Academic literature on the topic 'Sommerfeld integrals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sommerfeld integrals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sommerfeld integrals"

1

Chew, W. C. "Sommerfeld integrals for left-handed materials." Microwave and Optical Technology Letters 42, no. 5 (2004): 369–73. http://dx.doi.org/10.1002/mop.20307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shanin, A. V., and A. I. Korolkov. "Sommerfeld-type integrals for discrete diffraction problems." Wave Motion 97 (September 2020): 102606. http://dx.doi.org/10.1016/j.wavemoti.2020.102606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, Surendra, and Ritu Singh. "Computation of Sommerfeld integrals using tanh transformation." Microwave and Optical Technology Letters 37, no. 3 (March 19, 2003): 177–80. http://dx.doi.org/10.1002/mop.10860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dvorak, Steven L. "Numerical computation of 2D Sommerfeld integrals—Decomposition of the angular integral." Journal of Computational Physics 94, no. 1 (May 1991): 253–54. http://dx.doi.org/10.1016/0021-9991(91)90156-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dvorak, Steven L., and Edward F. Kuester. "Numerical computation of 2D sommerfeld integrals— Deccomposition of the angular integral." Journal of Computational Physics 98, no. 2 (February 1992): 199–216. http://dx.doi.org/10.1016/0021-9991(92)90138-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dvorak, Steven L., and Edward F. Kuester. "Numerical computation of 2D Sommerfeld integrals—decomposition of the angular integral." Journal of Computational Physics 98, no. 1 (January 1992): 178. http://dx.doi.org/10.1016/0021-9991(92)90184-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Petrović, Vladimir V., and Antonije R. Djordjević. "General singularity extraction technique for reflected Sommerfeld integrals." AEU - International Journal of Electronics and Communications 61, no. 8 (September 2007): 504–8. http://dx.doi.org/10.1016/j.aeue.2006.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hubral, Peter, and Martin Tygel. "Transient response from a planar acoustic interface by a new point‐source decomposition into plane waves." GEOPHYSICS 50, no. 5 (May 1985): 766–74. http://dx.doi.org/10.1190/1.1441951.

Full text
Abstract:
For the wave field of a point source in full space there currently exist two classical decompositions into plane waves. The wave field can be decomposed into either (a) homogeneous and horizontally propagating (vertically attenuated) inhomogeneous plane waves by using the so‐called Sommerfeld‐Weyl integral, or (b) upgoing and downgoing homogeneous plane waves only using the Whittaker integral. Transient representations of both integrals exist. We propose a new decomposition integral that has a greater flexibility than both classical decompositions. Solutions for the point‐source reflection/transmission response from a planar interface, if based on the Sommerfeld‐Weyl integral, have for instance inherently an infinite integration limit. With the new formula, by which the wave field of a transient point source is decomposed into upgoing and downgoing homogeneous as well as horizontally propagating inhomogeneous transient plane waves, the point‐source response is directly obtained in the form of an integral with a finite integration limit. It can also be interpreted in terms of certain plane waves by which the point source is simulated in a new manner. For that matter, solutions based on the new integral readily reveal the “evanescent” or “nonray” character of the point source. The new formula may be considered an extension of the Sommerfeld‐Weyl or Whittaker integral. It can be used to compute reflection/transmission responses in a compact form in situations where the Sommerfeld‐Weyl integral was hitherto considered fundamental.
APA, Harvard, Vancouver, ISO, and other styles
9

Petrovic, Vladimir, Aleksandra Krneta, and Branko Kolundzija. "Singularity extraction for reflected Sommerfeld integrals over multilayered media." Telfor Journal 6, no. 2 (2014): 137–41. http://dx.doi.org/10.5937/telfor1402137p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Annaert, G. "Evaluation of Sommerfeld integrals using Chebyshev decomposition (antenna analysis)." IEEE Transactions on Antennas and Propagation 41, no. 2 (1993): 159–64. http://dx.doi.org/10.1109/8.214606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sommerfeld integrals"

1

Orr, Andrew McLean White. "Computational techniques for evaluating extremely low frequency electromagnetic fields produced by a horizontal electric dipole in seawater." Thesis, King's College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cheng, Chin-Yuan. "Numerical electromagnetic modeling of a small aperture helical-fed reflector antenna." Ohio : Ohio University, 1998. http://www.ohiolink.edu/etd/view.cgi?ohiou1176838193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ghaderi, Hazhar. "The Phase-Integral Method, The Bohr-Sommerfeld Condition and The Restricted Soap Bubble : with a proposition concerning the associated Legendre equation." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-169572.

Full text
Abstract:
After giving a brief background on the subject we introduce in section two the Phase-Integral Method of Fröman & Fröman in terms of the platform function of Yngve and Thidé. In section three we derive a different form of the radial Bohr-Sommerfeld condition in terms of the apsidal angle of the corresponding classical motion. Using the derived expression, we then show how easily one can calculate the exact energy eigenvalues of the hydrogen atom and the isotropic three-dimensional harmonic oscillator, we also derive an expression for higher order quantization condition. In section four we derive an expression for the angular frequencies of a restricted (0≤φ≤β) soap bubble and also give a proposition concerning the parameters l and m of the associated Legendre differential equation.
Vi använder Fröman & Frömans Fas-Integral Metod tillsammans med Yngve & Thidés plattformfunktion för att härleda kvantiseringsvilkoret för högre ordningar. I sektion tre skriver vi Bohr-Sommerfelds kvantiseringsvillkor på ett annorlunda sätt med hjälp av den så kallade apsidvinkeln (definierad i samma sektion) för motsvarande klassiska rörelse, vi visar också hur mycket detta underlättar beräkningar av energiegenvärden för väteatomen och den isotropa tredimensionella harmoniska oscillatorn. I sektion fyra tittar vi på en såpbubbla begränsad till området 0≤φ≤β för vilket vi härleder ett uttryck för dess (vinkel)egenfrekvenser. Här ger vi också en proposition angående parametrarna l och m tillhörande den associerade Legendreekvationen.
APA, Harvard, Vancouver, ISO, and other styles
4

Bezerra, Cardoso Maurício Henrique. "Modélisation de la propagation des ondes électromagnétiques près du sol : application aux réseaux sans fil." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1035/document.

Full text
Abstract:
Motivée par le développement de diverses applications déployant des antennes près d'une interface, comme les systèmes militaires UGS, les réseaux corporels sans fil BAN et la surveillance environnementale impliquant des capteurs au sol, cette thèse porte sur la modélisation de la propagation des ondes électromagnétiques près d'une interface. Tout d'abord, la méthode classique de l'optique géométrique est confrontée à des formules approchées fournies par Norton et par Bannister. Cette étude met en évidence les cas où l'optique géométrique ne décrit pas correctement la propagation près de la surface. Pour une compréhension plus exhaustive, les fonctions de Green de ce type de propagation, présentées sous forme d'intégrales de Sommerfeld, sont évaluées à la lumière de la méthode de la plus grande pente. Cette évaluation permet d'extraire trois équations importantes pour la propagation près d'une interface. La première est la condition essentielle pour que la proximité au sol puisse profiter au bilan de liaison grâce à l'excitation d'une composante de l'onde diffractée qui se propage près de l'interface. Les deux autres identifient des distances critiques qui bornent le début et la fin de la zone présentant un affaiblissement de trajet amélioré. L'ensemble de ces trois équations permet d'évaluer le rôle de certains paramètres physiques, notamment les propriétés électromagnétiques du sol, la fréquence de travail et la hauteur des antennes. Cette thèse inclut également les pistes pratiques envisagées pour une démonstration de faisabilité de l'amélioration d'une liaison sans fil par la proximité des antennes à l'interface. La couverture du sol ayant une importance prépondérante, nous présentons des recherches préliminaires sur la réalisation et la caractérisation d'un matériau approprié pour ce type de propagation. Dans un axe de recherche parallèle, cette thèse évalue également l'exactitude et la pertinence d'une nouvelle formulation théorique pour la propagation près du sol. Cette formulation dite « de Schelkunoff » suscite des controverses dans la communauté scientifique
Motivated by the development of various applications deploying antennas near an interface, such as military systems (UGS), wireless body area networks (BAN) and environmental monitoring involving ground sensors, this thesis deals with the near-ground wave propagation modelling. First, the results of the geometrical optics are confronted with the approximations provided by Norton and Bannister. This study reveals the cases where geometrical optics does not correctly describe the wave propagation near the surface. For a more comprehensive understanding, Green's functions of this type of propagation, presented as Sommerfeld integrals, are evaluated using the steepest descent technique. This evaluation offers the possibility to extract three important equations for near-ground wave propagation. The first one presents the essential condition under which the link budget can benefit from the ground proximity through the excitation of a diffracted wave component propagating near the interface. The other two equations identify critical distances indicating the beginning and the end of the zone with an improved path loss. All these three equations highlight the role of certain physical parameters, in particular the electromagnetic properties of the ground, the working frequency and the heights of the antennas. This thesis also includes the practical solutions that can be considered to demonstrate the feasibility of improving a wireless link by the proximity of the antennas to the interface. Since floor coating is of major importance, we present preliminary research on the realisation and characterisation of a suitable material for this type of propagation. In a parallel research axis, this thesis also evaluates the accuracy and relevance of a new theoretical formulation for near-ground propagation. The "so-called Schelkunoff" formulation has become a controversial issue in the scientific community
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Sommerfeld integrals"

1

Rajeev, S. G. Fluid Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.001.0001.

Full text
Abstract:
Starting with a review of vector fields and their integral curves, the book presents the basic equations of the subject: Euler and Navier–Stokes. Some solutions are studied next: ideal flows using conformal transformations, viscous flows such as Couette and Stokes flow around a sphere, shocks in the Burgers equation. Prandtl’s boundary layer theory and the Blasius solution are presented. Rayleigh–Taylor instability is studied in analogy with the inverted pendulum, with a digression on Kapitza’s stabilization. The possibility of transients in a linearly stable system with a non-normal operator is studied using an example by Trefethen et al. The integrable models (KdV, Hasimoto’s vortex soliton) and their hamiltonian formalism are studied. Delving into deeper mathematics, geodesics on Lie groups are studied: first using the Lie algebra and then using Milnor’s approach to the curvature of the Lie group. Arnold’s deep idea that Euler’s equations are the geodesic equations on the diffeomorphism group is then explained and its curvature calculated. The next three chapters are an introduction to numerical methods: spectral methods based on Chebychev functions for ODEs, their application by Orszag to solve the Orr–Sommerfeld equation, finite difference methods for elementary PDEs, the Magnus formula and its application to geometric integrators for ODEs. Two appendices give an introduction to dynamical systems: Arnold’s cat map, homoclinic points, Smale’s horse shoe, Hausdorff dimension of the invariant set, Aref ’s example of chaotic advection. The last appendix introduces renormalization: Ising model on a Cayley tree and Feigenbaum’s theory of period doubling.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Sommerfeld integrals"

1

Castro, Luis P. "Solution of a Sommerfeld Diffraction Problem with a Real Wave Number." In Integral Methods in Science and Engineering, 25–30. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8184-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rančić, Milica, Radoslav Jankoski, Sergei Silvestrov, and Slavoljub Aleksić. "Analysis of Horizontal Thin-Wire Conductor Buried in Lossy Ground: New Model for Sommerfeld Type Integral." In Engineering Mathematics I, 33–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42082-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"C Proof of lemma 2.1 used to derive the Bohr–Sommerfeld quantization condition." In Path Integrals in Physics, 332–35. CRC Press, 2018. http://dx.doi.org/10.1201/9781315273358-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Evaluation of Sommerfeld-King Integrals for Surface-Wave Fields." In Monopole Antennas. CRC Press, 2003. http://dx.doi.org/10.1201/9780203912676.axc.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Freeman, Richard, James King, and Gregory Lafyatis. "Diffraction and the Propagation of Light." In Electromagnetic Radiation, 467–522. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198726500.003.0012.

Full text
Abstract:
Geometric optics is considered and the eikonal equation is introduced. Krirchoff’s diffraction theory is presented with his integral theorem. Rayleigh–Sommerfeld diffraction is discussed and Fresnel’s approximation for the Kirchoff integrals and Babinet’s principle are given. Fraunhoffer diffraction is considered in detail, specifically diffraction by a rectangular and circular aperture. Special emphasis is given to the angular spectrum representation and its applications, including Gaussian beams, Fourier optics, and tight focusing of fields. Finally, the fields and modes of a tightly focused Gaussian beam are considered and the diffraction limits on microscopy are given.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sommerfeld integrals"

1

Weng Cho Chew. "Sommerfeld integrals for LH materials." In IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1331894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Okhmatovski, V. I., and A. C. Cangellaris. "Computation of Sommerfeld integrals via rational function fitting." In IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1330215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Koufogiannis, Ioannis D., Athanasios G. Polimeridis, Michael Mattes, and Juan R. Mosig. "Real axis integration of Sommerfeld integrals with error estimation." In 2012 6th European Conference on Antennas and Propagation (EuCAP). IEEE, 2012. http://dx.doi.org/10.1109/eucap.2012.6206728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Knockaert, L., D. Vande Ginste, and D. De Zutter. "Some analytic results on sommerfeld integrals with branch points." In 2009 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2009. http://dx.doi.org/10.1109/iceaa.2009.5297472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chatterjee, Deb, Michael S. Kluskens, and Sadasiva M. Rao. "Some investigations toward closed-form solutions of sommerfeld integrals." In 2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). IEEE, 2015. http://dx.doi.org/10.1109/usnc-ursi.2015.7303359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wei, Yingkang, Bengt Holter, Ingve Simonsen, Jacob Kuhnle, Karsten Husby, and Lars Norum. "Calculation of Sommerfeld integrals for conductive media at low frequencies." In 2011 IEEE International Workshop on Electromagnetics; Applications and Student Innovation (iWEM). IEEE, 2011. http://dx.doi.org/10.1109/iwem.2011.6021473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Volskiy, Vladimir, Guy A. E. Vandenbosch, Athanasios G. Polimeridis, Juan R. Mosig, and Ruzica Golubovic Niciforovic. "KUL and EPFL cooperation on numerical integration of Sommerfeld integrals." In 2012 6th European Conference on Antennas and Propagation (EuCAP). IEEE, 2012. http://dx.doi.org/10.1109/eucap.2012.6206566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Durbhakula, Kalyan C., Deb Chatterjee, and Ahmed M. Hassan. "Studies on Numerical Evaluation of Sommerfeld Integrals for Multilayer Topologies." In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2018. http://dx.doi.org/10.1109/apusncursinrsm.2018.8608980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Petrovic, Vladimir V., Aleksandra J. Krneta, and Branko M. Kolundzija. "Singularity extraction for reflected Sommerfeld integrals over a multilayered media." In 2013 21st Telecommunications Forum Telfor (TELFOR). IEEE, 2013. http://dx.doi.org/10.1109/telfor.2013.6716313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chatterjee, D., S. M. Rao, and M. S. Kluskens. "Some new techniques for evaluating Sommerfeld integrals for microstrip antenna analysis." In 2016 URSI International Symposium on Electromagnetic Theory (EMTS). IEEE, 2016. http://dx.doi.org/10.1109/ursi-emts.2016.7571390.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sommerfeld integrals"

1

Chatterjee, Deb, and Shaun D. Walker. Study of Sommerfeld and Phase-Integral Approaches for Green's Functions for PEC-terminated Inhomogeneous Media. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada514711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography