Academic literature on the topic 'Solidification systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solidification systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solidification systems"

1

Boussinot, G., C. Hüter, R. Spatschek, and E. A. Brener. "Isothermal solidification in peritectic systems." Acta Materialia 75 (August 2014): 212–18. http://dx.doi.org/10.1016/j.actamat.2014.04.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Podolinsky, V. V., Yu N. Taran, and V. G. Drykin. "Eutectic solidification in organic systems." Journal of Crystal Growth 74, no. 1 (1986): 57–66. http://dx.doi.org/10.1016/0022-0248(86)90248-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Ming, Yu Jiang, Wen Long Sun, Xiao Dong Hu, and Chun Li Liu. "Numerical Simulation of Binary Alloy Crystal Growth of Multiple Dendrites and Direcitonal Solidification Using Phase-Field Method." Advanced Materials Research 774-776 (September 2013): 703–6. http://dx.doi.org/10.4028/www.scientific.net/amr.774-776.703.

Full text
Abstract:
Phase field method (PFM) offers the prospect of carrying out realistic numerical calculation on dendrite growth in metallic systems. The dendritic growth process of multiple dendrites and direcitonal solidification during isothermal solidifications in a Fe-0.5mole%C binary alloy were simulated using phase field model. Competitive growth of multiple equiaxed dendrites were simulated, and the effect of anisotropy on the solute segregation and microstructural dedritic growth pattern in directional solidification process was studied in the paper. The simulation results showed the impingement of ar
APA, Harvard, Vancouver, ISO, and other styles
4

Lutsyk, Vasily, Anna Zelenaya, and Maria Parfenova. "Solidification Paths within the Ceramic Systems." Advanced Materials Research 704 (June 2013): 173–78. http://dx.doi.org/10.4028/www.scientific.net/amr.704.173.

Full text
Abstract:
The aim of this work is to assemble the computer models of phase diagrams (PD) for the typical ternary systems and to examine the processes of crystallization on its base. Spatial schemes of mono-and invariant equilibria have been used for it. Analysis of concentration fields, obtained by the projection of the surfaces on the Gibbs triangle, allows establish the boundaries of phase regions (located above the considered fields), the sequence of phase transformations and microstructural elements for the solidification of the initial melt at equilibrium condition. Concentration fields have been a
APA, Harvard, Vancouver, ISO, and other styles
5

Korojy, B., L. Ekbom, and H. Fredriksson. "Microsegregation and Solidification Shrinkage of Copper-Lead Base Alloys." Advances in Materials Science and Engineering 2009 (2009): 1–9. http://dx.doi.org/10.1155/2009/627937.

Full text
Abstract:
Microsegregation and solidification shrinkage were studied on copper-lead base alloys. A series of solidification experiments was performed, using differential thermal analysis (DTA) to evaluate the solidification process. The chemical compositions of the different phases were measured via energy dispersive X-ray spectroscopy (EDS) for the Cu-Sn-Pb and the Cu-Sn-Zn-Pb systems. The results were compared with the calculated data according to Scheil's equation. The volume change during solidification was measured for the Cu-Pb and the Cu-Sn-Pb systems using a dilatometer that was developed to inv
APA, Harvard, Vancouver, ISO, and other styles
6

Zhu, Shuangchun, and Biao Yan. "Effects of Cerium on Weld Solidification Crack Sensitivity of 441 Ferritic Stainless Steel." Metals 9, no. 3 (2019): 372. http://dx.doi.org/10.3390/met9030372.

Full text
Abstract:
The addition of rare earth element Ce in ferritic stainless steel can improve the high temperature performance to meet the service requirements of automobile exhaust systems at high temperatures. Automobile exhaust systems are generally applied as welded pipes, so it is necessary to study the effect of Ce on the weldability of ferritic stainless steel. In this study, the Trans-varestraint test method was used to test the solidification crack sensitivities of 441 and 441Ce ferritic stainless steel. The 441Ce steel, which has added Ce, showed poor resistance to weld solidification cracking. Usin
APA, Harvard, Vancouver, ISO, and other styles
7

Fukusako, Shoichiro, and Masahiko Yamada. "Solidification of Pure Liquids and Liquid Mixtures Inside Ducts and Over External Bodies." Applied Mechanics Reviews 47, no. 12 (1994): 589–621. http://dx.doi.org/10.1115/1.3111067.

Full text
Abstract:
Recent advances in the understanding of transport phenomena during solidification inside ducts and over external bodies are discussed. The emphasis is on fundamental aspects of the phenomena observed in transport processes during solidification. After a discussion of the solidification of pure substances, transport processes during solidification of binary systems are reviewed. The important role played by fluid motion owing to density gradients is also discussed and future research needs are assessed.
APA, Harvard, Vancouver, ISO, and other styles
8

Yoshioka, Hideaki, Tomoaki Kyoden, and Tadashi Hachiga. "Sound velocity during solidification in binary eutectic systems." Journal of Applied Physics 122, no. 22 (2017): 225109. http://dx.doi.org/10.1063/1.5001893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alexandrov, D. V. "Nonlinear dynamics of solidification in three-component systems." Doklady Physics 53, no. 9 (2008): 471–75. http://dx.doi.org/10.1134/s1028335808090024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Swaminathan, C. R., and V. R. Voller. "Towards a general numerical scheme for solidification systems." International Journal of Heat and Mass Transfer 40, no. 12 (1997): 2859–68. http://dx.doi.org/10.1016/s0017-9310(96)00329-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!