberleninka.ru/article/n/fazovye-ravnovesiya-v-sisteme-pbla2s4-pbbi2s415. Christuk A. E., Wu P., Ibers J. A. New quaternary chalcogenides BaLnMQ3 (Ln – Rare Earth; M = Cu, Ag;Q = S, Se). J. Solid State Chem. 1994;110(2): 330–336. DOI: https://doi.org/10.1006/jssc.1994.117616. Wu P., Ibers J. A. Synthesis of the new quaternary sulfi des K2Y4Sn2S11 and BaLnAgS3 (Ln = Er, Y, Gd)and the Structures of K2Y4Sn2S11 and BaErAgS3. J. Solid State Chem. 1994;110(1): 156–161. DOI: https://doi.org/10.1006/jssc.1994.115017. Победимская Е. А., Каплунник Л. Н., Петрова И. В. Кристаллохимия сульфидов. Итоги наукии техники. Серия кристаллохимия. М.: Изд-во АН СССР. 1983; 17: 164 с.18. Gulay L. D., Shemet V. Ya., Olekseyuk I. D. Investigation of the R2S3–Cu2S–PbS (R = Y, Dy, Ho andEr) systems. J. Alloys and Compounds. 2007;43(1–2): 77–84. DOI: https://doi.org/10.1016/j.jallcom.2006.05.02919. Костов И., Миначева-Стефанова И. Сульфидные минералы. М.: Мир; 1984. 281с. 20. Алиева Р. А., Байрмаова С. Т., Алиев О. М. Диаграмма состояния систем CuSbS2–PbS (M = Pb,Eu, Yb). Неорган. материалы. 2010;46(7): 703–706. DOI: https://doi.org/10.1134/s002016851007002221. Байрамова С. Т., Багиева М. Р., Алиев О. М., Рагимова В. М. Синтез и свойства структурныханалогов минерала бурнонита. Неорган. материалы. 2011;47(4): 345–348. DOI: https://doi.org/10.1134/S002016851104005422. Байрамова С. Т., Багиева М. Р., Алиев О. М. Взаимодействие в системах CuAsS2–PbS. Неорган.материалы. 2011;47(3): 231–234. DOI: https://doi.org/10.1134/S002016851103004623. Aliev O. M., Ajdarova D. S., Bayramova S. T., Ragimova V. M. Nonstoichiometry in PbCuSbS3. Azerb.chem. journal. 2016;(2): 51–54. Режим доступа: https://cyberleninka.ru/article/n/nonstoichiometryin-pbcusbs3-compound24. Aliev O. M., Ajdarova D. S., Agayeva R. M., Ragimova V. M. Phaseformation in quasiternary systemCu2S–PbS–Sb2S3. Intern Journal of Application and Fundamental Research. 2016;(12): 1482–1488. Режимдоступа: https://applied-research.ru/pdf/2016/2016_12_8.pdf25. Алиев О. М., Аждарова Д. С., Агаева Р. М., Максудова Т. Ф. Фазообразование на разрезахCu2S(Sb2S3, PbSb2S4, Pb5Sb4S11)–PbCuSbS3 квазитройной системы Cu2S–Sb2S3–PbS и физические свой-ства твердых растворов (Sb2S3)1–x(PbCuSbS3)x. Неорган. материалы. 2018;54(12): 1275–1280. DOI: https://doi.org/10.1134/S002016851812001426. Рзагулуев В. А., Керимли О. Ш., Аждарова Д. С., Мамедов Ш. Г., Алиев О. М. Фазовые равновесия в системах Ag8SnS6–Cu2SnS3 и Ag2SnS3–Cu2Sn4S9. Конденсированные среды и межфазныеграницы. 2019; 21(4): 544–551. DOI: https://doi.org/10.17308/kcmf.2019.21/2365
APA, Harvard, Vancouver, ISO, and other styles
31

Imamaliyeva, Samira Z., Dunya M. Babanly, Vladimir P. Zlomanov, Mahammad B. Babanly, and Dilgam B. Taghiyev. "Thermodynamic Properties of Terbium Tellurides." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no. 4 (December 15, 2020): 453–59. http://dx.doi.org/10.17308/kcmf.2020.22/3116.

Full text
Abstract:
The paper presents the results of a study of solid-phase equilibria in the Tb–Te system and the thermodynamic properties of terbium tellurides obtained by the methods of electromotive forces and X-ray diffraction analysis. Based on the experimental data, it was established that the TbTe, Tb2Te3, TbTe2 и TbTe3 compounds are formed in the system. For the investigations of the alloys from the two-phase regions TbTe3+Te, TbTe2+TbTe3, and Tb2Te3+TbTe2, the EMF of concentration cells relative to the TbTe electrode was measured. The EMF of concentration cells relative to the terbium electrode was measured for the TbTe+Tb2T3 region. The partial thermodynamic functions of TbTe and Tb in alloys were determined bycombining the EMF measurements of both types in the 300–450 K temperature range, based on which the standard thermodynamic functions of formation and standard entropies of the indicated terbium tellurides were calculated. References1. Jha A. R. Rare earth materials: properties andapplications. United States. CRC Press. 2014. 371 p.DOI: https://doi.org/10.1201/b170452. Balaram V. Rare earth elements: A review ofapplications, occurrence, exploration, analysis,recycling, and environmental impact. GeoscienceFrontiers. 2019;10(4): 1285–1290. DOI: https://doi.org/10.1016/j.gsf.2018.12.0053. Yarembash E. I., Eliseev A. A. Khal’kogenidyredkozemel’nykh elementov [Chalcogenides of rareearth elements). Moscow: Nauka Publ.; 1975. 258p.(In Russ.)4. Y-Sc., La-Lu. Gmelin Handbock of InorganicChemistry. In: Hartmut Bergmann (Ed.), Rare EarthElements, 8th Edition, Springer-Verlag HeidelbergGmbH. Berlin; 1987.5. Muthuselvam I. P., Nehru R., Babu K. R.,Saranya K., Kaul S. N., Chen S-M, Chen W-T, Liu Y.,Guo G-Y, Xiu F., Sankar R. Gd2Te3 an antiferromagneticsemimetal. J. Condens. Matter Phys. 2019;31(28):285802-5. DOI: https://doi.org/10.1088/1361-648X/ab15706. Huang H., Zhu J.-J. The electrochemicalapplications of rare earth-based nanomaterials.Analyst. 2019;144(23): 6789–6811. DOI: https://doi.org/10.1039/C9AN01562K7. Saint-Paul M., Monceau P. Survey of thethermodynamic properties of the charge density wavesystems. Adv. Cond. Matter Phys. 2019: 1–5 DOI:https://doi.org/10.1155/2019/21382648. Cheikh D., Hogan B. E., Vo T., Allmen P. V., Lee K.,Smiadak D. M., Zevalkink A., Dunn B. S., Fleurial J-P.,Bux S. L. Praseodymium telluride: A high temperature,high- ZT thermoelectric material. Joule. 2018; 2(4):698–709. DOI: https://doi.org/10.1016/j.joule.2018.01.0139. Patil S. J., Lokhande A. C., Lee D. W, Kim J. H.,Lokhande C. D. Chemical synthesis and supercapacitiveproperties of lanthanum telluride thin film. Journal ofColloid and Interface Science. 2017; 490: 147–153. DOI:https://doi.org/10.1016/j.jcis.2016.11.02010. Zhou X. Z., Zhng K. H. L, Xiog J., Park J-H,Dickerson J-H., He W. Size- and dimentionalitydependent optical, mahnetic and magneto-opticalproperties of binary europium-based nanocrystals:EuX (X=O, S, Se, Te). Nanotechnology. 2016;27(19):192001-5. DOI: https://doi.org/10.1088/0957-4484/27/19/19200111. Okamoto H. Desk handbook phase diagram forbinary alloys. ASM International. 2000. 900 p.12. Babanly M. B., Mashadiyeva L. F., Babanly D. M.,Imamaliyeva S. Z., Tagiyev D. B., Yusibov Y. A.. Someissues of complex studies of phase equilibria andthermodynamic properties in ternary chalcogenidesystems involving Emf measurements. Russian Journalof Inorganic Chemistry. 2019;64(13): 1649–1672. DOI:https://doi.org/10.1134/s003602361913003513. Imamaliyeva S. Z., Babanly D. M., Tagiev D. B.,Babanly M. B. Physicochemical aspects of developmentof multicomponent chalcogenide phases having theTl5Te3 structure. A review. Russian Journal of InorganicChemistry2018;63(13): 1703–1724 DOI: https://doi.org/10.1134/s003602361813004114. Massalski T. B. Binary alloys phase diagrams,second edition. ASM International, Materials Park.Ohio; 1990. 3835 p. DOI: https://doi.org/10.1002/adma.1991003121515. Diagrammi sostoyaniya dvoynikh metallicheskikhsystem [Diagrams of Binary Metallic Systems]Handbook in 3 vols. Lyakishev N.P. (Ed.) Moscow:Mashinostroenie Publ.; 1996, 1997, 2001. (In Russ.)16. Eliseev A. A., Orlova I. G., Martynova L. F.,Pechennikov A. V., Chechernikov V. I. Paramagnetismof some terbium chalcogenides. Inorganic Materials.1987;23: 1833–1835.17. Mills K. C. Thermodynamic data for inorganicsulphides, selenides, and tellurides. London:Butterworth; 1974. 854 p.18. Vassiliev V. P., Lysenko V. A. Gaune-Escard M.Relationship of thermodynamic data with periodic law.Pure and Applied Chemistry. 2019;91(6): 879–884. DOI:https://doi.org/10.1515/pac-2018-071719. Vassiliev V. P., Lysenko V. A. New approach forthe study of thermodynamic properties of lanthanidecompounds. Electrochimica Acta. 2016;222: 1770–1775.DOI: https://doi.org/10.1016/j.electacta.2016.11.07520. Morachevsky A. G., Voronin G. F., Geyderich V. A.,Kutsenok I. B. Elektrokhimicheskie metody issledovaniyav t e r m o d i n a m i k e m e t a l l i c h e s k i k h s y s t e m .[Electrochemical methods of investigation inhermodynamics of metal systems]. Moscow:Akademkniga Publ.; 2003. 334 p. Available at: https://elibrary.ru/item.asp?id=19603291 (In Russ.)21. Babanly M. B., Yusibov Y. A. Elektrokhimicheskiemetody v termodinamike neorganicheskikh sistem[Electrochemical methods in thermodynamics ofinorganic systems]. Baku: BSU Publ.; 2011. 306 p.22. Imamaliyeva S. Z., Mehdiyeva I. F., Taghiyev D. B.et al. Thermodynamic investigations of the erbiumtellurides by EMF method. Physics and Chemistry ofSolid State. 2020;21(2): 312–318. DOI: https://doi.org/10.15330/pcss.21.2.312-31823. Hasanova G. S., Aghazade A. I., Yusibov Yu. A.,Babanly M. B. Thermodynamic investigation of theBi2Se3-Bi2Te3 system by the EMF method. Kondensirovannyesredy i mezhfaznye granitsy = CondensedMatter and Interphases. 2020;22(3): 310–319. DOI:https://doi.org/10.17308/kcmf.2020.22/296124. Imamaliyeva S. Z., Babanly D. M., Gasanly T. M.,et al.: Thermodynamic properties of Tl9GdTe6 andTlGdTe2. Russian Journal of Physical Chemistry A.2018;92(11): 2111–2116. DOI: https://doi.org/10.1134/s003602441811015825. Mansimova S. H., Orujlu E. N., Sultanova S. G.,Babanly M. B. Thermodynamic properties of Pb6Sb6Se17.Kondensirovannye sredy i mezhfaznye granitsy =Condensed Matter and Interphases. 2017;19(4): 536–541. https://doi.org/10.17308/kcmf.2017.19/23426. Imamaliyeva S. Z., Gasanly T. M., MahmudovaM. A. Thermodynamic properties of GdTe compound.Physics. 2017;22: 19–21. Available at: http://physics.gov.az/Dom/2017/AJP_Fizika_04_2017_en.pdf27. Imamaliyeva S. Z., Musayeva S. S., Babanly D. M.,Jafarov Y. I., Tagiyev D. B., Babanly M. B. Determinationof the thermodynamic functions of bismuthchalcoiodides by EMF method with morpholiniumformate as electrolyte. Thermochim. Acta. 2019; 679:178319–17825. DOI: https://doi.org/10.1016/j.tca.2019.17831928. Baza dannykh termicheskikh konstant veshchestv.Elektronnaya versiya pod. red. V. S. Yungmana. 2006[Database of thermal constants of substances.Electronic version V. S. Yungman (ed.). 2006]. Availableat: http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/welcome.html
APA, Harvard, Vancouver, ISO, and other styles
32

Мамедов, Шарафат Гаджиага оглы. "Исследование квазитройной системы FeS–Ga2S3–Ag2S по разрезу FeGa2S4–AgGaS2." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no. 2 (June 25, 2020): 232–37. http://dx.doi.org/10.17308/kcmf.2020.22/2835.

Full text
Abstract:
Интерес к изучению систем, содержащих сульфиды формулой АIВIIIСVI2, обусловлен, прежде всего, открывающимися возможностями их практического использования в изготовлении нелинейных оптических приборов, детекторов, солнечных батарей, фотодиодов, люминофоров и др. Поэтому в связи с поиском новых перспективных материаловна основе тиогаллата серебра и железа целью этой работы является исследование квазибинарного разреза FeGa2S4–AgGaS2 четырехкомпонентной системы Fe–Ag–Ga–S.Синтез сплавов системы AgGaS2–FeGa2S4 проводили из лигатур с использованием высокой чистоты: железа – 99.995 %, галлия – 99.999 %, серебра – 99.99 % и серы – 99.99 %. Исследование сплавов проводили методами дифференциально-термического, рентгенофазового, микроструктурного анализов, а также измерением микротвердости и определениемплотности.Методами физико-химического анализа впервые изучена и построена Т-x фазовая диаграмма разреза AgGaS2–FeGa2S4, который является внутренним сечением квазитройной системы FeS–Ga2S3–Ag2S. Установлено, что система относится к простому эвтектическому типу. Состав эвтектической точки: 56 мол. % FeGa2S4 и Т = 1100 К. На основе исходных компонентов были определены области твердых растворов. Растворимость на основе FeGa2S4 и AgGaS2 при эвтектической температуре достигает до 10 и 16 мол. % соответственно. С уменьшением температуры твердые растворы сужаются и при комнатной температуре составляют на основе тиогаллата железа (FeGa2S4) 4 мол. % AgGaS2,а на основе тиогаллата серебра (AgGaS2) 11 мол. % FeGa2S4. ЛИТЕРАТУРА 1. Zhаo B., Zhu S., Li Z., Yu F., Zhu X., Gao D. Growth of AgGaS2 single crystal by descending cruciblewith rotation method and observation of properties. Chinese Sci. Bull. 2001; 46(23): 2009–2013. DOI:https://doi.org/10.1007/BF029019182. Горюнова Н. А. Сложные алмазоподобные полупроводники. М.: Сов. радио; 1968. 215 с.3. Абрикосов Н. Х., Шелимова Л. Е. Полупроводниковые материалы на основе соединений АIVBVI..М.:Наука; 1975. 195 с.4. Kushwaha A. K., Khenata R., Bouhemadou A., Bin-Omran S., Haddadi K. Lattice dynamical propertiesand elastic constants of the ternary chalcopyrite compounds CuAlS2, CuGaS2, CuInS2, and AgGaS2. Journalof Electronic Materials. 2017;46(7): 4109–4118. DOI: https://doi.org/10.1007/s11664-017-5290-65. Uematsu T., Doi T., Torimoto T., Kuwabata S. Preparation of luminescent AgInS2-AgGaS2 solid solutionnanoparticles and their optical properties. The Journal of Physical Chemistry Letters. 2010;1(22):3283–3287. DOI: https://doi.org/10.1021/jz101295w6. Karaagac H., Parlak M. The investigation of structural, electrical, and optical properties of thermalevaporated AgGaS2 thin films. J. Thin Solid Films. 2011;519(7): 2055–2061. DOI: https://doi.org/10.1016/j.tsf.2010.10.0277. Karunagaran N., Ramasamy P. Synthesis, growth and physical properties of silver gallium sulfi de singlecrystals. Materials Science in Semiconductor Processing. 2016;41: 54–58. DOI: https://doi.org/10.1016/j.mssp.2015.08.0128. Zhou H., Xiong L., Chen L., Wu L. Dislocations that decrease size mismatch within the lattice leadingto ultrawide band gap, large second-order susceptibility, and high nonlinear optical performance of AgGaS2.Angewandte Chemie International Edition. 2019;58(29): 9979–9983. DOI: https://doi.org/10.1002/anie.2019039769. Li G., Chu Y., Zhou Z. From AgGaS2 to Li2ZnSiS4: Realizing impressive high laser damage thresholdtogether with large second-harmonic generation response. Journal Chemistry of Materials. 2018;30(3):602–606. DOI: https://doi.org/10.1021/acs.chemmater.7b0535010. Yang J., Fan Q., Yu Y., Zhang W. Pressure effect of the vibrational and thermodynamic properties ofchalcopyrite-type compound AgGaS2: A fi rst-principles investigation. Journal Materials. 2018;11(12): 2370.DOI: https://doi.org/10.3390/ma1112237011. Paderick S., Kessler M., Hurlburt T. J., Hughes S. M. Synthesis and characterization of AgGaS2nanoparticles: a study of growth and fl uorescence. Journal Chemical Communications. 2018;54(1): 62–65.DOI: https://doi.org/10.1039/C7CC08070K12. Kato K., Okamoto T., Grechin S., Umemura N. New sellmeier and thermo-optic dispersion formulasfor AgGaS2. Journal Crystals. 2019;9(3): 129–135. DOI: https://doi.org/10.3390/cryst903012913. Li W., Li Y., Xu Y., Lu J., Wang P., Du J., Leng Y. Measurements of nonlinear refraction in the mid-infraredmaterials ZnGeP2 and AgGaS2. Journal Applied Physics B. 2017;123(3). DOI: https://doi.org/10.1007/s00340-017-6643-914. Jahangirova S. K., Mammadov Sh. H., Ajdarova D. S., Aliyev O. M., Gurbanov G. R. Investigation ofthe AgGaS2–PbS and some properties of phases of variable composition. Russian Journal of InorganicChemistry. 2019;64(9): 1169–1171. DOI: https://doi.org/10.1134/S003602361909009215. Asadov S. M., Mustafaeva S. N., Guseinov D. T. X-ray dosimetric characteristics of AgGaS2 singlecrystals grown by chemical vapor transport. Inorganic Materials. 2017;53(5): 457–461. DOI: https://doi.org/10.1134/S002016851705002816. Mys O., Adamenko D., Skab I., Vlokh R. Anisotropy of acousto-optic fi gure of merit for the collineardiffraction of circularly polarized optical waves at the wavelength of isotropic point in AgGaS2 crystals.Ukrainian Journal of Physical Optics. 2019;20(2): 73–80.DOI: https://doi.org/10.3116/16091833/20/2/73/20117. Karunagaran N., Ramasamy P. Investigation on synthesis, growth, structure and physical propertiesof AgGa0.5In0.5S2 single crystals for Mid-IR application. Journal of Crystal Growth. 2018;483: 169–174.DOI: https://doi.org/10.1016/j.jcrysgro.2017.11.03018. Ranmohotti K. G. S., Djieutedjeu H., Lopez J., Page A., Haldolaarachchige N., Chi H., Sahoo P., Uher C.,Young D., Poudeu P. F. P. Coexistence of high-Tc ferromagnetism and n-type electrical conductivity inFeBi2Se4. J. of the American Chemical Society. 2015;137(2): 691–698. DOI: https://doi.org/10.1021/ja508425519. Karthikeyan N., Aravindsamy G., Balamurugan P., Sivakumar K. Thermoelectric properties of layeredtype FeIn2Se4 chalcogenide compound. Materials Research Innovations. 2018;22(5): 278–281. DOI:https://doi.org/10.1080/14328917.2017.131488220. Nakafsuji S., Tonomura H., Onuma K., Nambu Y., Sakai O., Maeno Y., Macaluso R. T., Chan J. Y.Spin disorder and order in quasi-2D triangular Heisenberg antiferromagnets: comparative study ofFeGa2S4, Fe2Ga2S5 and NiGa2S4. Phys. Rev. Letters. 2007;99(1–4): 157–203. DOI: https://doi.org/10.1103/PhysRevLett.99.15720321. Rushchanskii K. Z., Haeuseler H., Bercha D. M. Band structure calculations on the layered compoundsFeGa2S4 and NiGa2S4. J. Phys. Chem. Solids. 2002;63(11): 2019–2028. DOI: https://doi.org/10.1016/S0022-3697(02)00188-922. Dalmas de Reotier P., Yaouanc A., MacLaughlin D. E., Songrui Zhao. Evidence for an exotic magnetictransition in the triangular spin system FeGa2S4. J. Phys. Rev. B. 2012;85(14): 140407.1–140407.5. DOI: https://doi.org/10.1103/physrevb.85.14040723. Myoung B. R., Lim J. T., Kim C. S. Investigation of magnetic properties on spin-ordering effects ofFeGa2S4 and FeIn2S4. Journal of Magnetism and Magnetic Materials. 2017;438: 121–125. DOI: https://doi.org/10.1016/j.jmmm.2017.04.05624. Asadov M. M., Mustafaeva S. N., Hasanova U. A., Mamedov F. M., Aliev O. M., Yanushkevich K. I., NikitovS. A., Kuli-Zade E. S. Thermodynamics of FeS–PbS–In2S3 and properties of intermediate phases. JournalDefect and Diffusion Forum.2018;385: 175–181. DOI: https://doi.org/10.4028/www.scientific.net/DDF.385.17525. Li K., Yuan D., Shen S., Guo J. Crystal structures and property characterization of two magneticfrustration compounds. Journal Powder Diffraction. 2018;33(3): 190–194. DOI: https://doi.org/10.1017/S088571561800050726. Chen B., Zhu S., Zhao B., Lei Y., Wu X., Yuan Z., He Z. Differential thermal analysis and crystal growthof AgGaS2. Journal of Crystal Growth. 2008;310(3): 635–638. DOI: https://doi.org/10.1016/j.jcrysgro.2007.10.06727. Sinyakova E. F., Kosyakov V. I., Kokh K. A. Oriented crystallization of AgGaS2 from the melt systemAg–Ga–S. J. Inorganic Materials. 2009;45(11): 1217–1221. DOI: https://doi.org/10.1134/S002016850911004128. Chykhrij S. I., Parasyuk O. V., Halka V. O. Crystal structure of the new quaternary phase AgCd2GaS4and phase diagram of the quasibinary system AgGaS2–CdS. Journal of Alloys and Compounds.2000;312(1–2):189–195. DOI: https://doi.org/10.1016/S0925-8388(00)01145-229. Olekseyuk I. D., Parasyuk O. V., Halka V. O., Piskach L. V. F., Pankevych V. Z. Romanyuk Ya. E. Phaseequilibria in the quasi-ternary system Ag2S–CdS–Ga2S3. J. Alloys and compounds. 2001;325(10): 167–179. DOI:https://doi.org/10.1016/S0925-8388(01)01361-530. Brand G., Kramer V. Phase equilibrium in the quasi-binary system Ag2S–Ga2S3. Mater. Res. Bull.1976;11(11): 1381–1388. DOI: https://doi.org/10.1016/0025-5408(76)90049-031. Лазарев В. Б., Киш З. З., Переш Е. Ю., Семрад Е. Е. Сложные халькогениды в системе Аэ–Вэээ–СVI. М.: Металлургия; 1993. 229 с.32. Угай Я. А. Введение в химию полупроводников.М.: Высшая школа; 1975. 302 с.33. Pardo M. E, Dogguy-Smiri L., Flahaut J., Nguyen H. D. System Ga2S3–FeS Diagramme dephase — etude cristallographique. Mater. Res. Bull. 1981;16(11): 1375–1384. DOI: https://doi.org/10.1016/0025-5408(81)90056-834. Wintenberger M. About the unit cells and crystal structures of ~MGa2X4 (M = Mn, Fe, Co; X = S,Se) and ZnAI2S4 Type. In: Proc. VII Int. Conf. on Solid Compounds of Transition Elements, CNRS. Grenoble,France: IA 14/1-3, 1983.35. Rustamov P. G., Babaeva P. K., Azhdarova D. S., Askerova N. A., Ailazov M. R. Nature of interaction inMn(Fe,Co,Ni)–Ga(In)–S(Se) ternary systems. Azerb. Khim. Zh. 1984;15: 101–103.36. Raghavan V. Fe-Ga-S (Iron-Gallium-Sulfur). J. Phase Equil. 1998;19: 267–268. DOI: https://doi.org/10.1361/10549719877034231937. Ueno T., Scott S. D. Phase relations in the Ga-Fe-S system at 900 and 800 C. The Canadian Mineralogist.2002;40(2): 568–570. DOI: https://doi.org/10.2113/gscanmin.40.2.56338. Allazov M. R. The system of FeS–GaS–S. Bulletin of Baku State University. 2009;(2): 42-47. Режимдоступа: http://static.bsu.az/w8/Xeberler%20Jurnali/Tebiet%202009%203/42-47.pdf39. Dogguy-Smiri L., Dung Nguyen Huy, Pardo M. P. Structure crystalline du polytype FeGa2S4 a 1T. Mater.Res. Bull. 1980;15(7): 861–866. DOI: https://doi.org/10.1016/0025-5408(80)90208-140. Hahn H., Klingler W. Unter such ungen uber ternare chalkogenide. I. Uber die, kristall structureiniger ternaerer sulfi de, die sichvom In2S3 ableiten. Zeitschrift fur Anorganische und Allgemeine Chemie.1950; 263(4): 177–190. DOI: https://doi.org/10.1002/zaac.1950263040641. Dogguy-Smiri L., Pardo M. P. Etude cristallographique du systeme FeS–Ga2S3. Compt. Rend. Acad.Sci. 1978;287: 415–418.42. Аллазов М. Р., Мусаева С. С., Аббасова Р. Ф., Гусейнова А. Г. Области кристаллизации фаз поизотермическим сечениям систем Fe-Ga-S. Известия Бакинского государственного университета.2013;(3): 11–14. Режим доступа: http://static.bsu.az/w8/Xeberler%20Jurnali/Tebiet%20%202013%20%203/11-15.pdf43. Рзагулуев В. А., Керимли О. Ш., Аждарова Д. С., Мамедов Ш. Г., Алиев О. М. Фазовые рав-новесия в системах Ag8SnS6–Cu2SnS3 и Ag2SnS3–Cu2Sn4S9. Конденсированные среды и межфазныеграницы. 2019;21(4): 544–551. DOI: https://doi.org/10.17308/kcmf.2019.21/2365
APA, Harvard, Vancouver, ISO, and other styles
33

Staneff, Geoff D., Paul D. Asimow, and Thierry Caillat. "Synthesis and thermoelectric properties of Ce(Ru0.67Rh0.33)4Sb12." MRS Proceedings 793 (2003). http://dx.doi.org/10.1557/proc-793-s4.3.

Full text
Abstract:
ABSTRACTExotic filled skutterudite compositions show promise for thermoelectric applications. Current work was undertaken with a nominal composition of Ce(Ru0.67Rh0.33)4Sb12 to experimentally verify its potential as an n-type thermoelectric material. Nominal electroneutrality was expected at 0.89 cerium filling and fully filled materials were expected to be strongly n-type. Filled precursors of the nominal composition were synthesized using straightforward solid state reaction techniques, but standard synthesis routes failed to produce a fully-filled homogenous phase. Instead, the filled thermoelectric Ce(Ru0.67Rh0.33)4Sb12 was synthesized using a combination of solid state reaction of elemental constituents and high pressure hot pressing. A range of pressure-temperature conditions was explored; the upper temperature limit of filled skutterudite in this system decreases with increasing pressure and disappears by 12 GPa. The optimal synthesis was performed in multi-anvil devices at 4–6 GPa pressure and dwell temperatures of 350–700 °C. rutheniumThe result of this work, a Ce(Ru0.67Rh0.33)4Sb12 fully filled skutterudite material, exhibited unexpected p-type conductivity and an electrical resistance of 1.755 mΩ-cm that increased with temperature. Thermal conductivity, Seebeck coefficient, and resistivity were measured on single phase samples. In this paper, we report the details of the synthesis routeand measured thermoelectric properties, speculate on the deviation from expected carrier charge balance, and discuss implications for other filled skutterudite systems.
APA, Harvard, Vancouver, ISO, and other styles
34

Fleurial, J. P., T. Caillat, and A. Borshchevsky. "Low Thermal Conductivity Skutterudites." MRS Proceedings 478 (1997). http://dx.doi.org/10.1557/proc-478-175.

Full text
Abstract:
AbstractRecent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudites promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudite compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications.Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and “filling” of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.
APA, Harvard, Vancouver, ISO, and other styles
35

Jie, Qing, Juan Zhou, Ivo K. Dimitrov, Chang-Peng Li, Ctirad Uher, Hsin Wang, Wallace D. Porter, and Qiang Li. "Thermoelectric Properties of Non-equilibrium Synthesized Ce0.9Fe3CoSb12 Filled Skutterudites." MRS Proceedings 1267 (2010). http://dx.doi.org/10.1557/proc-1267-dd03-03.

Full text
Abstract:
AbstractWe report on the thermoelectric properties of the filled skutterudite Ce0.9Fe3CoSb12 prepared via non-equilibrium synthesis method. Melt-spun ribbons were directly converting into single phase polycrystalline pellets under pressure. For comparison, pellets with the same composition were also prepared using the conventional solid-state reaction followed by long term annealing. It was found that the non-equilibrium synthesized samples have higher power factors and lower thermal conductivity, leading to substantially higher figure of merit.
APA, Harvard, Vancouver, ISO, and other styles
36

Zhou, Juan, Qing Jie, and Qiang Li. "Microstructure Investigation of Non-equilibrium Synthesized Filled Skutterudite CeFe4Sb12." MRS Proceedings 1267 (2010). http://dx.doi.org/10.1557/proc-1267-dd05-25.

Full text
Abstract:
AbstractWe have prepared a variety of filled skutterudites through non-equilibrium synthesis by converting melt-spun ribbons into single phase polycrystalline bulk under pressure. In general, better thermoelectric properties are found in these samples. In this work, we performed microstructure characterization of non-equilibrium synthesized p-type filled skutterudite CeFe4Sb12 by X-ray diffraction, scanning electron microscopy and transmission electron microscopy in order to understand the structural origin of the improved thermoelectric properties. It is found that the non-equilibrium synthesized samples have smaller grain size and cleaner grain boundaries when compared to the samples prepared by the conventional solid-state reaction plus long term annealing. While smaller grain size can help reduce the lattice thermal conductivity, cleaner grain boundaries ensure higher carrier mobility and subsequently, higher electrical conductivity at the application temperatures.
APA, Harvard, Vancouver, ISO, and other styles
37

Mansouri, Nariman, Edward J. Timm, Harold J. Schock, Dipankar Sahoo, and Adam Kotrba. "Development of a Circular Thermoelectric Skutterudite Couple Using Compression Technology." Journal of Energy Resources Technology 138, no. 5 (March 10, 2016). http://dx.doi.org/10.1115/1.4032619.

Full text
Abstract:
Approximately, 55% of the energy produced from conventional vehicle resources is lost due to heat losses. An efficient waste heat recovery process will lead to improved fuel efficiency and greenhouse gas emissions. Thermoelectric generators (TEGs) are heat recovery devices that are being widely studied by a range of energy-intensive industries. Efficient solid-state thermoelectric devices are good candidates to reduce fuel consumption in an automobile. Thermoelectric materials have had limited automotive applications due to the automotive waste heat recovery temperature range, the rarity and toxicity of some materials, and the limited ability to mass manufacture thermoelectric devices from expensive TE materials. However, skutterudite is one class of material that has demonstrated significant promise in the transportation waste heat recovery temperature domain. Durability and reliability of the TEGs are the most significant concerns in the product development process. Cracking of the materials at hot-side interface is found to be a major failure mechanism of TEGs under thermal loading. Cracking affects not only the structural integrity but also the energy conversion and overall performance of the system. In this paper, cracking of thermoelectric material as observed in performance testing is analyzed using numerical simulations and analytic experiments. This paper shows, with the help of finite element analysis (FEA), the detailed distribution of stress, strain, and temperature is obtained for each design. Finite element (FE)-based simulations show the tensile stresses as the primary factor causing radial and circumferential cracks in the skutterudite. For a TEG design, loading conditions and closed-form analytical solutions of stress/strain distributions are derived. Scenarios with minimum tensile stresses are sought. These approaches yield the minimum of stress/strain fields which produce cracks. Finally, based on these analyses and computational fluid dynamics (CFD) studies, strategies in tensile stress reduction and failure prevention are proposed.
APA, Harvard, Vancouver, ISO, and other styles
38

Schock, Harold, Giles Brereton, Eldon Case, Jonathan D'Angelo, Tim Hogan, Matt Lyle, Ryan Maloney, et al. "Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications." Journal of Energy Resources Technology 135, no. 2 (January 25, 2013). http://dx.doi.org/10.1115/1.4023097.

Full text
Abstract:
With the rising cost of fuel and increasing demand for clean energy, solid-state thermoelectric (TE) devices are an attractive option for reducing fuel consumption and CO2 emissions. Although they are reliable energy converters, there are several barriers that have limited their implementation into wide market acceptance for automotive applications. These barriers include: the unsuitability of conventional thermoelectric materials for the automotive waste heat recovery temperature range; the rarity and toxicity of some otherwise suitable materials; and the limited ability to mass-manufacture thermoelectric devices from certain materials. One class of material that has demonstrated significant promise in the waste heat recovery temperature range is skutterudites. These materials have little toxicity, are relatively abundant, and have been investigated by NASA-JPL for the past twenty years as possible thermoelectric materials for space applications. In a recent collaboration between Michigan State University (MSU) and NASA-JPL, the first skutterudite-based 100 W thermoelectric generator (TEG) was constructed. In this paper, we will describe the efforts that have been directed towards: (a) enhancing the technology-readiness level of skutterudites to facilitate mass manufacturing similar to that of Bi2Te3, (b) optimizing skutterudites to improve thermal-to-electric conversion efficiencies for class 8 truck applications, and (c) describing how temperature cycling, oxidation, sublimation, and other barriers to wide market acceptance must be managed. To obtain the maximum performance from these devices, effective heat transfer systems need to be developed for integration of thermoelectric modules into practical generators.
APA, Harvard, Vancouver, ISO, and other styles
39

Kanatzidis, Mercouri G., Duck-Young Chung, Lykourgos Iordanidis, Kyoung-Shin Choi, Paul Brazis, Melissa Rocci, Tim Hogan, and Carl Kannewurt. "Solid State Chemistry Approach to Advanced Thermoelectrics. Ternary and Quaternary Alkali Metal Bismuth Chalcogenides as Thermoelectric Materials." MRS Proceedings 545 (1998). http://dx.doi.org/10.1557/proc-545-233.

Full text
Abstract:
AbstractOur exploratory research to identify new promising candidates for next generation thermoelectric applications has produced several interesting new materials which are briefly described here. We present their compositions, solid state structures, properties and charge transport behavior. The compounds CsBi4Te6, β-K2Bi8Se13, Ba4Bi6Se13, Eu2Pb2Bi6Se13, KBi6.33S10, Eu2Pb2Bi4Se10, Ba2Pb2Bi6S13 and K1.25 Pb3.5Bi7.25Se15 are particularly noteworthy.
APA, Harvard, Vancouver, ISO, and other styles
40

Sharp, Jeff W. "Selection and Evaluation of Materials for Thermoelectric Applications II." MRS Proceedings 478 (1997). http://dx.doi.org/10.1557/proc-478-15.

Full text
Abstract:
AbstractIn good thermoelectrics phonons have short mean free paths, and charge carriers have long ones. The other requirements are a multivalley band structure and a band gap greater than 0.1 eV for the 200 to 300 K temperature range. We discuss the use of solid state physics and chemistry concepts, along with atomic and crystal structure data, to select the new materials most likely to meet these criteria.
APA, Harvard, Vancouver, ISO, and other styles
41

Chung, Duck Young, Tim Hogan, Jon Schindler, Lykourgos Iordanidis, Paul Brazis, Carl R. Kannewurf, Baoxing Chen, Ctirad Uher, and Mercouri G. Kanatzidis. "Searching for New Thermoelectrics in Chemically and Structurally Complex Bismuth Chalcogenides." MRS Proceedings 478 (1997). http://dx.doi.org/10.1557/proc-478-333.

Full text
Abstract:
AbstractA solid state chemistry synthetic approach towards identifying new materials with potentially superior thermoelectric properties is presented. Materials with complex compositions and structures also have complex electronic structures which may give rise to high thermoelectric powers and at the same time possess low thermal conductivities. The structures and thermoelectric properties of several new promising compounds with K-Bi-Se, K-Bi-S, Ba-Bi- Te, Cs-Bi-Te, and Rb-Bi-Te are reported.
APA, Harvard, Vancouver, ISO, and other styles
42

He, Jian, Daniel Thompson, Brad Edwards, and Terry M. Tritt. "Thermoelectric Study on Polycrystalline La1−xSrxRuO3." MRS Proceedings 886 (2005). http://dx.doi.org/10.1557/proc-0886-f02-03.

Full text
Abstract:
ABSTRACTThe otherorhombic distorted perovskite La1−xSrxRuO3 (0.1<x<0.9) polycrystalline samples have been prepared using conventional solid state chemistry reaction. The phase constituent, compositional homogeneity and micro-morphology were checked by X-ray powder diffraction, Energy Disperse X-ray spectroscopy and scanning electron microscopy before characterized by means of the electrical resistivity, thermal conductivity and thermal power measurements. Particularly, the compositional dependence of Seebeck coefficient of present compound was studied in light of the comparison with the strongly correlated system NaxCoO4 and the relevant model proposed by W. Koshibae. Finally, the potential of using La1−xSrxRuO3 as a practical thermoelectric material has been also discussed.
APA, Harvard, Vancouver, ISO, and other styles
43

Nolas, George, Matthew Beekman, Joshua Martin, Dongli Wang, and Xiunu sophie Lin. "Bulk Materials Research for Thermoelectric Power Generation Applications." MRS Proceedings 1044 (2007). http://dx.doi.org/10.1557/proc-1044-u05-01.

Full text
Abstract:
AbstractThere are a variety of material systems employing different strategies in an effort to establish a new paradigm for thermoelectric materials performance. One approach is the PGEC, or “phonon-glass electron crystal”, approach were research towards optimization of the electrical properties of very low thermal conductivity materials is key. Other efforts focus on materials that exhibit high power factors via quantum-confinement or nano-scale affects. Still others focus on “engineering” metastable phases that possess properties that are distinct, if not unique, to solid state chemistry. All these approaches are valid and provide a fundamental knowledge base whereby present and future scientific materials discoveries will lead to new technological improvements. This paper focuses on bulk materials, in particular those material systems currently under investigation in the novel materials laboratory at the University of South Florida and the requirements and strategies for their optimization towards improved thermoelectric properties.
APA, Harvard, Vancouver, ISO, and other styles
44

Chen, Zhiwei, Xinyue Zhang, Jie Ren, Zezhu Zeng, Yue Chen, Jian He, Lidong Chen, and Yanzhong Pei. "Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping." Nature Communications 12, no. 1 (June 22, 2021). http://dx.doi.org/10.1038/s41467-021-24161-1.

Full text
Abstract:
AbstractToward high-performance thermoelectric energy conversion, the electrons and holes must work jointly like two wheels of a cart: if not longitudinally, then transversely. The bipolar effect — the main performance restriction in the traditional longitudinal thermoelectricity, can be manipulated to be a performance enhancer in the transverse thermoelectricity. Here, we demonstrate this idea in semimetal Mg2Pb. At 30 K, a giant transverse thermoelectric power factor as high as 400 μWcm−1K−2 is achieved, a 3 orders-of-magnitude enhancement than the longitudinal configuration. The resultant specific heat pumping power is ~ 1 Wg−1, higher than those of existing techniques at 10~100 K. A large number of semimetals and narrow-gap semiconductors making poor longitudinal thermoelectrics due to severe bipolar effect are thus revived to fill the conspicuous gap of thermoelectric materials for solid-state applications.
APA, Harvard, Vancouver, ISO, and other styles
45

Ganose, Alex M., Junsoo Park, Alireza Faghaninia, Rachel Woods-Robinson, Kristin A. Persson, and Anubhav Jain. "Efficient calculation of carrier scattering rates from first principles." Nature Communications 12, no. 1 (April 13, 2021). http://dx.doi.org/10.1038/s41467-021-22440-5.

Full text
Abstract:
AbstractThe electronic transport behaviour of materials determines their suitability for technological applications. We develop a computationally efficient method for calculating carrier scattering rates of solid-state semiconductors and insulators from first principles inputs. The present method extends existing polar and non-polar electron-phonon coupling, ionized impurity, and piezoelectric scattering mechanisms formulated for isotropic band structures to support highly anisotropic materials. We test the formalism by calculating the electronic transport properties of 23 semiconductors, including the large 48 atom CH3NH3PbI3 hybrid perovskite, and comparing the results against experimental measurements and more detailed scattering simulations. The Spearman rank coefficient of mobility against experiment (rs = 0.93) improves significantly on results obtained using a constant relaxation time approximation (rs = 0.52). We find our approach offers similar accuracy to state-of-the art methods at approximately 1/500th the computational cost, thus enabling its use in high-throughput computational workflows for the accurate screening of carrier mobilities, lifetimes, and thermoelectric power.
APA, Harvard, Vancouver, ISO, and other styles
46

Mrotzek, Antje, Tim Hogan, and Mercouri G. Kanatzidis. "Search for New Thermoelectric Materials through Exploratory Solid State Chemistry. The Quaternary Phases A1+xM3−2xBi7+xSe14, A1−xM3−xBi11+xSe20, A1−xM4−xBi11+xSe21 and A1−xM5−xBi11+xSe22 (A = K, Rb, Cs, M = Sn, Pb) and the Homologous Series Am[M6Se8]m[M5+nSe9+n]." MRS Proceedings 691 (2001). http://dx.doi.org/10.1557/proc-691-g5.1.

Full text
Abstract:
ABSTRACTThe compound types A1+xM3-2xBi7+xSe14, A1−xM3−xBi11+xSe20, A1−xM4−xBi11+xSe21 and A1−xM5−xBi11+xSe22 (A = K, Rb, Cs; M = Sn, Pb) form from reactions involving A2Se, Bi2Se3, M and Se. The single crystal structures reveal that they are all structurally related so that they all belong to the homologous series Am[M6Se8]m[M5+nSe9+n] (M = di- and trivalent metal), whose characteristics are three-dimensional anionic frameworks with tunnels filled with alkali ions. The building units that make up these structures are derived from different sections of the NaCl lattice. In these structures, the Bi and Sn (Pb) atoms are extensively disordered over the metal sites of the chalcogenide network, giving rise to very low thermal conductivity. These phases are all narrow gap semiconductors with 0.25 < Eg< 0.60 eV and many possess physico-chemical and charge transport properties suitable for thermoelectric investigations.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography