To see the other types of publications on this topic, follow the link: Solid state gas phase equilibria.

Journal articles on the topic 'Solid state gas phase equilibria'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Solid state gas phase equilibria.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Shishatskii, Y. I., A. A. Derkanosova, and S. A. Tolstov. "Thermodynamics of phase equilibrium in solid-liquid and solid-gas systems." Proceedings of the Voronezh State University of Engineering Technologies 83, no. 1 (June 3, 2021): 30–35. http://dx.doi.org/10.20914/2310-1202-2021-1-30-35.

Full text
Abstract:
The thermodynamic equilibrium of a two-phase system is described by the Gibbs equation, which includes state parameters. On the basis of the Gibbs equation and the combined equation of the first and second laws of thermodynamics, thermodynamic potentials are written: internal energy, enthalpy and Gibbs free energy. If the two phases are in equilibrium, then the temperatures, pressures and chemical potentials of these phases are equal to each other. Equalities express the conditions of thermal and mechanical equilibrium, as well as the condition for the absence of a driving force for the transfer of a component across the interface. For a two-phase system, the Gibbs-Duhem equation connects the volume and entropy of 1 mole of the mixture, the content of any component, expressed in mole fractions. Extraction from lupine particles with cheese whey (solid-liquid system) is considered. The driving force of the extraction process in the solid-liquid system is the difference between the concentration of the solvent at the surface of the solid C and its average concentration C0 in the bulk of the solution. The concentration at the interface is usually taken to be equal to the concentration of a saturated solution of Cn, since equilibrium is established rather quickly near the surface of a solid. Then the driving force of the process is expressed as Cn – C0. A curve for the extraction of extractives from lupine with cheese whey was plotted by superimposing low-frequency mechanical vibrations.
APA, Harvard, Vancouver, ISO, and other styles
2

Khan, Shadman H., Anupama Kumari, G. Dixit, Chandrajit B. Majumder, and Amit Arora. "Thermodynamic modeling and correlations of CH4, C2H6, CO2, H2S, and N2 hydrates with cage occupancies." Journal of Petroleum Exploration and Production Technology 10, no. 8 (September 14, 2020): 3689–709. http://dx.doi.org/10.1007/s13202-020-00998-y.

Full text
Abstract:
Abstract The present work focuses on developing a framework for accurate prediction of thermodynamic conditions for single-component hydrates, namely CH4, CO2, N2, H2S, and C2H6 (coded in MATLAB). For this purpose, an exhaustive approach is adopted by incorporating eight different equations of states, namely Peng–Robinson, van der Waals, Soave–Redlich–Kwong, Virial, Redlich–Kwong, Tsai-Teja, Patel, and Esmaeilzadeh–Roshanfekr, with the well-known van der Waals–Platteeuw model. Overall, for I–H–V phase region, the Virial and van der Waals equation of state gives the most accurate predictions with minimum AAD%. For Lw–H–V phase region, Peng–Robinson equation of state is found to yield the most accurate predictions with overall AAD of 3.36%. Also, genetic programming algorithm is adopted to develop a generalized correlation. Overall, the correlation yields quick estimation with an average deviation of less than 1%. The accurate estimation yields a minimal AAD of 0.32% for CH4, 1.93% for C2H6, 0.77% for CO2, 0.64% for H2S, and 0.72% for N2. The same correlation can be employed for fitting phase equilibrium data for other hydrates too. The tuning parameter, n, is to be used for fine adjustment to the phase equilibrium data. The findings of this study can help for a better understanding of phase equilibrium and cage occupancy behavior of different gas hydrates. The accuracy in phase equilibria is intimately related to industrial applications such as crude oil transportation, solid separation, and gas storage. To date, no single correlation is available in the literature that can accurately predict phase equilibria for multiple hydrate species. The novelty of the present work lies in both the accuracy and generalizability of the proposed correlation in predicting the phase equilibrium data. The genetic programming generalized correlation is convenient for performing quick equilibrium prediction for industrial applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Rosén, Erik, Barbro Saitton, Einar Uggerud, Jon Songstad, Harri Lönnberg, Enrique Colacio, A. M. Mulichak, et al. "Solid-State Emf Studies of Equilibria in the System Ca-S-O, using the Solid Couple (Cu, Cu2S) as Gas-Phase Buffer." Acta Chemica Scandinavica 43 (1989): 164–67. http://dx.doi.org/10.3891/acta.chem.scand.43-0164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

BRILLIANTOV, NIKOLAI V., JÜRGEN SCHMIDT, and FRANK SPAHN. "NUCLEATION AND GROWTH OF A SOLID PHASE IN A GAS EXPANDING INTO VACUUM." International Journal of Modern Physics C 18, no. 04 (April 2007): 676–84. http://dx.doi.org/10.1142/s0129183107010930.

Full text
Abstract:
We study kinetics of homogeneous nucleation in over-saturated vapor expanding from a reservoir through a long channel into vacuum. Assuming adiabatic conditions for the gas, we derive an equation of state which accounts for the phase transformation of vapor into the condensed phase. To describe the growth rate of particles of the new phase gas kinetic theory is employed. We find the size-distribution of these particles, the temperature and flux velocity along the channel. Calculations are performed for the particular case of water vapor expanding to vacuum from its equilibrium state at the triple point. These conditions correspond presumably to the formation of the gas-dust plume, recently detected at Enceladus – the icy moon of Saturn. Our results, therefore, shed some light on this interesting astrophysical phenomenon.
APA, Harvard, Vancouver, ISO, and other styles
5

Radić-Perić, J. "Formation of Gas Phase Boron and Carbon-Containing Molecular Species at High Temperatures." Materials Science Forum 555 (September 2007): 171–76. http://dx.doi.org/10.4028/www.scientific.net/msf.555.171.

Full text
Abstract:
The formation of gas phase boron and carbon containing molecular species at high temperatures (thermal plasma) is investigated theoretically, by computing the equilibrium composition of the gas mixture containing boron, carbon, hydrogen and argon. The calculations are performed for the temperature range between 500 and 6000 K, B/C=1 and 2 and for the total pressure in the system of 1 bar. Use is made of the fact that the thermal plasma is plasma in local thermodynamic equilibrium, which makes possible theoretical determination (by employing the Gibbs free energy data for the compounds present in the system) of its equilibrium composition. From the calculated compositions of the investigated gas systems, presented in this paper, it was concluded that the initial molecule for cluster formation, as a connection between individual molecules and the solid state, in the case of the synthesis of solid boron carbide by means of thermal plasma should be the B2C molecule.
APA, Harvard, Vancouver, ISO, and other styles
6

Springer, Ronald D., Peiming Wang, and Andrzej Anderko. "Modeling the Properties of H2S/CO2/Salt/Water Systems in Wide Ranges of Temperature and Pressure." SPE Journal 20, no. 05 (October 20, 2015): 1120–34. http://dx.doi.org/10.2118/173902-pa.

Full text
Abstract:
Summary To address the need to predict the properties of fluids in severe environments in the oil and gas industry, a comprehensive thermodynamic model has been developed for mixtures containing hydrogen sulfide (H2S), carbon dioxide (CO2), H2O, and selected salts. The model is based on the previously developed mixed-solvent electrolyte framework, which combines an equation of state for standard-state properties of individual species, an excess-Gibbs-energy model, and an algorithm for solving phase and chemical equilibria in multiphase systems. The standard-state properties are calculated from the Helgeson-Kirkham-Flowers (Helgeson et al. 1974a, 1974b, 1976, 1981; Tanger and Helgeson 1988) equation, whereas the excess Gibbs energy is expressed as a sum of a long-range electrostatic-interaction term expressed by a Pitzer-Debye-Hückel equation (Pitzer 1980), a virial coefficient-type term for interactions between ions, and a short-range term for interactions involving neutral molecules. The model has been parameterized using critically evaluated phase equilibrium data for various binary and ternary subsystems of the H2S/CO2/H2O/Na/Ca/Cl system and has been validated for temperatures ranging from 0 to 300°C, pressures up to approximately 3,500 atm, and salt concentrations up to solid saturation. The model reproduces chemical speciation in acid gas/brine systems as exemplified by the accurate prediction of pH. Because of its capability of predicting pH and activities of solution species, the model can serve as a foundation for studying metal/environment interactions in severe oil and gas environments.
APA, Harvard, Vancouver, ISO, and other styles
7

Kalyuzhnyi, S., A. Veeken, and B. Hamelers. "Two-particle model of anaerobic solid state fermentation." Water Science and Technology 41, no. 3 (February 1, 2000): 43–50. http://dx.doi.org/10.2166/wst.2000.0054.

Full text
Abstract:
A structured mathematical model of anaerobic solid state fermentation (ASSF) has been developed. Since a stable ASSF requires addition of significant quantities of methanogenic seed sludge and mass-transfer limitation becomes important, the model postulates the existence of two different types of particles inside the fermenting solid mass – so-called “seed” particles with low biodegradability and high methanogenic activity and so-called “waste” particles with high biodegradability and low methanogenic activity. Any particle is assumed to be a completely mixed reactor and mass transfer of solutes between the particles is brought about by diffusion. The model includes multiple-reaction stoichiometry, microbial growth kinetics, material balances, liquid-gas interactions and liquid phase equilibrium chemistry. The theoretical model agrees on the qualitative level with existing experimental studies of ASSF. Hypothetical computer simulations are presented to illustrate the influence of biodegradabilityand mass transfer intensity on the stability of ASSF. On this basis, possible measures are proposed to prevent accumulation of volatile fatty acids inside the “seed” particles beyond their assimilative methanogenic capacity.
APA, Harvard, Vancouver, ISO, and other styles
8

Wardach-Święcicka, Izabela, and Dariusz Kardaś. "Modeling of heat and mass transfer during thermal decomposition of a single solid fuel particle." Archives of Thermodynamics 34, no. 2 (June 1, 2013): 53–71. http://dx.doi.org/10.2478/aoter-2013-0010.

Full text
Abstract:
Abstract The aim of this work was to investigate the heat and mass transfer during thermal decomposition of a single solid fuel particle. The problem regards the pyrolysis process which occurs in the absence of oxygen in the first stage of fuel oxidation. Moreover, the mass transfer during heating of the solid fuels is the basic phenomenon in the pyrolysis-derived alternative fuels (gas, liquid and solid phase) and in the gasification process which is focused on the generation of syngas (gas phase) and char (solid phase). Numerical simulations concern pyrolysis process of a single solid particle which occurs as a consequence of the particle temperature increase. The research was aimed at an analysis of the influence of particle physical properties on the devolatilization process. In the mathematical modeling the fuel grain is treated as an ideal sphere which consists of porous material (solid and gaseous phase), so as to simplify the final form of the partial differential equations. Assumption that the physical properties change only in the radial direction, reduces the partial derivatives of the angular coordinates. This leads to obtaining the equations which are only the functions of the radial coordinate. The model consists of the mass, momentum and energy equations for porous spherical solid particle heated by the stream of hot gas. The mass source term was determined in the wide range of the temperature according to the experimental data. The devolatilization rate was defined by the Arrhenius formula. The results of numerical simulation show that the heating and devolatilization time strongly depend on the physical properties of fuel. Moreover, proposed model allows to determine the pyrolysis process direction, which is limited by the equilibrium state.
APA, Harvard, Vancouver, ISO, and other styles
9

Shahbazi, Mahboobeh, Henrietta Cathey, Natalia Danilova, and Ian Mackinnon. "Single Step Process for Crystalline Ni-B Compounds." Materials 11, no. 7 (July 22, 2018): 1259. http://dx.doi.org/10.3390/ma11071259.

Full text
Abstract:
Crystalline Ni2B, Ni3B, and Ni4B3 are synthesized by a single-step method using autogenous pressure from the reaction of NaBH4 and Ni precursors. The effect of reaction temperature, pressure, time, and starting materials on the composition of synthesized products, particle morphologies, and magnetic properties is demonstrated. High yields of Ni2B (>98%) are achieved at 2.3–3.4 MPa and ~670 °C over five hours. Crystalline Ni3B or Ni4B3 form in conjunction with Ni2B at higher temperature or higher autogenous pressure in proportions influenced by the ratios of initial reactants. For the same starting ratios of reactants, a longer reaction time or higher pressure shifts equilibria to lower yields of Ni2B. Using this approach, yields of ~88% Ni4B3 (single phase orthorhombic) and ~72% Ni3B are obtained for conditions 1.9 MPa < Pmax < 4.9 MPa and 670 °C < Tmax < 725 °C. Gas-solid reaction is the dominant transformation mechanism that results in formation of Ni2B at lower temperatures than conventional solid-state methods.
APA, Harvard, Vancouver, ISO, and other styles
10

Nowakowska-Langier, Katarzyna, Rafal Chodun, and Krzysztof Zdunek. "Synthesis of multicomponent metallic layers during impulse plasma deposition." Materials Science-Poland 33, no. 4 (December 1, 2015): 841–46. http://dx.doi.org/10.1515/msp-2015-0077.

Full text
Abstract:
AbstractPulsed plasma in the impulse plasma deposition (IPD) synthesis is generated in a coaxial accelerator by strong periodic electrical pulses, and it is distributed in a form of energetic plasma packets. A nearly complete ionization of gas, in these conditions of plasma generation, favors the nucleation of new phase of ions and synthesis of metastable materials in a form of coatings which are characterized by amorphous and/or nanocrystalline structure. In this work, the Fe–Cu alloy, which is immiscible in the state of equilibrium, was selected as a model system to study the possibility of formation of a non-equilibrium phase during the IPD synthesis. Structural characterization of the layers was done by means of X-ray diffraction and conversion-electron Mössbauer spectroscopy. It was found that supersaturated solid solutions were created as a result of mixing and/or alloying effects between the layer components delivered to the substrate independently and separately in time. Therefore, the solubility in the Fe–Cu system was largely extended in relation to the equilibrium conditions, as described by the equilibrium phase diagram in the solid state.
APA, Harvard, Vancouver, ISO, and other styles
11

Wilk, Bartłomiej, Artur Błachowski, Zofia Lendzion-Bieluń, and Walerian Arabczyk. "Thermodynamics of Chemical Processes in the System of Nanocrystalline Iron–Ammonia–Hydrogen at 350 °C." Catalysts 10, no. 11 (October 27, 2020): 1242. http://dx.doi.org/10.3390/catal10111242.

Full text
Abstract:
Nanocrystalline iron nitriding and the reduction of nanocrystalline iron nitrides in steady states at 350 °C are described using the chemical potential programmed reaction (CPPR), thermogravimetry (TG), 57Fe Mössbauer spectroscopy (MS), and X-ray diffraction (XRD) methods. It was determined that during the process of nitriding of nanocrystalline iron, larger nanocrystallites formed the γ’ phase and the smallest nanocrystallites (about 4%) were transformed into the α” phase. Both phases were in chemical equilibrium, with the gas phase at the temperature of 350 °C. Stable iron nitride α” was also formed in the ε iron nitride reduction process. Taking the α” phase in the system of nanocrystalline Fe-NH3-H2 into account, it was found that at certain nitriding potentials in the chemical equilibrium state, three solid phases in the nitriding process and four solid phases in the reduction process may coexist. It was also found that the nanocrystallites of ε iron nitride in their reduction process were transformed according to two mechanisms, depending on their size. Larger nanocrystallites of iron nitride ε were transformed into the α-iron phase through iron nitride γ’, and smaller nanocrystallites of ε nitride went through iron nitride α”. In the passivation process of nanocrystalline iron and/or nanocrystalline iron nitrides, amorphous phases of iron oxides and/or iron oxynitrides were formed on their surface.
APA, Harvard, Vancouver, ISO, and other styles
12

Monger, T. G. "The Impact of Oil Aromaticity on CO2, Flooding." Society of Petroleum Engineers Journal 25, no. 06 (December 1, 1985): 865–74. http://dx.doi.org/10.2118/12708-pa.

Full text
Abstract:
Abstract This paper investigates the role of oil aromaticity in miscability development and in the deposition of heavy hydrocarbons during CO2, flooding. The results of phase equilibrium measurements, compositional studies, sandpack displacements, and consolidated corefloods are presented. Reservoir oil from the Brookhaven field and presented. Reservoir oil from the Brookhaven field and synthetic oils that model natural oil phase behavior are examined. Phase compositional analyses Of CO2/synthetic-oil mixtures in static PVT tests demonstrate that increased oil aromaticity correlates with improved hydrocarbon extraction into a CO2-rich phase. The results of tertiary corefloods performed with the synthetic oils show that CO2-flood oil displacement efficiency is also improved for the oil with higher aromatic content. These oil aromaticity influences are favorable. Reservoir oil experiments show that a significant deposition of aromatic hydrocarbon material occurs when CO2, contacts highly asphaltic crude. Solid-phase formation was observed in phase equilibrium and displacement studies and led to severe plugging during linear flow through Berea cores. It is unclear how this solid phase will affect oil recovery on a reservoir scale. Introduction Several reports suggest that oil aromaticity affects the CO2, displacement process of reservoir oil. Henry and Metcalfe noted the absence of multiple-liquid phase generation in displacement tests performed with a crude oil of low aromatic content. Holm and Josendal showed that when a highly paraffinic oil was enriched with aromatics, the slim-tube minimum miscibility pressure (MMP) decreased and oil recovery improved. Qualitative differences in the phase behavior of two crudes with contrasting aromatic contents prompted the suggestion by Monger and Khakoo that increased oil aromaticity correlates with improved hydrocarbon extraction into a CO2-rich phase. Clementz discussed how the adsorption of petroleum heavy ends, like the condensed aromatic ring structures found in asphaltenes, can alter rock properties. Laboratory studies have shown that improved oil properties. Laboratory studies have shown that improved oil recoveries in tertiary CO2 displacements benefited from changes in wetting behavior apparently, induced by asphaltene adsorption. Tuttle noted that CO2, appears to reduce asphaltene solubility and can cause rigid film formation. In these respects, oil aromaticity may also account for phase-behavior/oil-recovery synergism. Asphaltene deposition, though not a problem during primary and secondary recovery operations, was primary and secondary recovery operations, was reported in the Little Creek CO2 -injection pilot in Mississippi. Wettability alteration from asphaltene precipitation appears to have explained the results of low residual oil at high water-alternating-gas ratios in the Little Knife CO2, flood minitest in North Dakota. This paper provides detailed laboratory data from phase equilibrium measurements, compositional studies. sandpack displacements, and consolidated corefloods that illuminate the role of aromatics in miscibility development and in solid-phase formation during CO2 - flooding. The results for synthetic oils that model crude-oil behavior suggest that CO2-flood performance will benefit from increased oil aromaticity. The interpretation of reservoir oil results is more difficult. The precipitation of highly aromatic hydrocarbon material is observed when CO2, contacts Brookhaven crude. One purpose of this paper is to examine the variables that influence asphaltene precipitation. Near the wellbore, solid-phase formation might precipitation. Near the wellbore, solid-phase formation might reduce injectivity or impair production rates. Perhaps in other regions of the reservoir, altered permeability and/or wettability caused by solid-phase deposition might improve the ability of CO2, to contact oil. Additional work is needed to determine which potential benefits of oil aromaticity are significant on the reservoir scale. Advances in computer-implemented equations of state are making the prediction of CO2,/hydrocarbon phase behavior easier and more reliable. When an equation of state with CO2/reservoir-oil mixtures is used, an important consideration is the characterization of the heavy hydrocarbon components. One characterization method that appears to match the experimental data accurately in the critical point region for rich-gas/reservoir-oil mixtures is based on assigning separate paraffinic, aromatic, and naphthenic cuts. An additional aim of this study is to provide experimental data in assisting similar modeling provide experimental data in assisting similar modeling efforts for CO2/reservoir-oil mixtures. Experimental phase equilibrium data for mixtures containing CO2, and phase equilibrium data for mixtures containing CO2, and heavy hydrocarbons, particularly aromatics, are scarce. The behavior of multicomponent CO2,/hydrocarbon systems is not readily deduced from the phase equilibria of binary or ternary systems. Materials and Methods Phase Equilibrium Studies. A schematic diagram of the Phase Equilibrium Studies. A schematic diagram of the apparatus used in the phase-behavior experiments appears in Fig. 1. A detailed description of the equipment, procedures, chemicals, and analytical methods used is given procedures, chemicals, and analytical methods used is given in Ref. 10. SPEJ P. 865
APA, Harvard, Vancouver, ISO, and other styles
13

Piekarska, W. "Modelling and Analysis of Phase Transformations and Stresses in Laser Welding Process / Modelowanie I Analiza Przemian Fazowych I Naprężeń W Procesie Spawania Laserowego." Archives of Metallurgy and Materials 60, no. 4 (December 1, 2015): 2833–42. http://dx.doi.org/10.1515/amm-2015-0454.

Full text
Abstract:
The work concerns the numerical modelling of structural composition and stress state in steel elements welded by a laser beam. The temperature field in butt welded joint is obtained from the solution of heat transfer equation with convective term. The heat source model is developed. Latent heat of solid-liquid and liquid-gas transformations as well as latent heats of phase transformations in solid state are taken into account in the algorithm of thermal phenomena. The kinetics of phase transformations in the solid state and volume fractions of formed structures are determined using classical formulas as well as Continuous-Heating-Transformation (CHT) diagram and Continuous-Cooling-Transformation (CCT) diagram during welding. Models of phase transformations take into account the influence of thermal cycle parameters on the kinetics of phase transformations during welding. Temporary and residual stress is obtained on the basis of the solution of mechanical equilibrium equations in a rate form. Plastic strain is determined using non-isothermal plastic flow with isotropic reinforcement, obeying Huber-Misses plasticity condition. In addition to thermal and plastic strains, the model takes into account structural strain and transformation plasticity. Changing with temperature and structural composition thermophysical parameters are included into constitutive relations. Results of the prediction of structural composition and stress state in laser butt weld joint are presented.
APA, Harvard, Vancouver, ISO, and other styles
14

Guseynov, Sharif E., and Jekaterina V. Aleksejeva. "MODELLING AND INVESTIGATION OF THE DEPENDENCE OF SUPERHYDROPHOBIC PROPERTIES OF NANOSURFACES ON THE TOPOLOGY OF MICROCHANNELS." ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference 3 (June 20, 2019): 52. http://dx.doi.org/10.17770/etr2019vol3.4171.

Full text
Abstract:
In the Cassie-Baxter state anisotropic superhydrophobic surfaces have high lubricating properties. Such superhydrophobic surfaces are used in medical implants, aircraft industry, vortex bioreactors etc. In spite of the fact that quantitative understanding of fluid dynamics on anisotropic superhydrophobic surfaces has been broadened substantially for last several years, there still are some unsolved problems in this field. This work investigates dynamics of a liquid on unidirectional superhydrophobic surfaces in the Cassie-Baxter state, when surface texture is filled with gas and, consequently, the liquid virtually is located on some kind of an air cushion. Energy of the interphase boundary liquid-gas is much smaller than energy of the interphase boundary solid-liquid, that is why the contact angle at wetting such surfaces differs a lot from the Young contact angle and depends on contact area ratio of liquid-gas and liquid-solid in visible contact of liquid and surface. Considering difference in energy obtained if we slightly shift the three-phase contact line, expression for macroscopic equilibrium contact angle, which describes the Cassie-Baxter state, can be deduced. In the work the design formula for computing local-slip length profiles of liquid on the considered superhydrophobic surfaces is obtained.
APA, Harvard, Vancouver, ISO, and other styles
15

Jacob, K. T., and K. P. Jayadevan. "System Bi–Sr–O: Synergistic measurements of thermodynamic properties using oxide and fluoride solid electrolytes." Journal of Materials Research 13, no. 7 (July 1998): 1905–18. http://dx.doi.org/10.1557/jmr.1998.0270.

Full text
Abstract:
Phase equilibrium and electrochemical studies of the ternary system Bi–Sr–O indicate the presence of six ternary oxides (Bi2SrO4, Bi2Sr2O5, Bi2Sr3O6, Bi4Sr6O15, Bi14Sr24O52, and Bi2Sr6O11) and three solid solutions (δ, β, and γ). An isothermal section of the phase diagram is established at 1050 K by phase analysis of quenched samples. Three compounds, Bi4Sr6O15, Bi14Sr24O52, and Bi2Sr6O11, contain Bi5+ ions. The stability of these phases is a function of oxygen partial pressure. The chemical potentials of SrO in two-phase fields are determined as a function of temperature using solid-state cells based on single crystal SrF2 as the electrolyte. Measurement of the emf of cells based on SrF2 as a function of oxygen partial pressure in the gas at constant temperature gives information on oxygen content of the compounds present at the electrodes. The chemical potentials of Bi2O3 in two-phase fields of the pseudobinary Bi2O3–SrO are measured using cells incorporating (Y2O3)ZrO2 as the solid electrolyte. The standard free energies of formation of the ternary oxides are calculated independently using emfs of different cells. The independent assessments agree closely; the maximum difference in the value of of component binary oxides. The results are discussed in the light of the phase diagram and compared with calorimetric and chemical potential measurements reported in the literature. The combined use of emf data from cells incorporating fluoride and oxide electrolytes enhances the reliability of derived data.
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Ying, and Manabu Shiraiwa. "Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities." Atmospheric Chemistry and Physics 19, no. 9 (May 7, 2019): 5959–71. http://dx.doi.org/10.5194/acp-19-5959-2019.

Full text
Abstract:
Abstract. Secondary organic aerosols (SOA) account for a substantial fraction of air particulate matter, and SOA formation is often modeled assuming rapid establishment of gas–particle equilibrium. Here, we estimate the characteristic timescale for SOA to achieve gas–particle equilibrium under a wide range of temperatures and relative humidities using a state-of-the-art kinetic flux model. Equilibration timescales were calculated by varying particle phase state, size, mass loadings, and volatility of organic compounds in open and closed systems. Model simulations suggest that the equilibration timescale for semi-volatile compounds is on the order of seconds or minutes for most conditions in the planetary boundary layer, but it can be longer than 1 h if particles adopt glassy or amorphous solid states with high glass transition temperatures at low relative humidity. In the free troposphere with lower temperatures, it can be longer than hours or days, even at moderate or relatively high relative humidities due to kinetic limitations of bulk diffusion in highly viscous particles. The timescale of partitioning of low-volatile compounds into highly viscous particles is shorter compared to semi-volatile compounds in the closed system, as it is largely determined by condensation sink due to very slow re-evaporation with relatively quick establishment of local equilibrium between the gas phase and the near-surface bulk. The dependence of equilibration timescales on both volatility and bulk diffusivity provides critical insights into thermodynamic or kinetic treatments of SOA partitioning for accurate predictions of gas- and particle-phase concentrations of semi-volatile compounds in regional and global chemical transport models.
APA, Harvard, Vancouver, ISO, and other styles
17

Borodin, Dmitriy, Igor Rahinov, Pranav R. Shirhatti, Meng Huang, Alexander Kandratsenka, Daniel J. Auerbach, Tianli Zhong, et al. "Following the microscopic pathway to adsorption through chemisorption and physisorption wells." Science 369, no. 6510 (September 17, 2020): 1461–65. http://dx.doi.org/10.1126/science.abc9581.

Full text
Abstract:
Adsorption involves molecules colliding at the surface of a solid and losing their incidence energy by traversing a dynamical pathway to equilibrium. The interactions responsible for energy loss generally include both chemical bond formation (chemisorption) and nonbonding interactions (physisorption). In this work, we present experiments that revealed a quantitative energy landscape and the microscopic pathways underlying a molecule’s equilibration with a surface in a prototypical system: CO adsorption on Au(111). Although the minimum energy state was physisorbed, initial capture of the gas-phase molecule, dosed with an energetic molecular beam, was into a metastable chemisorption state. Subsequent thermal decay of the chemisorbed state led molecules to the physisorption minimum. We found, through detailed balance, that thermal adsorption into both binding states was important at all temperatures.
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Feng Xain, Yun Zhong Liu, and Xia Luo. "Effect of Heating Temperature on the Microstructural Evolution of Al-5.8%Zn-1.63%Mg-2.22%Cu-0.12%Zr Gas Atomized Powders." Advanced Materials Research 418-420 (December 2011): 1595–98. http://dx.doi.org/10.4028/www.scientific.net/amr.418-420.1595.

Full text
Abstract:
Al-5.8%Zn-1.63%Mg-2.22%Cu-0.12%Zr powders were manufactured by gas atomization process. The effect of temperature on microstructural evolution of the powders was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). On reheating the atomized powders into semisolid state, the phase chemistry and quantity of liquid were typically changed as the system established equilibrium. As the heat treated temperature was increased from 550 °C to 620 °C, the amount of η (MgZn2) phase decreases and a great number of particles Al2Cu precipitates in the powders interior. The inter-diffusion of species will be the main factor. Considering the factors of microstructure, 600 °C is determined to be the best semi-solid forming temperature.
APA, Harvard, Vancouver, ISO, and other styles
19

GAMALY, E. G., B. LUTHER-DAVIES, V. Z. KOLEV, N. R. MADSEN, M. DUERING, and A. V. RODE. "Ablation of metals with picosecond laser pulses: Evidence of long-lived non-equilibrium surface states." Laser and Particle Beams 23, no. 2 (June 2005): 167–76. http://dx.doi.org/10.1017/s0263034605050299.

Full text
Abstract:
Experiments on laser ablation of metals in air, in vacuum, and in similar irradiation conditions, revealed that the ablation thresholds in air are up to three times lower than those measured in vacuum. Our analysis shows that this difference is caused by the existence of a long-lived transient non-equilibrium surface state at the solid-vacuum interface. The energy distribution of atoms at the surface is Maxwellian-like but with its high-energy tail truncated at the binding energy. We find that in vacuum the rate of energy transfer from the bulk to the surface layer to build the high-energy tail, which determines the lifetime of this non-equilibrium state, exceeds other characteristic timescales such as the surface cooling time. This prohibits thermal evaporation in vacuum for which the high-energy tail is essential. In air, however, collisions between the gas atoms and the surface markedly reduce the lifetime of this non-equilibrium surface state allowing thermal evaporation to proceed before the surface cools. It was experimentally observed that the difference between the ablation depth in vacuum and that in air disappears at the laser fluencies 2–3 times in excess of the vacuum threshold value. The material removal at this level of the deposited energy density attains the features of the non-equilibrium ablation similar for both cases. We find, therefore, that the threshold in vacuum corresponds to non-equilibrium ablation during the pulse, while thermal evaporation after the pulse is responsible for the lower ablation threshold observed in air. This paper provides direct experimental evidence of how the transient surface effects may strongly affect the onset and rate of a solid-gas phase transition.
APA, Harvard, Vancouver, ISO, and other styles
20

Demin, Alexey, Roza Dyganova, and Nail Fakhreev. "Thermo-chemical equilibrium modeling and simulation of biomass gasification." E3S Web of Conferences 161 (2020): 01081. http://dx.doi.org/10.1051/e3sconf/202016101081.

Full text
Abstract:
Here, we present the results of numerical studies of biomass gasification using poultry litter, sewage sludge and wood waste (pine shavings) as examples of starting materials. The aim of the study was to find ways to increase the degree of biomass conversion to combustible gaseous products (CO, H2, CnHm) and to achieve high calorific value of the generated synthesis gas. Modeling biomass gasification was performed for a multicomponent reacting system in a state of thermodynamic and chemical equilibrium. The mathematical model and the calculation program created by the authors were used. The presence of a condensed phase in the form of fine particles of solid carbon and ash in biomass gasification products was taken into account. The optimal levels of gasification temperatures and conditions that help minimizing the concentration of solid carbon particles in gasification products were determined. For optimal biomass gasification, we recommend using the thermal energy obtained from burning part of the generated syngas.
APA, Harvard, Vancouver, ISO, and other styles
21

Falanga, Mariarosaria, Enza De Lauro, Simona Petrosino, and Salvatore De Martino. "Interaction between seismicity and deformation on different time scales in volcanic areas: Campi Flegrei and Stromboli." Advances in Geosciences 52 (December 5, 2019): 1–8. http://dx.doi.org/10.5194/adgeo-52-1-2019.

Full text
Abstract:
Abstract. We study oscillations recorded at Stromboli and Campi Flegrei by different sensors: seismometers, strainmeters and tiltmeters. We examine both the high-frequency (>0.5 Hz) portion of the spectrum and very long period signals up to tidal scales. In this context, seismicity and deformation are investigated on different time scales (from minutes to days/years) in order to identify the basic elements of their interaction, whose understanding should provide new insights on the predictive models. In this work, the strict relation of tides and volcanic processes is shown. At Stromboli, indeed the transition from the stationary phase to the non-stationary phase seems to have a tidal precursor that is related to the duration of the crisis. The subsequent volcanic activity is interpreted as the response of the volcano to restore the equilibrium condition. The moveout from equilibrium produces, first, variations in the standard statistics of explosions, then leads to effusive stage and to a pressure drop in the shallow feeding system. That process induces the nucleation of a gas bubble and the excitation of low frequencies. Campi Flegrei seismicity shows a correlation between the diurnal solar solid tide and the energy released by the long period signals, indicating that the whole mechanism is modulated on a tidal scale. In other words, in the case of Stromboli, a departure from the equilibrium state is marked by solid tide variations in a certain frequency band. On the other hand, at Campi Flegrei diurnal to annual solid tides modulate an increase of volcanic activity.
APA, Harvard, Vancouver, ISO, and other styles
22

Venkatraman, Ashwin, Birol Dindoruk, Hani Elshahawi, Larry W. Lake, and Russell T. Johns. "Modeling Effect of Geochemical Reactions on Real-Reservoir-Fluid Mixture During Carbon Dioxide Enhanced Oil Recovery." SPE Journal 22, no. 05 (April 10, 2017): 1519–29. http://dx.doi.org/10.2118/175030-pa.

Full text
Abstract:
Summary Carbon dioxide (CO2) injection in oil reservoirs has the dual benefit of enhancing oil recovery from declining reservoirs and sequestering a greenhouse gas to combat climate change. CO2 injected in carbonate reservoirs, such as those found in the Middle East, can react with ions present in the brine and the solid calcite in the carbonate rocks. These geochemical reactions affect the overall mole numbers and, in some extreme cases, even the number of phases at equilibrium, affecting oil-recovery predictions obtained from compositional simulations. Hence, it is important to model the effect of geochemical reactions on a real-reservoir-fluid mixture during CO2 injection. In this study, the Gibbs free-energy function is used to integrate phase-behavior computations and geochemical reactions to find equilibrium composition. The Gibbs free-energy minimization method by use of elemental-balance constraint is used to obtain equilibrium composition arising out of phase and chemical equilibrium. The solid phase is assumed to be calcite, the hydrocarbon phases are characterized by use of the Peng-Robinson (PR) equation of state (EOS) (Robinson et al. 1985), and the aqueous-phase components are described by use of the Pitzer activity-coefficient model (Pitzer 1973). The binary-interaction parameters for the EOS and the activity-coefficient model are obtained by use of experimental data. The effect of the changes in phase behavior of a real-reservoir fluid with 22 components is presented in this paper. We observe that the changes in phase behavior of the resulting reservoir-fluid mixture in the presence of geochemical reactions depend on two factors: the volume ratio (and hence molar ratio) of the aqueous phase to the hydrocarbon phase and the salinity of the brine. These changes represent a maximum effect of geochemical reactions because all reactions are assumed to be at equilibrium. This approach can be adapted to any reservoir brine and hydrocarbon as long as the initial formation-water composition and their Gibbs free energy at standard states are known. The resultant model can be integrated in any reservoir simulator because any algorithm can be used for minimizing the Gibbs free-energy function of the entire system.
APA, Harvard, Vancouver, ISO, and other styles
23

Rogala, Zbigniew, Arkadiusz Brenk, and Ziemowit Malecha. "Theoretical and Numerical Analysis of Freezing Risk During LNG Evaporation Process." Energies 12, no. 8 (April 13, 2019): 1426. http://dx.doi.org/10.3390/en12081426.

Full text
Abstract:
The liquid natural gas (LNG) boiling process concerns most LNG applications due to a need for regasification. Depending on the pressure, the equilibrium temperature of LNG is 112–160 K. The low boiling temperature of LNG makes the vaporization process challenging because of a large temperature difference between the heating medium and LNG. A significant risk included in the regasification process is related to the possibility of solid phase formation (freezing of the heating fluid). A solid phase formation can lead to an increase in pressure loss, deterioration in heat transfer, or even to the destruction of the heat exchanger. This prompts the need for a better understanding of the heat transfer during the regasification process to help avoid a solid phase formation. The present research is focused on the investigation of the mutual interactions between several parameters, which play a significant role in the regasification process. The research is based on a zero-dimensional (0D) model, which was validated through the comparison with a state-of-the-art Computational Fluid Dynamics (CFD) model. This made fast calculations and the study of the risk of freezing for a wide range of parameter space possible, including the LNG boiling regime. The boiling regime of LNG was shown to be a key factor in determining the risk of freezing.
APA, Harvard, Vancouver, ISO, and other styles
24

Chikwanda, Hilda, and L. Mahlatji. "Mechanical Alloying of Ti-Based Materials." Key Engineering Materials 770 (May 2018): 95–105. http://dx.doi.org/10.4028/www.scientific.net/kem.770.95.

Full text
Abstract:
Mechanical alloying (MA) is a simple and versatile dry powder processing technique that has been used for the manufacture of both equilibrium and metastable phases of commercially useful and scientifically interesting materials. It owes its origin to an industry need to develop a nickel-based super alloy for gas turbine applications that had both oxide dispersion strengthening and precipitation hardening. This far-from equilibrium powder metallurgy processing technique involves fracturing, welding and re-welding of powder particles in a High Energy Ball Mill (HEBM). MA is an economically viable process with important technical advantages. Its utmost advantage is in the synthesis of novel alloys, e.g., alloying of ordinarily immiscible elements, that is not possible by any other technique. As MA is a completely solid-state processing technique, the limitations imposed by phase diagrams do not apply to it. The MA process is capable of producing different types of metastable effects in a variety of alloy systems. Some of the metastable effects achieved by MA are solid solution formation and amorphisation. MA has the possibility of producing superior and enhanced materials than those produces by conventional methods. In this work a review of MA and its present and potential applications for Ti-based materials are presented.
APA, Harvard, Vancouver, ISO, and other styles
25

Wei, Minghui, Chenghuai Wu, and Yanxi Zhou. "Study on Wellbore Temperature and Pressure Distribution in Process of Gas Hydrate Mined by Polymer Additive CO2 Jet." Advances in Polymer Technology 2020 (January 10, 2020): 1–7. http://dx.doi.org/10.1155/2020/2914375.

Full text
Abstract:
In order to solve the problem of hydrate reservoir collapse and hydrate regenerated in the process of solid fluidization of natural gas hydrate, a new method of natural gas hydrate exploit by high‐polymer additive (low viscosity carboxymethyl cellulose LV‐CMC) carbon dioxide jet was proposed. The wellbore temperature and pressure changes during this process are analyzed, and the wellbore temperature and pressure model are established and solved by the state space method. This paper also analyzed the effects of relevant parameters on hydrate decomposition, such as injection flow, temperature, and pressure. The results show that increasing the injection pressure allows the hydrate decomposition site to be closer to the annulus outlet. Compared with water, with polymer additive CO2 fluid as the drilling fluid, the intersection point of phase equilibrium curve and annular pressure curve is closer to annular outlet, which is obviously more conducive to well control. In order to avoid phase changes, the injection pressure of the carbon dioxide fluid of the high‐polymer additive should not be lower than 10 MPa, and the injection temperature should not be higher than 285 K.
APA, Harvard, Vancouver, ISO, and other styles
26

Garbacz, Jerzy K., Ewa Kopkowska, and Barbara Rymian. "Description of the Adsorption Equilibrium with Consideration to the Decreasing Availability of Space in the Course of Mobile Adsorption of a Single Gas on a Homogenous Surface of Solid." Polish Hyperbaric Research 64, no. 3 (September 1, 2018): 25–38. http://dx.doi.org/10.2478/phr-2018-0016.

Full text
Abstract:
Abstract The subsequent stages of the process of formulation of the equation for gas adsorption on a homogenous surface of a solid adsorbent were presented based on the general expression for the canonical ensemble of the mobile single-component adsorption monolayer. The method of formulating the configuration integral of the proposed model was discussed in detail where the role both of the attraction and repulsion between adsorbed molecules was emphasised. The expression for the probability of finding a molecule in a specified point on a surface of an adsorbent was modified by determining its magnitude by the adsorbent concentration. The expression for the so-called effective surface of the adsorbent was obtained by adapting a two-dimensional analogue equation of state hard spheres – Van der Waals equation (2D-vdW) and Reis-Frisch-Lebowitz equation accordingly (2D-RFL). As a result, two new adsorption equations were formulated which differ in detail concerning the adsorbate-adsorbate repulsion. On each of these equations theoretical analysis was performed in terms of two-dimensional phase transformation. In both cases it was proved that the proposed solution allows for the presence of two-phase transformations of the first type which is the gas-liquid condensation and solidification liquid-solid. The verification of the given approach was supplemented by the description of the experimental data given in reference literature and by obtaining a very good correlation between the theory and experiment.
APA, Harvard, Vancouver, ISO, and other styles
27

Carcano, S., L. Bonaventura, T. Esposti Ongaro, and A. Neri. "A semi-implicit, second order accurate numerical model for multiphase underexpanded volcanic jets." Geoscientific Model Development Discussions 6, no. 1 (January 22, 2013): 399–452. http://dx.doi.org/10.5194/gmdd-6-399-2013.

Full text
Abstract:
Abstract. An improved version of the PDAC (Pyroclastic Dispersal Analysis Code, Esposti Ongaro et al., 2007) numerical model for the simulation of multiphase volcanic flows is presented and validated for the simulation of multiphase volcanic jets in supersonic regimes. The present version of PDAC includes second-order time and space discretizations and fully multidimensional advection discretizations, in order to reduce numerical diffusion and enhance the accuracy of the original model. The model is tested on the problem of jet decompression, in both two and three dimensions. For homogeneous jets, numerical results are consistent with experimental results at the laboratory scale (Lewis and Carlson, 1964). For non-equilibrium gas-particle jets, we consider monodisperse and bidisperse mixtures and we quantify non-equilibrium effects in terms of the ratio between the particle relaxation time and a characteristic jet time scale. For coarse particles and low particle load, numerical simulations well reproduce laboratory experiments and numerical simulations carried out with an Eulerian-Lagrangian model (Sommerfeld, 1993). At the volcanic scale, we consider steady-state conditions associated to the development of Vulcanian and sub-Plinian eruptions. For the finest particles produced in these regimes, we demonstrate that the solid phase is in mechanical and thermal equilibrium with the gas phase and that the jet decompression structure is well described by a pseudogas model (Ogden et al., 2008). Coarse particles, on the contrary, display significant non-equilibrium effects, associated to their larger relaxation time. Deviations from the equilibrium regime occur especially during the rapid acceleration phases and are able to appreciably modify the average jet dynamics, with maximum velocity and temperature differences of the order of 150 m s−1 and 80 K across shock waves.
APA, Harvard, Vancouver, ISO, and other styles
28

Roldin, P., A. C. Eriksson, E. Z. Nordin, E. Hermansson, D. Mogensen, A. Rusanen, M. Boy, et al. "Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multi-layer model ADCHAM." Atmospheric Chemistry and Physics Discussions 14, no. 1 (January 10, 2014): 769–869. http://dx.doi.org/10.5194/acpd-14-769-2014.

Full text
Abstract:
Abstract. We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: (1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), (2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and (3) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. These salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar like amorphous phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if low-volatility and viscous oligomerized SOA material accumulates in the particle surface layer upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass transfer limited uptake of condensable organic compounds onto wall deposited particles or directly onto the Teflon chamber walls of smog chambers can have profound influence on the observed SOA formation. During the early stage of the SOA formation the wall deposited particles and walls themselves serve as a SOA sink from the air to the walls. However, at the end of smog chamber experiments the semi-volatile SOA material may start to evaporate from the chamber walls. With these three model applications, we demonstrate that several poorly quantified processes, i.e. mass transport limitations within the particle phase, oligomerization, heterogeneous oxidation, organic salt formation, and chamber wall effects can have substantial influence on the SOA formation, lifetime, chemical and physical particle properties, and their evolution. In order to constrain the uncertainties related to these processes, future experiments are needed where as many of the influential variables as possible are varied. ADCHAM can be a valuable model tool in the design and analysis of such experiments.
APA, Harvard, Vancouver, ISO, and other styles
29

Theulé, Patrice. "Chemical dynamics in interstellar ice." Proceedings of the International Astronomical Union 15, S350 (April 2019): 139–43. http://dx.doi.org/10.1017/s1743921319008342.

Full text
Abstract:
AbstractChemistry in the interstellar medium is generally out-of-equilibrium and as such is kinetically controlled by a set of time-dependent equations, both for gas-phase chemistry and solid-state chemistry. The competition between the different possible reactions will determine toward which complex molecules the chemical network is driven to. The formation of complex molecules on the surface of the grains or in the ice mantle covering them is set by the diffusion-reaction equation, which is depending on temperature dependent reaction rate constants and diffusion coefficients. This paper shows how these two parameters can be experimentally determined by laboratory experiments. It also shows how the ice mantle reorganization plays an important role in the trapping and reactivity, which leads to the formation of complex organic molecules.
APA, Harvard, Vancouver, ISO, and other styles
30

Roldin, P., A. C. Eriksson, E. Z. Nordin, E. Hermansson, D. Mogensen, A. Rusanen, M. Boy, et al. "Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM." Atmospheric Chemistry and Physics 14, no. 15 (August 11, 2014): 7953–93. http://dx.doi.org/10.5194/acp-14-7953-2014.

Full text
Abstract:
Abstract. We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas-phase Master Chemical Mechanism version 3.2 (MCMv3.2), an aerosol dynamics and particle-phase chemistry module (which considers acid-catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion-limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study (1) the evaporation of liquid dioctyl phthalate (DOP) particles, (2) the slow and almost particle-size-independent evaporation of α-pinene ozonolysis secondary organic aerosol (SOA) particles, (3) the mass-transfer-limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), and (4) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. In the smog chamber experiments, these salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar-like amorphous-phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if the concentration of low-volatility and viscous oligomerized SOA material at the particle surface increases upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass-transfer-limited uptake of condensable organic compounds onto wall-deposited particles or directly onto the Teflon chamber walls of smog chambers can have a profound influence on the observed SOA formation. During the early stage of the SOA formation the wall-deposited particles and walls themselves serve as an SOA sink from the air to the walls. However, at the end of smog chamber experiments the semi-volatile SOA material may start to evaporate from the chamber walls. With these four model applications, we demonstrate that several poorly quantified processes (i.e. mass transport limitations within the particle phase, oligomerization, heterogeneous oxidation, organic salt formation, and chamber wall effects) can have a substantial influence on the SOA formation, lifetime, chemical and physical particle properties, and their evolution. In order to constrain the uncertainties related to these processes, future experiments are needed in which as many of the influential variables as possible are varied. ADCHAM can be a valuable model tool in the design and analysis of such experiments.
APA, Harvard, Vancouver, ISO, and other styles
31

Roach, Benjamin D., Tai Lin, Heiko Bauer, Ross S. Forgan, Simon Parsons, David M. Rogers, Fraser J. White, and Peter A. Tasker. "Salicylaldehyde Hydrazones: Buttressing of Outer-Sphere Hydrogen-Bonding and Copper Extraction Properties." Australian Journal of Chemistry 70, no. 5 (2017): 556. http://dx.doi.org/10.1071/ch16639.

Full text
Abstract:
Salicylaldehyde hydrazones are weaker copper extractants than their oxime derivatives, which are used in hydrometallurgical processes to recover ~20 % of the world’s copper. Their strength, based on the extraction equilibrium constant Ke, can be increased by nearly three orders of magnitude by incorporating electron-withdrawing or hydrogen-bond acceptor groups (X) ortho to the phenolic OH group of the salicylaldehyde unit. Density functional theory calculations suggest that the effects of the 3-X substituents arise from a combination of their influence on the acidity of the phenol in the pH-dependent equilibrium, Cu2+ + 2Lorg ⇌ [Cu(L–H)2]org + 2H+, and on their ability to ‘buttress’ interligand hydrogen bonding by interacting with the hydrazone N–H donor group. X-ray crystal structure determination and computed structures indicate that in both the solid state and the gas phase, coordinated hydrazone groups are less planar than coordinated oximes and this has an adverse effect on intramolecular hydrogen-bond formation to the neighbouring phenolate oxygen atoms.
APA, Harvard, Vancouver, ISO, and other styles
32

Khokha, Yuri, Oleksandr Lyubchak, and Myroslava Yakovenko. "THERMODYNAMICS OF TYPE II KEROGEN TRANSFORMATION." Geology and Geochemistry of Combustible Minerals 3, no. 180 (December 18, 2019): 25–40. http://dx.doi.org/10.15407/ggcm2019.03.025.

Full text
Abstract:
The article reviews the chemical structure of type II kerogen. The changes that occur with the structure of type II kerogen as it passes through the stages of catagenesis from immature to post-mature are evaluated. Structural models of type II kerogen at different stages of catagenesis are presented: both obtained empirically after studying the structure by physical and chemical methods and the results of modelling by molecular dynamics method. Methods of equilibrium thermodynamics are used to calculate the composition of the kerogen–gas system for crust sections in the range of 1–20 km with a heat flux of 40 to 100 mW/m2. The composition of kerogen/fluid geochemical system is calculated using the E. T. Jaynes formalism. It boils down to determining the optimal distribution of 5 elements (C, H, O, N, S) among the 44 additive constituents of the solid phase (i. e., type II kerogen) and other individual components that are included in the system (CO2, H2O, H2S, NH3, CH4, C2H6, C3H8, i-C4H10, n-C4H10, i-C5H12, neo-C5H12, n-C5H12). Comparison with the experiments showed that the results of the calculations do not contradict the experiments, with study the structure and changes in type II kerogen with increasing degree of catagenesis. In the analysis of changes in the concentrations of water, carbon dioxide and hydrogen sulfide, it is founded that kerogen could be not only a donor of atoms for gas components, but also their acceptor in contact with a high-energy fluid stream. It is shown that the determination of sulfur-containing atomic groups of kerogen by thermodynamic modelling yields gives more reliable results than molecular dynamics methods. Established is that the concept of “methane-graphite death”, which takes place in the state of thermodynamic equilibrium in the transformation of organic matter, is erroneous. The calculation shows that the composition of the kerogen–gas system, in addition to methane and carbon, includes solid-phase heteroatom groups, various additive components of aromatic structures and gases, both organic and inorganic. The distribution of elements between the additive components of kerogen and gases in this system controls the pressure and temperature in a complex way. The nature of changes in hydrocarbon gas concentrations in equilibrium with type II kerogen indicates the presence of an “oil window” in low-warmed zones within 2–4 km depths.
APA, Harvard, Vancouver, ISO, and other styles
33

Song, Shaojie, Meng Gao, Weiqi Xu, Jingyuan Shao, Guoliang Shi, Shuxiao Wang, Yuxuan Wang, Yele Sun, and Michael B. McElroy. "Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models." Atmospheric Chemistry and Physics 18, no. 10 (May 28, 2018): 7423–38. http://dx.doi.org/10.5194/acp-18-7423-2018.

Full text
Abstract:
Abstract. pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in northern China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol-phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species, and inferred pH values exhibit a bimodal distribution, with peaks between −2 and 2 and between 7 and 10, depending on whether anions or cations are in excess. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by these measurement errors. In future studies, the reverse mode should be avoided whereas the forward mode should be used. Forward-mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in northern China winter haze, indicating further that ammonia plays an important role in determining this property. The assumed particle phase state, either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions. The unrealistic pH values of about 7 in a few previous studies (using the standard ISORROPIA model and stable state assumption) resulted from coding errors in the model, which have been identified and fixed in this study.
APA, Harvard, Vancouver, ISO, and other styles
34

Carcano, S., L. Bonaventura, T. Esposti Ongaro, and A. Neri. "A semi-implicit, second-order-accurate numerical model for multiphase underexpanded volcanic jets." Geoscientific Model Development 6, no. 6 (November 4, 2013): 1905–24. http://dx.doi.org/10.5194/gmd-6-1905-2013.

Full text
Abstract:
Abstract. An improved version of the PDAC (Pyroclastic Dispersal Analysis Code, Esposti Ongaro et al., 2007) numerical model for the simulation of multiphase volcanic flows is presented and validated for the simulation of multiphase volcanic jets in supersonic regimes. The present version of PDAC includes second-order time- and space discretizations and fully multidimensional advection discretizations in order to reduce numerical diffusion and enhance the accuracy of the original model. The model is tested on the problem of jet decompression in both two and three dimensions. For homogeneous jets, numerical results are consistent with experimental results at the laboratory scale (Lewis and Carlson, 1964). For nonequilibrium gas–particle jets, we consider monodisperse and bidisperse mixtures, and we quantify nonequilibrium effects in terms of the ratio between the particle relaxation time and a characteristic jet timescale. For coarse particles and low particle load, numerical simulations well reproduce laboratory experiments and numerical simulations carried out with an Eulerian–Lagrangian model (Sommerfeld, 1993). At the volcanic scale, we consider steady-state conditions associated with the development of Vulcanian and sub-Plinian eruptions. For the finest particles produced in these regimes, we demonstrate that the solid phase is in mechanical and thermal equilibrium with the gas phase and that the jet decompression structure is well described by a pseudogas model (Ogden et al., 2008). Coarse particles, on the other hand, display significant nonequilibrium effects, which associated with their larger relaxation time. Deviations from the equilibrium regime, with maximum velocity and temperature differences on the order of 150 m s−1 and 80 K across shock waves, occur especially during the rapid acceleration phases, and are able to modify substantially the jet dynamics with respect to the homogeneous case.
APA, Harvard, Vancouver, ISO, and other styles
35

Cai, Mingyu, Yuliang Su, Lei Li, Yongmao Hao, and Xiaogang Gao. "CO2-Fluid-Rock Interactions and the Coupled Geomechanical Response during CCUS Processes in Unconventional Reservoirs." Geofluids 2021 (February 26, 2021): 1–22. http://dx.doi.org/10.1155/2021/6671871.

Full text
Abstract:
The difficulty of deploying remaining oil from unconventional reservoirs and the increasing CO2 emissions has prompted researchers to delve into carbon emissions through Carbon Capture, Utilization, and Storage (CCUS) technologies. Under the confinement of nanopore in unconventional formation, CO2 and hydrocarbon molecules show different density distribution from in the bulk phase, which leads to a unique phase state and interface behavior that affects fluid migration. At the same time, mineral reactions, asphaltene deposition, and CO2 pressurization will cause the change of porous media geometry, which will affect the multiphase flow. This review highlights the physical and chemical effects of CO2 injection into unconventional reservoirs containing a large number of micro-nanopores. The interactions between CO2 and in situ fluids and the resulting unique fluid phase behavior, gas-liquid equilibrium calculation, CO2 adsorption/desorption, interfacial tension, and minimum miscible pressure (MMP) are reviewed. The pore structure changes and stress distribution caused by the interactions between CO2, in situ fluids, and rock surface are discussed. The experimental and theoretical approaches of these fluid-fluid and fluid-solid reactions are summarized. Besides, deficiencies in the application and safety assessment of CCUS in unconventional reservoirs are described, which will help improve the design and operation of CCUS.
APA, Harvard, Vancouver, ISO, and other styles
36

Fuchs, G. W., D. Witsch, D. Herberth, M. Kempkes, B. Stanclik, J. Chantzos, H. Linnartz, K. M. Menten, and T. F. Giesen. "Simulating the circumstellar H2CO and CH3OH chemistry of young stellar objects using a spherical physical-chemical model." Astronomy & Astrophysics 639 (July 2020): A143. http://dx.doi.org/10.1051/0004-6361/202037533.

Full text
Abstract:
Context. Young stellar objects (YSOs) and their environments are generally geometrically and dynamically challenging to model, and the corresponding chemistry is often dominated by regions in non-thermal equilibrium. In addition, modern astrochemical models have to consider not only gas-phase reactions, but also solid-state reactions on icy dust grains. Solving the geometrical, physical, and chemical boundary conditions simultaneously requires a high computational effort and still runs the risk of false predictions due to the intrinsically non-linear effects that can occur. As a first step, solving problems of reduced complexity is helpful to guide more sophisticated approaches. Aims. The objective of this work is to test a model that uses shell-like structures (i.e., assuming a power-law number density and temperature gradient of the environment surrounding the YSO) to approximate the geometry and physical structure of YSOs, that in turn utilizes an advanced chemical model that includes gas-phase and solid-state reactions to model the chemical abundances of key species. A special focus is set on formaldehyde (H2CO) and methanol (CH3OH) as these molecules can be traced in the gas phase but are produced on icy dust grains. Furthermore, this kind of molecule is believed to be key to understanding the abundance of more complex species. We compare the influence of the geometry of the object on the molecular abundances with the effect induced by its chemistry. Methods. We set up a model that combines a grain-gas phase chemical model with a physical model of YSOs. The model ignores jets, shocks, and external radiation fields and concentrates on the physical conditions of spherically symmetric YSOs with a density and temperature gradient derived from available spectral energy distribution observations in the infrared. In addition, new observational data are presented using the APEX 12 m and the IRAM 30 m telescopes. Formaldehyde and methanol transitions have been searched for in three YSOs (R CrA-IRS 5A, C1333-IRAS 2A, and L1551-IRS 5) that can be categorized as Class 0 and Class 1 objects, and in the pre-stellar core L1544. The observed abundances of H2CO and CH3OH are compared with those calculated by the spherical physical-chemical model. Results. Compared to a standard “ρ and T constant” model, i.e., a homogeneous (flat) density and temperature distribution, using number density and temperature gradients results in reduced abundances for the CO hydrogenation products formaldehyde and methanol. However, this geometric effect is generally not large, and depends on the source and on the molecular species under investigation. Although the current model uses simplified geometric assumptions the observed abundances of H2CO and CH3OH are well reproduced for the quiescent Class 1 object R CrA-IRS 5A. Our model tends to overestimate formaldehyde and methanol abundances for sources in early evolutionary stages, like the pre-stellar core L1544 or NGC 1333-IRS 2A (Class 0). Observational results on hydrogen peroxide and water that have also been predicted by our model are discussed elsewhere.
APA, Harvard, Vancouver, ISO, and other styles
37

Mikhailov, G. G., and L. A. Makrovets. "Thermodynamic Modeling of Phase Equilibrium in Fe-Y-Cr-C-O Liquid Metal System." Solid State Phenomena 265 (September 2017): 862–67. http://dx.doi.org/10.4028/www.scientific.net/ssp.265.862.

Full text
Abstract:
The thermodynamic characteristics of processes in the liquid metal system Fe–Y–Cr–C–O are considered as applied to low-carbon and low-alloy metal. The critical parameters for the state diagram of the oxide system Y2O3–Cr2O3 were established based on the values quoted in literature. The temperature dependence of the melting reaction constant Y2O3·Cr2O3 was determined. The coordinates of eutectic transformation points for the system Y2O3–Cr2O3 were calculated. In accordance with subregular solution theory, the energetic parameters which are necessary to calculate the activities Cr2O3 and Y2O3 of oxide melts in the system Y2O3–Cr2O3 were determined. The energetic parameters of subregular solution theories for the oxide system FeO–Cr2O3–Y2O3 were determined based on the values for the binary systems FeO–Y2O3, FeO–Cr2O3 and Y2O3–Cr2O3. The view of this diagram, as coupled with the existence domain of liquid metal within the framework of the quaternary system Fe–Y–Cr–O–С, suggests that low-carbon chromic liquid metal when injected with yttrium can form the following non-metallic inclusions: |Cr2O3|, |Y2O3|, |FeO·Cr2O3|, |Y2O3·Cr2O3| or oxide melt (FeO, Y2O3, Cr2O3). Oxide melt may contain up to 2 % of divalent chrome (Cr2+). The equilibrium constants for the main reactions of steel deoxidation with the formation of liquid, solid and gas products of chemical reactions were also established. The activity of components dissolved in metal was calculated using interaction parameters. The set of derived expressions for the activity of components and the dependences of equilibrium constants of chemical reactions and phase transformations allowed us to diagram the surface of component solubility in liquid metal (SCSM). SCSM diagrams show the compositions of liquid metal and indicate oxide phases which are in equilibrium with liquid metal.
APA, Harvard, Vancouver, ISO, and other styles
38

Ekama, G. A., M. C. Wentzel, and R. E. Loewenthal. "Integrated chemical–physical processes kinetic modelling of multiple mineral precipitation problems." Water Science and Technology 53, no. 12 (June 1, 2006): 65–73. http://dx.doi.org/10.2166/wst.2006.407.

Full text
Abstract:
A three-phase (aqueous/gas/solid) mixed weak acid/base chemistry kinetic model is applied to evaluate the processes operative in the aeration treatment of swine wastewater (SWW) and sewage sludge anaerobic digester liquor (ADL). In both applications, with a single set of constants (except for the aeration rates which are situation specific), close correlation could be obtained between predicted and measured data, except for the Ca concentration–time profile in the SWW. For this wastewater, the model application highlighted an inconsistency in the measured Ca data which could not be resolved; this illustrates the value of a mass balance-based model in evaluating experimental data. From the model applications, in both wastewaters the dominant minerals precipitating are struvite and amorphous calcium phosphate (ACP), which precipitate simultaneously competing for the same species, P. The absolute and relative masses of the two precipitants are governed by the initial solution state (e.g. total inorganic C (CT), Mg, Ca and P concentrations), their relative precipitation rates (struvite &gt; ACP) and the system conditions imposed (aeration rates and time applied). It is concluded that the kinetic model is able to predict correctly the time-dependent weak acid/base chemistry reactions and final equilibrium state for situations where multiple minerals competing for the same species precipitate simultaneously or sequentially, a deficiency in traditional equilibrium chemistry-based algebraic models.
APA, Harvard, Vancouver, ISO, and other styles
39

Bracker, A., P. Jakob, U. Näher, M. Rüdiger, K. Sugawara, and J. Wanner. "Internal, translational, and angular momentum product state distributions of CuF molecules desorbing associatively from copper surfaces." Canadian Journal of Chemistry 72, no. 3 (March 1, 1994): 643–51. http://dx.doi.org/10.1139/v94-089.

Full text
Abstract:
The dry etching reaction of solid copper surfaces with fluorine atoms or molecules has been studied with laser-induced fluorescence spectroscopy. The reaction product, copper monofluoride, CuF, is produced in the X1Σ+ electronic ground state and desorbs into the gas phase at surface temperatures above approximately 750 K. Rotationally resolved LIF excitation spectra of the C1П ← X1Σ+ band system of CuF molecules desorbing from an isotopically purified 63Cu polycrystalline sample are obtained under conditions of coherent saturation. From the product state analysis it is deduced that the rovibrational product populations are in thermal equilibrium with the surface. The same holds for the translational velocity distribution obtained by Doppler-shift measurements. A pronounced polarization effect, particularly strong for Q branch transitions, can be traced back to photoselection of single-parity levels in the Λ doublets of the C1П state. A theoretical analysis for the distribution of J vectors, based on the formalism of Greene and Zare, shows that the measured degree of polarization is quantitatively in agreement with an isotropic distribution of rotational angular momentum vectors. The vibrational and translational product equilibration is not affected by changing the reactants from F2 molecules to F atoms, which increases the exoergicity of the overall reaction. The results are interpreted in terms of the absence of a barrier for desorption and a long residence time of the chemisorbed CuF molecules at the copper surface. The lack of any translational and rotational cooling is discussed within the framework of a model.
APA, Harvard, Vancouver, ISO, and other styles
40

Perepezko, J. H., Y. A. Chang, H. J. Fecht, and M. X. Zhang. "Metastable phase equilibria and solid state amorphization." Journal of the Less Common Metals 140 (June 1988): 287–97. http://dx.doi.org/10.1016/0022-5088(88)90389-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kasparoglu, Sabin, Ying Li, Manabu Shiraiwa, and Markus D. Petters. "Toward closure between predicted and observed particle viscosity over a wide range of temperatures and relative humidity." Atmospheric Chemistry and Physics 21, no. 2 (January 27, 2021): 1127–41. http://dx.doi.org/10.5194/acp-21-1127-2021.

Full text
Abstract:
Abstract. Atmospheric aerosols can exist in amorphous semi-solid or glassy phase states whose viscosity varies with atmospheric temperature and relative humidity. The temperature and humidity dependence of viscosity has been hypothesized to be predictable from the combination of a water–organic binary mixing rule of the glass transition temperature, a glass-transition-temperature-scaled viscosity fragility parameterization, and a water uptake parameterization. This work presents a closure study between predicted and observed viscosity for sucrose and citric acid. Viscosity and glass transition temperature as a function of water content are compiled from literature data and used to constrain the fragility parameterization. New measurements characterizing viscosity of sub-100 nm particles using the dimer relaxation method are presented. These measurements extend the available data of temperature- and humidity-dependent viscosity to −28 ∘C. Predicted relationships agree well with observations at room temperature and with measured isopleths of constant viscosity at ∼107 Pa s at temperatures warmer than −28 ∘C. Discrepancies at colder temperatures are observed for sucrose particles. Simulations with the kinetic multi-layer model of gas–particle interactions suggest that the observed deviations at colder temperature for sucrose can be attributed to kinetic limitations associated with water uptake at the timescales of the dimer relaxation experiments. Using the available information, updated equilibrium phase-state diagrams (-80∘C<T<40∘C, temperature, and 0%<RH<100%, relative humidity) for sucrose and citric acid are constructed and associated equilibration timescales are identified.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, Jimin, William W. Chen, Alan J. Ardell, and Bruce Dunn. "Solid-State Phase Equilibria in the ZnS-Ga2S3 System." Journal of the American Ceramic Society 73, no. 6 (June 1990): 1544–47. http://dx.doi.org/10.1111/j.1151-2916.1990.tb09794.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Walczak, Jadwiga, Izabella Rychłowska-Himmel, and Elżbieta Mikos-Nawłatyna. "Solid-state phase equilibria in the V2O5−Fe8V10W16O85 system." Journal of Thermal Analysis 43, no. 1 (January 1995): 201–4. http://dx.doi.org/10.1007/bf02635984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chen, W. W., J. M. Zhang, A. J. Ardell, and B. Dunn. "Solid-state phase equilibria in the ZnS-CdS system." Materials Research Bulletin 23, no. 11 (November 1988): 1667–73. http://dx.doi.org/10.1016/0025-5408(88)90257-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Tabzar, Amir, Mohammad Fathinasab, Afshin Salehi, Babak Bahrami, and Amir H. Mohammadi. "Multiphase flow modeling of asphaltene precipitation and deposition." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 73 (2018): 51. http://dx.doi.org/10.2516/ogst/2018039.

Full text
Abstract:
Asphaltene precipitation in reservoirs during production and Enhanced Oil Recovery (EOR) can cause serious problems that lead to reduction of reservoir fluid production. In order to study asphaltene tendency to precipitate and change in flow rate as a function of distance from wellbore, an equation of state (Peng-Robinson) based model namely Nghiem et al.’s model has been employed in this study. The heaviest components of crude oil are separated into two parts: The first portion is considered as non-precipitating component (C31A+) and the second one is considered as precipitating component (C31B+) and the precipitated asphaltene is considered as pure solid. For determination of the acentric factor and critical properties, Lee-Kesler and Twu correlations are employed, respectively. In this study, a multiphase flow (oil, gas and asphaltene) model for an asphaltenic crude oil for which asphaltene is considered as solid particles (precipitated, flocculated and deposited particles), has been developed. Furthermore, effect of asphaltene precipitation on porosity and permeability reduction has been studied. Results of this study indicate that asphaltene tendency to precipitate increases and permeability of porous medium decreases by increasing oil flow rate in under-saturated oil reservoirs and dropping reservoir pressure under bubble point pressure. On the other hand, asphaltene tendency to precipitate decreases with pressure reduction to a level lower than bubble point pressure where asphaltene starts to dissolve back into oil phase. Moreover, it is observed that precipitation zone around the wellbore develops with time as pressure declines to bubble point pressure (production rate increases up). Also, there is an equilibrium area near wellbore region at which reservoir fluid properties such as UAOP (Upper Asphaltene Onset Pressure) and LAOP (Lower Asphaltene Onset Pressure) are constant and independent of the distance from wellbore.
APA, Harvard, Vancouver, ISO, and other styles
46

Igra, O., and G. Ben-Dor. "Dusty Shock Waves." Applied Mechanics Reviews 41, no. 11 (November 1, 1988): 379–437. http://dx.doi.org/10.1115/1.3151872.

Full text
Abstract:
The flow field developed behind shock waves in a pure gaseous medium is well known and documented in all gasdynamics textbooks. This is not the case when the gaseous medium is seeded with small solid particles. The present review treats various cases of shock waves propagation into a gas-dust suspension (dusty shock waves). It starts (chapter 1) with basic definitions of two-phase (gas-dust) suspensions and presents a general form of the conservation equations which govern dusty shock wave flows. In chapter two, the simple case of a steady flow of a suspension consisting of an inert dust and a perfect gas through a normal shock wave is studied. The effect of the dust presence, and of changes in its physical parameters, on the post-shock wave flow are discussed. Obviously, these discussions are limited to relatively weak shock waves (perfect gas). For stronger normal shock waves, the assumption of a perfect gas no longer holds. Therefore, in chapter three, real gas effects (ionization or dissociation) are taken into account when calculating the post-shock flow field. In chapter four, the dust chemistry is included and its effects on the post-shock flow is studied. In order to emphasize the role played by the dust chemistry, a comparison between a reactive and a similar inert suspension is presented. The case of an oblique shock wave in a dusty gas is discussed in chapter five. In all cases treated in chapters two to five the flow is steady; however, in many engineering applications this is not the case. In reality, even for the simplest case of a one-dimensional flow (normal shock wave propagation into quiescent suspension—the dusty shock tube) the shock wave attenuates and the flow field behind it is not steady. This case is treated in chapter six. The cases treated in chapters two to six deal with planar shock waves. However, all explosion generated shock waves in the atmosphere are spherical. Due to the engineering importance of this case, the post-shock flow for spherical shock waves in a dusty gas is studied, in detail, in chapter seven. It is shown in the present review that the dust presence has significant effects on the post-shock flow field. In all cases studied, a relaxation zone is developed behind the shock wave front. Throughout this zone momentum and energy exchange between the two phases of the suspension takes place. Through these interactions a new state of equilibrium is reached. The extent of the relaxation zone depends upon the dust loading ratio, the dust particle diameter, its specific heat capacity, and the dust spatial density. Due to the complexity of conducting experimental investigations with dusty shock waves, the number of published experimental results is very limited. As a result most of the present review contains numerical studies. However, in the few cases where experimental data are available, (e.g. dusty shock tube flow; see chapter six) a comparison between the numerical and experimental results is given.
APA, Harvard, Vancouver, ISO, and other styles
47

Kim, Won-Sa. "Solid state phase equilibria in the Pt–Sb–Te system." Journal of Alloys and Compounds 252, no. 1-2 (May 1997): 166–71. http://dx.doi.org/10.1016/s0925-8388(96)02709-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Députier, S., R. Guérin, Y. Ballini, and A. Guivarc'h. "Solid state phase equilibria in the NiAlAs system." Journal of Alloys and Compounds 217, no. 1 (January 1995): 13–21. http://dx.doi.org/10.1016/0925-8388(94)01296-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Députier, S., R. Guérin, and A. Guivarc'h. "Solid state phase equilibria in the Fe-Ga-As system." European Physical Journal Applied Physics 2, no. 2 (May 1998): 127–33. http://dx.doi.org/10.1051/epjap:1998100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Han, Y. S., K. B. Kalmykov, S. F. Dunaev, and A. I. Zaitsev. "Solid-State Phase Equilibria in the Titanium-Aluminum-Nitrogen System." Journal of Phase Equilibria & Diffusion 25, no. 5 (October 1, 2004): 427–36. http://dx.doi.org/10.1361/15477030420917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography