To see the other types of publications on this topic, follow the link: Solvmanifolds.

Journal articles on the topic 'Solvmanifolds'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Solvmanifolds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cattaneo, Andrea, Antonella Nannicini, and Adriano Tomassini. "On Kodaira dimension of almost complex 4-dimensional solvmanifolds without complex structures." International Journal of Mathematics 32, no. 10 (2021): 2150075. http://dx.doi.org/10.1142/s0129167x21500750.

Full text
Abstract:
The aim of this paper is to continue the study of Kodaira dimension for almost complex manifolds, focusing on the case of compact [Formula: see text]-dimensional solvmanifolds without any integrable almost complex structure. According to the classification theory we consider: [Formula: see text], [Formula: see text] and [Formula: see text] with [Formula: see text]. For the first solvmanifold we introduce special families of almost complex structures, compute the corresponding Kodaira dimension and show that it is no longer a deformation invariant. Moreover, we prove Ricci flatness of the canon
APA, Harvard, Vancouver, ISO, and other styles
2

Sawai, Hiroshi. "On LCK solvmanifolds with a property of Vaisman solvmanifolds." Complex Manifolds 9, no. 1 (2022): 196–205. http://dx.doi.org/10.1515/coma-2021-0135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Andrada, A., and M. Origlia. "Locally conformally Kähler solvmanifolds: a survey." Complex Manifolds 6, no. 1 (2019): 65–87. http://dx.doi.org/10.1515/coma-2019-0003.

Full text
Abstract:
AbstractA Hermitian structure on a manifold is called locally conformally Kähler (LCK) if it locally admits a conformal change which is Kähler. In this survey we review recent results of invariant LCK structures on solvmanifolds and present original results regarding the canonical bundle of solvmanifolds equipped with a Vaisman structure, that is, a LCK structure whose associated Lee form is parallel.
APA, Harvard, Vancouver, ISO, and other styles
4

Witte, Dave. "Tessellations of solvmanifolds." Transactions of the American Mathematical Society 350, no. 9 (1998): 3767–96. http://dx.doi.org/10.1090/s0002-9947-98-01980-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lauret, Jorge. "Ricci soliton solvmanifolds." Journal für die reine und angewandte Mathematik (Crelles Journal) 2011, no. 650 (2011): 1–21. http://dx.doi.org/10.1515/crelle.2011.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lauret, Jorge. "Einstein solvmanifolds are standard." Annals of Mathematics 172, no. 3 (2010): 1859–77. http://dx.doi.org/10.4007/annals.2010.172.1859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

LEE, KYUNG BAI, and SCOTT THUONG. "INFRA-SOLVMANIFOLDS OF Sol14." Journal of the Korean Mathematical Society 52, no. 6 (2015): 1209–51. http://dx.doi.org/10.4134/jkms.2015.52.6.1209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fanaï, Hamid-Reza. "Einstein solvmanifolds and graphs." Comptes Rendus Mathematique 344, no. 1 (2007): 37–39. http://dx.doi.org/10.1016/j.crma.2006.11.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bock, Christoph. "On low-dimensional solvmanifolds." Asian Journal of Mathematics 20, no. 2 (2016): 199–262. http://dx.doi.org/10.4310/ajm.2016.v20.n2.a1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Starkov, A. N. "FLOWS ON COMPACT SOLVMANIFOLDS." Mathematics of the USSR-Sbornik 51, no. 2 (1985): 549–56. http://dx.doi.org/10.1070/sm1985v051n02abeh002874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Fernández, M., V. Manero, A. Otal, and L. Ugarte. "Symplectic half-flat solvmanifolds." Annals of Global Analysis and Geometry 43, no. 4 (2012): 367–83. http://dx.doi.org/10.1007/s10455-012-9349-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sawai, Hiroshi. "Examples of solvmanifolds without LCK structures." Complex Manifolds 5, no. 1 (2018): 103–10. http://dx.doi.org/10.1515/coma-2018-0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Benson, Chal, and Carolyn S. Gordon. "Kahler Structures on Compact Solvmanifolds." Proceedings of the American Mathematical Society 108, no. 4 (1990): 971. http://dx.doi.org/10.2307/2047955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

YAMADA, Takumi. "Examples of Compact Lefschetz Solvmanifolds." Tokyo Journal of Mathematics 25, no. 2 (2002): 261–83. http://dx.doi.org/10.3836/tjm/1244208853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Benson, Chal, and Carolyn S. Gordon. "Kähler structures on compact solvmanifolds." Proceedings of the American Mathematical Society 108, no. 4 (1990): 971. http://dx.doi.org/10.1090/s0002-9939-1990-0993739-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bernstein, Holly, and Dave Witte Morris. "Foliation-Preserving Maps Between Solvmanifolds." Geometriae Dedicata 102, no. 1 (2003): 91–107. http://dx.doi.org/10.1023/b:geom.0000006575.17872.ac.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gordon, Carolyn S., and Edward N. Wilson. "Isometry groups of Riemannian solvmanifolds." Transactions of the American Mathematical Society 307, no. 1 (1988): 245. http://dx.doi.org/10.1090/s0002-9947-1988-0936815-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Cobb, Robin J. "Infra-solvmanifolds of dimension four." Bulletin of the Australian Mathematical Society 62, no. 2 (2000): 347–49. http://dx.doi.org/10.1017/s0004972700018827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sawai, Hiroshi. "Vaisman structures on compact solvmanifolds." Geometriae Dedicata 178, no. 1 (2015): 389–404. http://dx.doi.org/10.1007/s10711-015-0062-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gordon, Carolyn S., and Michael R. Jablonski. "Einstein solvmanifolds have maximal symmetry." Journal of Differential Geometry 111, no. 1 (2019): 1–38. http://dx.doi.org/10.4310/jdg/1547607686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kasuya, Hisashi. "Cohomologically symplectic solvmanifolds are symplectic." Journal of Symplectic Geometry 9, no. 4 (2011): 429–34. http://dx.doi.org/10.4310/jsg.2011.v9.n4.a1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Fernández, Marisa, Anna Fino, and Víctor Manero. "$G_2$-structures on Einstein solvmanifolds." Asian Journal of Mathematics 19, no. 2 (2015): 321–42. http://dx.doi.org/10.4310/ajm.2015.v19.n2.a7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Jablonski, Michael. "Maximal symmetry and unimodular solvmanifolds." Pacific Journal of Mathematics 298, no. 2 (2019): 417–27. http://dx.doi.org/10.2140/pjm.2019.298.417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pfeffer, Carolyn. "Fejer theorems on compact solvmanifolds." Illinois Journal of Mathematics 38, no. 1 (1994): 79–86. http://dx.doi.org/10.1215/ijm/1255986888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

LEE, KYUNG BAI. "INFRA-SOLVMANIFOLDS OF TYPE (R)." Quarterly Journal of Mathematics 46, no. 2 (1995): 185–95. http://dx.doi.org/10.1093/qmath/46.2.185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Tuschmann, Wilderich. "Collapsing, solvmanifolds and infrahomogeneous spaces." Differential Geometry and its Applications 7, no. 3 (1997): 251–64. http://dx.doi.org/10.1016/s0926-2245(96)00054-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Nikolayevsky, Yuri. "Einstein solvmanifolds with free nilradical." Annals of Global Analysis and Geometry 33, no. 1 (2007): 71–87. http://dx.doi.org/10.1007/s10455-007-9077-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Angella, Daniele, and Hisashi Kasuya. "Bott–Chern cohomology of solvmanifolds." Annals of Global Analysis and Geometry 52, no. 4 (2017): 363–411. http://dx.doi.org/10.1007/s10455-017-9560-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Cygan, Jacek M., and Leonard F. Richardson. "Global Regularity on 3-Dimensional Solvmanifolds." Transactions of the American Mathematical Society 329, no. 2 (1992): 473. http://dx.doi.org/10.2307/2153947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Keppelmann, Edward. "Periodic points on nilmanifolds and solvmanifolds." Pacific Journal of Mathematics 164, no. 1 (1994): 105–28. http://dx.doi.org/10.2140/pjm.1994.164.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Keppelmann, Edward, and Christopher McCord. "The Anosov theorem for exponential solvmanifolds." Pacific Journal of Mathematics 170, no. 1 (1995): 143–59. http://dx.doi.org/10.2140/pjm.1995.170.143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cygan, Jacek M., and Leonard F. Richardson. "Global regularity on $3$-dimensional solvmanifolds." Transactions of the American Mathematical Society 329, no. 2 (1992): 473–88. http://dx.doi.org/10.1090/s0002-9947-1992-1055806-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lauret, J. "Standard Einstein Solvmanifolds as Critical Points." Quarterly Journal of Mathematics 52, no. 4 (2001): 463–70. http://dx.doi.org/10.1093/qjmath/52.4.463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Van Thuong, Scott. "The bounding problem for infra-solvmanifolds." Topology and its Applications 202 (April 2016): 397–409. http://dx.doi.org/10.1016/j.topol.2016.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Tolcachier, A. "Holonomy groups of compact flat solvmanifolds." Geometriae Dedicata 209, no. 1 (2020): 95–117. http://dx.doi.org/10.1007/s10711-020-00524-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Fino, Anna, and Luigi Vezzoni. "Special Hermitian metrics on compact solvmanifolds." Journal of Geometry and Physics 91 (May 2015): 40–53. http://dx.doi.org/10.1016/j.geomphys.2014.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Alessandrini, Lucia, and Marco Andreatta. "On complex solvmanifolds and affine structures." Annali di Matematica Pura ed Applicata 142, no. 1 (1985): 351–70. http://dx.doi.org/10.1007/bf01766600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cordero, Luis A., Marisa Fernández, Manuel de León, and Martín Saralegui. "Compact symplectic four solvmanifolds without polarizations." Annales de la faculté des sciences de Toulouse Mathématiques 10, no. 2 (1989): 193–98. http://dx.doi.org/10.5802/afst.675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Oeljeklaus, Karl, and Wolfgang Richthofer. "On the structure of complex solvmanifolds." Journal of Differential Geometry 27, no. 3 (1988): 399–421. http://dx.doi.org/10.4310/jdg/1214442002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Boucetta, Mohamed, and Alberto Medina. "Polynomial Poisson structures on affine solvmanifolds." Journal of Symplectic Geometry 9, no. 3 (2011): 387–401. http://dx.doi.org/10.4310/jsg.2011.v9.n3.a4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Angella, Daniele, and Hisashi Kasuya. "Symplectic Bott–Chern cohomology of solvmanifolds." Journal of Symplectic Geometry 17, no. 1 (2019): 41–91. http://dx.doi.org/10.4310/jsg.2019.v17.n1.a2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Guan, Daniel. "On classification of compact complex solvmanifolds." Journal of Algebra 347, no. 1 (2011): 69–82. http://dx.doi.org/10.1016/j.jalgebra.2011.08.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gilligan, Bruce, and Karl Oeljeklaus. "Compact CR-solvmanifolds as Kähler obstructions." Mathematische Zeitschrift 269, no. 1-2 (2010): 179–91. http://dx.doi.org/10.1007/s00209-010-0721-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tan, Qiang, and Adriano Tomassini. "Remarks on Some Compact Symplectic Solvmanifolds." Acta Mathematica Sinica, English Series 39, no. 10 (2023): 1874–86. http://dx.doi.org/10.1007/s10114-023-0416-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Latorre, Adela, Luis Ugarte, and Raquel Villacampa. "Balanced and strongly Gauduchon cones on solvmanifolds." International Journal of Geometric Methods in Modern Physics 11, no. 09 (2014): 1460031. http://dx.doi.org/10.1142/s0219887814600317.

Full text
Abstract:
We show conditions under which the balanced and strongly Gauduchon cones of a complex solvmanifold are non-degenerate. These cones are explicitly described on the complex nilmanifolds with underlying Lie algebra [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
46

Lee, Jong Bum, and Kyung Bai Lee. "Averaging Formula for Nielsen Numbers of Maps on Infra-Solvmanifolds of Type (R)." Nagoya Mathematical Journal 196 (2009): 117–34. http://dx.doi.org/10.1017/s0027763000009818.

Full text
Abstract:
We prove that the averaging formula for Nielsen numbers holds for continuous maps on infra-solvmanifolds of type (R): Let M be such a manifold with holonomy group Ψ and let f: M → M be a continuous map. The averaging formula for Nielsen numbersis proved. This is a workable formula for the difficult number N(f).
APA, Harvard, Vancouver, ISO, and other styles
47

Sawai, Hiroshi. "On the structure theorem for Vaisman solvmanifolds." Journal of Geometry and Physics 163 (May 2021): 104102. http://dx.doi.org/10.1016/j.geomphys.2021.104102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Heath, Philip R., and Edward C. Keppelmann. "Model solvmanifolds for Lefschetz and Nielsen theories." Quaestiones Mathematicae 25, no. 4 (2002): 483–501. http://dx.doi.org/10.2989/16073600209486033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fino, Anna, Hisashi Kasuya, and Luigi Vezzoni. "SKT and tamed symplectic structures on solvmanifolds." Tohoku Mathematical Journal 67, no. 1 (2015): 19–37. http://dx.doi.org/10.2748/tmj/1429549577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

McCord, Christopher. "Nielsen numbers and Lefschetz numbers on solvmanifolds." Pacific Journal of Mathematics 147, no. 1 (1991): 153–64. http://dx.doi.org/10.2140/pjm.1991.147.153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!