Academic literature on the topic 'SoP Automotive Radar Applications'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SoP Automotive Radar Applications.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "SoP Automotive Radar Applications"

1

Gadringer, Michael Ernst, Franz Michael Maier, Helmut Schreiber, Vamsi Prakash Makkapati, Andreas Gruber, Michael Vorderderfler, Dominik Amschl, et al. "Radar target stimulation for automotive applications." IET Radar, Sonar & Navigation 12, no. 10 (September 4, 2018): 1096–103. http://dx.doi.org/10.1049/iet-rsn.2018.5126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fischer, Gerhard G., and Srdjan Glisic. "SiGe:C BiCMOS Technologies for Automotive Radar Applications." ECS Transactions 16, no. 10 (December 18, 2019): 1041–51. http://dx.doi.org/10.1149/1.2986867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tsang, S. H., P. S. Hall, E. G. Hoare, and N. J. Clarke. "Advance Path Measurement for Automotive Radar Applications." IEEE Transactions on Intelligent Transportation Systems 7, no. 3 (September 2006): 273–81. http://dx.doi.org/10.1109/tits.2006.880614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grubert, J., J. Heyen, C. Metz, L. C. Stange, and A. F. Jacob. "Planar millimeter wave radar frontend for automotive applications." Advances in Radio Science 1 (May 5, 2003): 125–29. http://dx.doi.org/10.5194/ars-1-125-2003.

Full text
Abstract:
Abstract. A fully integrated planar sensor for 77 GHz automotive applications is presented. The frontend consists of a transceiver multichip module and an electronically steerable microstrip patch array. The antenna feed network is based on a modified Rotman-lens and connected to the array in a multilayer approach offering higher integration. Furthermore, the frontend comprises a phase lock loop to allow proper frequency-modulated continuous wave (FMCW) radar operation. The latest experimental results verify the functionality of this advanced frontend design featuring automatic cruise control, precrash sensing and cut-in detection. These promising radar measurements give reason to a detailed theoretical investigation of system performance. Employing commercially available MMIC various circuit topologies are compared based on signal-tonoise considerations. Different scenarios for both sequential and parallel lobing hint to more advanced sensor designs and better performance. These improvements strongly depend on the availability of suitable MMIC and reliable packaging technologies. Within our present approach possible future MMIC developments are already considered and, thus, can be easily adapted by the flexible frontend design. Es wird ein integrierter planarer Sensor für 77 GHz Radaranwendungen vorgestellt. Das Frontend besteht aus einem Sende- und Empfangs-Multi-Chip-Modul und einer elektronisch schwenkbaren Antenne. Das Speisenetzwerk der Antenne basiert auf einer modifizierten Rotman- Linse. Für eine kompakte Bauweise sind Antenne und Speisenetzwerk mehrlagig integriert. Weiterhin umfasst das Frontend eine Phasenregelschleife für eine präzise Steuerung des frequenzmodulierten Dauerstrichradars. Die aktuellen Messergebnisse bestätigen die Funktionalit¨at dieses neuartigen Frontend-Designs, das automatische Geschwindigkeitsregelung, Kollisionswarnung sowie Nahbereichsüberwachung ermöglicht. Die Qualität der Messergebnisse hat weiterführende theoretische Untersuchungen über die potenzielle Systemleistungsfähigkeit motiviert. Unter Berücksichtigung von kommerziell erhältlichenMMICs werden verschiedene Schaltungstopologien auf der Grundlage des Signal-Rausch-Verhältnisses verglichen. Sowohl für sequenzielle als auch für parallele Ansteuerung der Antennenkeulen wird eine deutliche Leistungssteigerung ermittelt. Diese Verbesserungen hängen maßgeblich von der Verfügbarkeit geeigneter MMICs und einer zuverlässigen Aufbau- und Verbindungstechnik ab. Das vorliegende Frontend-Konzept kann auf Grund seiner Flexibilität leicht an derlei zukünftige Entwicklungen angepasst werden.
APA, Harvard, Vancouver, ISO, and other styles
5

Tak, Jinpil, Eun Jeong, and Jaehoon Choi. "Metamaterial absorbers for 24-GHz automotive radar applications." Journal of Electromagnetic Waves and Applications 31, no. 6 (March 10, 2017): 577–93. http://dx.doi.org/10.1080/09205071.2017.1297257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Santos, Luís Carlos, Filipe Neves dos Santos, Raul Morais, and Cândido Duarte. "Potential Non-Invasive Technique for Accessing Plant Water Contents Using a Radar System." Agronomy 11, no. 2 (February 2, 2021): 279. http://dx.doi.org/10.3390/agronomy11020279.

Full text
Abstract:
Sap flow measurements of trees are today the most common method to determine evapotranspiration at the tree and the forest/crop canopy level. They provide independent measurements for flux comparisons and model validation. The most common approach to measure the sap flow is based on intrusive solutions with heaters and thermal sensors. This sap flow sensor technology is not very reliable for more than one season crop; it is intrusive and not adequate for low diameter trunk trees. The non-invasive methods comprise mostly Radio-frequency (RF) technologies, typically using satellite or air-born sources. This system can monitor large fields but cannot measure sap levels of a single plant (precision agriculture). This article studies the hypothesis to use of RF signals attenuation principle to detect variations in the quantity of water present in a single plant. This article presents a well-defined experience to measure water content in leaves, by means of high gains RF antennas, spectrometer, and a robotic arm. Moreover, a similar concept is studied with an off-the-shelf radar solution—for the automotive industry—to detect changes in the water presence in a single plant and leaf. The conclusions indicate a novel potential application of this technology to precision agriculture as the experiments data is directly related to the sap flow variations in plant.
APA, Harvard, Vancouver, ISO, and other styles
7

Hyodo, Akihiko, Shigeru Oho, and Toshiyuki Nagasaku. "Single-Chip 77GHz Radar Sensor and its Automotive Applications." SAE International Journal of Passenger Cars - Electronic and Electrical Systems 5, no. 1 (April 16, 2012): 272–79. http://dx.doi.org/10.4271/2012-01-0937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abdallah, Meriem Ben, and Jamal Bel Hadj Tahar. "Dual Band Slotted Antenna for Radar and Automotive Applications." Procedia Computer Science 73 (2015): 187–92. http://dx.doi.org/10.1016/j.procs.2015.12.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hu, Chenxi, Yimin Liu, Huadong Meng, and Xiqin Wang. "Randomized Switched Antenna Array FMCW Radar for Automotive Applications." IEEE Transactions on Vehicular Technology 63, no. 8 (October 2014): 3624–41. http://dx.doi.org/10.1109/tvt.2014.2308895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cavarra, Andrea, Giuseppe Papotto, Alessandro Parisi, Alessandro Finocchiaro, Claudio Nocera, and Giuseppe Palmisano. "Transformer-Based VCO for W-Band Automotive Radar Applications." Electronics 10, no. 5 (February 25, 2021): 531. http://dx.doi.org/10.3390/electronics10050531.

Full text
Abstract:
A transformer-based voltage-controlled oscillator for a W-band frequency-modulated continuous-wave (FMCW) automotive radar application is presented. The design challenges imposed by the millimeter-wave frequency operation were faced through a circuit and layout co-design approach, supported by extensive electromagnetic simulations and accurate analysis of both the start-up condition and the tank quality factor. The oscillator was implemented in a 28-nm fully depleted silicon-on-insulator (SOI) complementary metal–oxide–semiconductor (CMOS) technology. It provided a 37 GHz oscillation frequency with a variation of around 4 GHz, thus achieving a tuning range of 11%. Moreover, a 77 GHz output signal was also delivered, which was extracted as a second harmonic from the input-pair common-mode node. The circuit exhibited low phase noises, whose average performances were −97 dBc/Hz and −121 dBc/Hz at 1 MHz and 10 MHz offset frequencies, respectively. It delivered a 77-GHz output power of −10.5 dBm and dissipated 26 mW with a 1 V power supply. The silicon area occupation was 300 × 135 µm.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "SoP Automotive Radar Applications"

1

Jasteh, Donya. "Experimental low-THz imaging radar for automotive applications." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7523/.

Full text
Abstract:
This thesis reports initial experimental results that provide the foundation for low-THz radar imagery for outdoor scenarios as expected in automotive sensing. The requirements for a low-THz single imaging radar sensor are outlined. The imaging capability of frequency-modulated continuous-wave (FMCW) radar operating at 150 GHz is discussed. A comparison of experimental images of on-road and off- road scenarios made by a 150 GHz FMCW radar and a reference 30 GHz stepped frequency radar is made, and their performance is analysed.
APA, Harvard, Vancouver, ISO, and other styles
2

Visentin, Tristan [Verfasser], and Thomas [Akademischer Betreuer] Zwick. "Polarimetric Radar for Automotive Applications / Tristan Visentin ; Betreuer: Thomas Zwick." Karlsruhe : KIT Scientific Publishing, 2019. http://d-nb.info/1184402507/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rygh, Martin. "Realization of a DDS/PLL Signal Source for W-band Radar Applications : Automotive FMCW Radar." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14082.

Full text
Abstract:
This thesis presents a realization process, of how a programmable DDS/PLL signalsource were made suitable as an linear FMCW waveform generator for automotiveW-band radar applications. The dissertation describes the specific background theorythat were used to complete the implementation and substantiate the discoveries duringthe development process. Hence is an outline of FMCW basic properties, automotiveradar implementations, applied waveforms and the fundamental radar ambiguity functionpresented and threated. Moreover are vital background theory for basic FMCW designproblems presented, including degradation of range resolution due to loss of effectivebandwidth, nonlinearities in chirp modulation and limitations of the receiver resolution.Additionally is the inevitable problem of FMCW transceiver noise leakage briefly described, along with the general concept of choosing the right beat frequency for maximal FMCW sensitivity and maximal range-Doppler resolution. The specific circuit design is then presented, together with the full radar design which the signal source is intended for. The realization process starts with an initial test of circuit performance, seen in relation to the radar documentation and set the fundament for the further investigation and development. Hence does this part include measurements and discussion of output power achievements, spectral purity, spectral waveform appearance and phase noise. The thesis does then set further focus to more specific methods of measuring and evaluating the circuits LFM waveform, in aspect of a combined frequency and time characterization, chirp linearity achievements and waveform beat frequency evaluation. The dissertation does further describe how the first hand waveform generation were erroneous and how this problem was investigated and solved through radar documentation/source code corrections. As a last part of the realization process is then the final and successive implementation of waveforms described, along with the main results presented as waveform spectrograms and selected beat frequency spectrum plots. The working process and the main results are then summarized in a final summary discussion. The major results and conclusions of the thesis are that the tested NORBIT DDS/PLLsignal source could be realized as an linear FMCW waveform generator with overallgood linear properties. Two basic LFM waveforms, the up-chirp and triangular waveformwere implemented and tested. However were there discovered nonlinearities withinthe up-chirp waveform, due to the transient response of the total circuit. Hence mostlikely caused by the limited PLL frequency lock time. This was proven through aspecific beat frequency analysis of the most affected waveform, with fitted W-band LFMcharacteristics. Nevertheless were the isolated chirp generation within the waveformsconsidered more than sufficient, since both windowing technics and selective samplingcould be used in the future radar implementation. Three specific waveform realizationswere specially recommended for the initial further use. Further were also a specific region of desirable waveform chirp-rates recommended, that enables a good trade off between close target radar sensitivity and digital acquisition system complexity. Additionally did the thesis work conclude with that the NORBIT signal source design, enabled a flexible and easy control of the waveform generation through the microcontroller interface. Further more had also the thesis work resulted in the implementation of two good methods for waveform measurements and analysis. By the use of the spectrogram- and the beat frequency-method, could accurate waveform properties be extracted. Hence were also these methods recommended for further waveform developments in the experimental radar project.Furthermore was it recommended that future effort should be put in to the developmentof more applicable waveforms, to achieve full multiple range-Doppler target extraction.Hence since the overall signal source proved to have the nessesary waveform agility.It was in addition proposed that the future full radar implementation should utilizethe accessabillity of the microcontroller to achieve synchronization of signal sourcemodulation and future sampling solution. Thus to enable beneficial beat frequencysampling for the quadrature radar receiver. Since the mapping of the phase noiseinfluence and the chirp linearity were seen as non-optimal, was it additionally suggested that future studies should yield better methods for such characterization. It was finally put forward that an intermediate simple test radar could be implemented to enable sampling system testing and FMCW signal processing of real measurements, if the millimeter partof the radar is further postponed.
APA, Harvard, Vancouver, ISO, and other styles
4

Slavik, Zora [Verfasser]. "Compressive Sensing and Its Applications in Automotive Radar Systems / Zora Slavik." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1218073195/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Engels, Florian [Verfasser], and F. K. [Akademischer Betreuer] Jondral. "Multidimensional Frequency Estimation with Applications in Automotive Radar / Florian Engels ; Betreuer: F. K. Jondral." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1124068872/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Altaf, Amjad. "Design of Millimeter-wave SiGe Frequency Doubler and Output Buffer for Automotive Radar Applications." Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8351.

Full text
Abstract:

Automotive Radars have introduced various functions on automobiles for driver’s safety and comfort, as part of the Intelligent Transportation System (ITS) including Adaptive Cruise Control (ACC), collision warning or avoidance, blind spot surveillance and parking assistance. Although such radar systems with 24 GHz carrier frequency are already in use but due to some regulatory issues, recently a permanent band has been allocated at 77-81 GHz, allowing for long-term development of the radar service. In fact, switchover to the new band is mandatory by 2014.

A frequency multiplier will be one of the key components for such a millimeter wave automotive radar system because there are limitations in direct implementation of low phase noise oscillators at high frequencies. A practical way to build a cost-effective and stable source at higher frequency is to use an active multiplier preceded by a high spectral purity VCO operating at a lower frequency. Recent improvements in the performance of SiGe technology allow the silicon microelectronics to advance into areas previously restricted to compound semiconductor devices and make it a strong competitor for automotive radar applications at 79 GHz.

This thesis presents the design of active frequency doubler circuits at 20 GHz in a commercially available SiGe BiCMOS technology and at 40GHz in SiGe bipolar technology (Infineon-B7h200 design). Buffer/amplifier circuits are included at output stages to drive 50 Ω load. The frequency doubler at 20 GHz is based on an emitter-coupled pair operating in class-B configuration at 1.8 V supply voltage. Pre-layout simulations show its conversion gain of 10 dB at -5 dBm input, fundamental suppression of 25dB and NF of 12dB. Input and output impedance matching networks are designed to match 50 Ω at both sides.

The millimeter wave frequency doubler is designed for 5 V supply voltage and has the Gilbert cell-based differential architecture where both RF and LO ports are tied together to act as a frequency doubler. Both pre-layout and post-layout simulation results are presented and compared together. The extracted circuit has a conversion gain of 8 dB at -8 dB input, fundamental suppression of 20 dB, NF of 12 dB and it consumes 42 mA current from supply. The layout occupies an area of 0.12 mm2 without pads and baluns at both input and output ports. The frequency multiplier circuits have been designed using Cadence Design Tool.

APA, Harvard, Vancouver, ISO, and other styles
7

Park, Young-Jin [Verfasser]. "Applications of photonic bandgap structures with arbitrary surface impedance to Luneburg lenses for automotive radar / Young-Jin Park." Karlsruhe : IHE, 2002. http://d-nb.info/1005498512/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bel, kamel Emna. "Modélisation du canal en ondes millimétriques pour des applications radar automobile." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0042/document.

Full text
Abstract:
L’amélioration de la sécurité routière ainsi que le développement des systèmes de transports intelligents sont des enjeux d’avenir dans le secteur automobile avec un essor considérable du véhicule semi autonome et autonome. Les systèmes de sécurité active qui équipent de plus en plus les véhicules commercialisés utilisent des capteurs radar (longue et courte portée) fonctionnant dans les bandes 24 GHz ou 77 GHz. L’étude et la mise au point de tels capteurs peuvent être facilitées via l’utilisation d’une plate-forme de simulation générique permettant de simuler un système radar couplé à son environnement selon des scénarios types prédéfinis. Il est alors nécessaire de disposer d’une représentation fiable et réaliste de l’environnement et des objets présents.Cette thèse aborde la caractérisation et la modélisation du canal de propagation et plus largement de l’environnement radioélectrique en ondes millimétriques pour des applications radar, en termes de phénomènes de propagation (trajets multiples, réflexion, diffraction …) et de cibles électriquement larges. Une combinaison de méthodes asymptotiques a été mise en œuvre afin de permettre l'analyse de problèmes électriquement larges en bande W, tout en réduisant les exigences en temps de calcul et en capacité de mémoire. La précision du simulateur a été évaluée à l’aide d’une campagne de mesures de SER de cibles canoniques et complexes de petite taille (inférieure 6cm) dans une chambre anéchoïque. Le banc de mesure mis en œuvre a permis également de valider une procédure expérimentale de détermination de la signature radar. En effet, la procédure expérimentale a été généralisée à la mesure de la signature radar d’objets de taille réelle, dans un milieu « indoor ». Les mesures effectuées ont montré une bonne adéquation avec les résultats présentés dans la littérature. En outre, ces données expérimentales permettent d’extraire une description de la cible par des points brillants qui modélisent les phénomènes de diffusion et de réflexion spéculaire. La réponse à haute fréquence d’une cible peut être approchée par la somme de réponses de ses points brillants. On propose ainsi de simplifier les signatures mesurées pour maximiser l'efficacité de calcul. Comparé aux modèles géométriques détaillés d’une cible complexe, le modèle de points brillants conduit à une meilleure efficacité des simulations de propagation basées sur des rayons dans des scénarios routiers. Le modèle tient également compte de l’anisotropie des diffuseurs (dans le plan azimutal) en modélisant leurs amplitudes par des gaussiennes
Improving road safety as well as the development of intelligent transport systems are issues of the future in the automotive sector with a considerable rise of the semi-autonomous and autonomous vehicle. The active safety systems that increasingly equip commercial vehicles use radar sensors (long and short range) operating in the 24 GHz or 77GHz bands. The study and development of such sensors can be facilitated through the use of a generic simulation platform to simulate a radar system coupled to its environment according to predefined standard scenarios. It is then necessary to have a reliable and realistic representation of the environment as well as targets. This thesis deals with the characterization and modelling of the propagation channel for radar applications, in terms of propagation phenomena (multipath, reflection, diffraction …) and electrically large targets. A combination of asymptotic methods was developed for the analysis of electrically large problems in W band, while reducing the requirements in CPU time and memory. The accuracy of the simulator was evaluated with radar cross section measurement of canonical and complex small targets (not exceeding 6 cm) in an anechoic chamber. The developed bench measurement also made it possible to validate an experimental procedure for determining the radar signature. Indeed, the experimental characterization was generalized to characterize various automotive related targets in an “indoor” environment. Measurement results matched well with the results presented in the literature. Moreover, the experimental data allows the extraction of a simple target description in terms of scattering points which model the diffusion and specular reflection phenomena. The high frequency response of a target can be approached by the sum of the responses of its scattering centres. It is thus proposed to simplify the measured signatures in order to increase the computation efficiency. Compared to detailed geometrical representation of a complex target, scattering centre model leads to better efficiency of ray-based propagation simulations of road scenarios. The model also takes into account the scattering centre anisotropy (in the azimuth plan) by modelling their amplitudes by Gaussian ones
APA, Harvard, Vancouver, ISO, and other styles
9

Yankevich, Evgeny. "Design of an Airborne Multi-input Multi-output Radar Emulator Testbed for Ground Moving Target Identification Applications." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345571650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dudek, Manuel [Verfasser]. "Towards Future Automotive Safety Applications based on Phased-Array FMCW-Radar Sensors - a Holistic Simulative Approach Incorporating RF-Frontend Impairments / Manuel Dudek." München : Verlag Dr. Hut, 2015. http://d-nb.info/1077403887/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "SoP Automotive Radar Applications"

1

Gamba, Jonah. "Automotive Radar Applications." In Radar Signal Processing for Autonomous Driving, 123–42. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9193-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rabinovich, Victor, and Nikolai Alexandrov. "Radar Arrays for Vehicle Applications." In Antenna Arrays and Automotive Applications, 173–85. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1074-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steuerer, Marc, and Alfred Hoess. "System Architecture for Adaptive Radar Sensors." In Advanced Microsystems for Automotive Applications 2009, 463–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00745-3_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Monti, M., K. Bettaieb, L. Zago, P. Debergh, Y. Welte, and Y. Depeursinge. "Miniaturized Scanning Laser Radar for Automotive Applications." In Advanced Microsystems for Automotive Applications 99, 173–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03838-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lind, Henrik, Andrea Saroldi, Magnus Kamel, and Gerard Delaval. "AWARE A Collision Warning and Avoidance Radar System." In Advanced Microsystems for Automotive Applications 98, 79–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-39696-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wollitzer, M., J. Büchler, J. F. Luy, U. Siart, and J. Detlefsen. "Multifunctional Radar Sensor for Vehicle Dynamics Control Systems." In Advanced Microsystems for Automotive Applications 98, 87–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-39696-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lind, Henrik, Andrea Saroldi, Magnus Kamel, and Gerard Delaval. "AWARE A Collision Warning and Avoidance Radar System." In Advanced Microsystems for Automotive Applications 98, 79–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72146-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wollitzer, M., J. Büchler, J. F. Luy, U. Siart, and J. Detlefsen. "Multifunctional Radar Sensor for Vehicle Dynamics Control Systems." In Advanced Microsystems for Automotive Applications 98, 87–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72146-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matsui, Takeshi. "Forward Looking 2- dimensional Laser Radar for ACC-Systems." In Advanced Microsystems for Automotive Applications 98, 101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-39696-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Matsui, Takeshi. "Forward Looking 2- dimensional Laser Radar for ACC-Systems." In Advanced Microsystems for Automotive Applications 98, 101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72146-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "SoP Automotive Radar Applications"

1

Park, Joonhong, Hyuk Ryu, and Donghyun Baek. "77 GHz signal generator with CMOS technology for automotive radar application." In 2011 International SoC Design Conference (ISOCC 2011). IEEE, 2011. http://dx.doi.org/10.1109/isocc.2011.6138627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rohling, Hermann, and Christof Moller. "Radar waveform for automotive radar systems and applications." In 2008 IEEE Radar Conference (RADAR). IEEE, 2008. http://dx.doi.org/10.1109/radar.2008.4721121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rohling, Hermann. "Smart FM / CW radar systems for automotive applications." In 2008 IEEE Radar Conference (RADAR). IEEE, 2008. http://dx.doi.org/10.1109/radar.2008.4721160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bar-Shalom, Ofer, Nir Dvorecki, Leor Banin, and Yuval Amizur. "Accurate Time Synchronization for Automotive Cooperative Radar (CoRD) Applications." In 2020 IEEE International Radar Conference (RADAR). IEEE, 2020. http://dx.doi.org/10.1109/radar42522.2020.9114861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Iqbal, Hasan, Christina Knill, Muhammad Zeeshan Khan, Tobias Chaloun, and Christian Waldschmidt. "Polarimetric SAR for Automotive Applications." In 2018 15th European Radar Conference (EuRAD). IEEE, 2018. http://dx.doi.org/10.23919/eurad.2018.8546578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gisder, Thomas, Marc-Michael Meinecke, and Erwin Biebl. "Synthetic Aperture Radar Towards Automotive Applications." In 2019 20th International Radar Symposium (IRS). IEEE, 2019. http://dx.doi.org/10.23919/irs.2019.8768173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fischer, C., H. L. Bloecher, W. Menzel, J. Dickmann, and F. Ruf. "Evaluation of different super-resolution techniques for automotive applications." In IET International Conference on Radar Systems (Radar 2012). Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/cp.2012.1641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ziqiang Tong, Ziqiang Tong, R. Reuter, and M. Fujimoto. "Fast chirp FMCW Radar in automotive applications." In IET International Radar Conference 2015. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/cp.2015.1362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Elfrgani, Aseim, and C. J. Reddy. "Near-Field RCS for Automotive Radar Applications." In 2019 International Workshop on Antenna Technology (iWAT). IEEE, 2019. http://dx.doi.org/10.1109/iwat.2019.8730628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rohling, H., F. Folster, and H. Ritter. "Lateral velocity estimation for automotive radar applications." In IET International Conference on Radar Systems 2007. IEE, 2007. http://dx.doi.org/10.1049/cp:20070657.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "SoP Automotive Radar Applications"

1

Porcel Magnusson, Cristina. Unsettled Topics Concerning Coating Detection by LiDAR in Autonomous Vehicles. SAE International, January 2021. http://dx.doi.org/10.4271/epr2021002.

Full text
Abstract:
Autonomous vehicles (AVs) utilize multiple devices, like high-resolution cameras and radar sensors, to interpret the driving environment and achieve full autonomy. One of these instruments—the light detection and ranging (LiDAR) sensor—utilizes pulsed infrared (IR) light, typically at wavelengths of 905 nm or 1,550 nm, to calculate object distance and position. Exterior automotive paint covers an area larger than any other exterior material. Therefore, understanding how LiDAR wavelengths interact with vehicle coatings is extremely important for the safety of future automated driving technologies. Sensing technologies and materials are two different industries that have not directly interacted in the perception and system sense. With the new applications in the AV industry, multidisciplinary approaches need to be taken to ensure reliability and safety in the future. Unsettled Topics Concerning Coating Detection by LiDAR in Autonomous Vehicles provides a transversal view of different industry segments, from pigment and coating manufacturers to LiDAR components and vehicle system development and integration. The report includes a structured decomposition of the different variables and technologies involved.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography