To see the other types of publications on this topic, follow the link: SoP Automotive Radar Applications.

Dissertations / Theses on the topic 'SoP Automotive Radar Applications'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 dissertations / theses for your research on the topic 'SoP Automotive Radar Applications.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Jasteh, Donya. "Experimental low-THz imaging radar for automotive applications." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7523/.

Full text
Abstract:
This thesis reports initial experimental results that provide the foundation for low-THz radar imagery for outdoor scenarios as expected in automotive sensing. The requirements for a low-THz single imaging radar sensor are outlined. The imaging capability of frequency-modulated continuous-wave (FMCW) radar operating at 150 GHz is discussed. A comparison of experimental images of on-road and off- road scenarios made by a 150 GHz FMCW radar and a reference 30 GHz stepped frequency radar is made, and their performance is analysed.
APA, Harvard, Vancouver, ISO, and other styles
2

Visentin, Tristan [Verfasser], and Thomas [Akademischer Betreuer] Zwick. "Polarimetric Radar for Automotive Applications / Tristan Visentin ; Betreuer: Thomas Zwick." Karlsruhe : KIT Scientific Publishing, 2019. http://d-nb.info/1184402507/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rygh, Martin. "Realization of a DDS/PLL Signal Source for W-band Radar Applications : Automotive FMCW Radar." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14082.

Full text
Abstract:
This thesis presents a realization process, of how a programmable DDS/PLL signalsource were made suitable as an linear FMCW waveform generator for automotiveW-band radar applications. The dissertation describes the specific background theorythat were used to complete the implementation and substantiate the discoveries duringthe development process. Hence is an outline of FMCW basic properties, automotiveradar implementations, applied waveforms and the fundamental radar ambiguity functionpresented and threated. Moreover are vital background theory for basic FMCW designproblems presented, including degradation of range resolution due to loss of effectivebandwidth, nonlinearities in chirp modulation and limitations of the receiver resolution.Additionally is the inevitable problem of FMCW transceiver noise leakage briefly described, along with the general concept of choosing the right beat frequency for maximal FMCW sensitivity and maximal range-Doppler resolution. The specific circuit design is then presented, together with the full radar design which the signal source is intended for. The realization process starts with an initial test of circuit performance, seen in relation to the radar documentation and set the fundament for the further investigation and development. Hence does this part include measurements and discussion of output power achievements, spectral purity, spectral waveform appearance and phase noise. The thesis does then set further focus to more specific methods of measuring and evaluating the circuits LFM waveform, in aspect of a combined frequency and time characterization, chirp linearity achievements and waveform beat frequency evaluation. The dissertation does further describe how the first hand waveform generation were erroneous and how this problem was investigated and solved through radar documentation/source code corrections. As a last part of the realization process is then the final and successive implementation of waveforms described, along with the main results presented as waveform spectrograms and selected beat frequency spectrum plots. The working process and the main results are then summarized in a final summary discussion. The major results and conclusions of the thesis are that the tested NORBIT DDS/PLLsignal source could be realized as an linear FMCW waveform generator with overallgood linear properties. Two basic LFM waveforms, the up-chirp and triangular waveformwere implemented and tested. However were there discovered nonlinearities withinthe up-chirp waveform, due to the transient response of the total circuit. Hence mostlikely caused by the limited PLL frequency lock time. This was proven through aspecific beat frequency analysis of the most affected waveform, with fitted W-band LFMcharacteristics. Nevertheless were the isolated chirp generation within the waveformsconsidered more than sufficient, since both windowing technics and selective samplingcould be used in the future radar implementation. Three specific waveform realizationswere specially recommended for the initial further use. Further were also a specific region of desirable waveform chirp-rates recommended, that enables a good trade off between close target radar sensitivity and digital acquisition system complexity. Additionally did the thesis work conclude with that the NORBIT signal source design, enabled a flexible and easy control of the waveform generation through the microcontroller interface. Further more had also the thesis work resulted in the implementation of two good methods for waveform measurements and analysis. By the use of the spectrogram- and the beat frequency-method, could accurate waveform properties be extracted. Hence were also these methods recommended for further waveform developments in the experimental radar project.Furthermore was it recommended that future effort should be put in to the developmentof more applicable waveforms, to achieve full multiple range-Doppler target extraction.Hence since the overall signal source proved to have the nessesary waveform agility.It was in addition proposed that the future full radar implementation should utilizethe accessabillity of the microcontroller to achieve synchronization of signal sourcemodulation and future sampling solution. Thus to enable beneficial beat frequencysampling for the quadrature radar receiver. Since the mapping of the phase noiseinfluence and the chirp linearity were seen as non-optimal, was it additionally suggested that future studies should yield better methods for such characterization. It was finally put forward that an intermediate simple test radar could be implemented to enable sampling system testing and FMCW signal processing of real measurements, if the millimeter partof the radar is further postponed.
APA, Harvard, Vancouver, ISO, and other styles
4

Slavik, Zora [Verfasser]. "Compressive Sensing and Its Applications in Automotive Radar Systems / Zora Slavik." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1218073195/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Engels, Florian [Verfasser], and F. K. [Akademischer Betreuer] Jondral. "Multidimensional Frequency Estimation with Applications in Automotive Radar / Florian Engels ; Betreuer: F. K. Jondral." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1124068872/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Altaf, Amjad. "Design of Millimeter-wave SiGe Frequency Doubler and Output Buffer for Automotive Radar Applications." Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8351.

Full text
Abstract:

Automotive Radars have introduced various functions on automobiles for driver’s safety and comfort, as part of the Intelligent Transportation System (ITS) including Adaptive Cruise Control (ACC), collision warning or avoidance, blind spot surveillance and parking assistance. Although such radar systems with 24 GHz carrier frequency are already in use but due to some regulatory issues, recently a permanent band has been allocated at 77-81 GHz, allowing for long-term development of the radar service. In fact, switchover to the new band is mandatory by 2014.

A frequency multiplier will be one of the key components for such a millimeter wave automotive radar system because there are limitations in direct implementation of low phase noise oscillators at high frequencies. A practical way to build a cost-effective and stable source at higher frequency is to use an active multiplier preceded by a high spectral purity VCO operating at a lower frequency. Recent improvements in the performance of SiGe technology allow the silicon microelectronics to advance into areas previously restricted to compound semiconductor devices and make it a strong competitor for automotive radar applications at 79 GHz.

This thesis presents the design of active frequency doubler circuits at 20 GHz in a commercially available SiGe BiCMOS technology and at 40GHz in SiGe bipolar technology (Infineon-B7h200 design). Buffer/amplifier circuits are included at output stages to drive 50 Ω load. The frequency doubler at 20 GHz is based on an emitter-coupled pair operating in class-B configuration at 1.8 V supply voltage. Pre-layout simulations show its conversion gain of 10 dB at -5 dBm input, fundamental suppression of 25dB and NF of 12dB. Input and output impedance matching networks are designed to match 50 Ω at both sides.

The millimeter wave frequency doubler is designed for 5 V supply voltage and has the Gilbert cell-based differential architecture where both RF and LO ports are tied together to act as a frequency doubler. Both pre-layout and post-layout simulation results are presented and compared together. The extracted circuit has a conversion gain of 8 dB at -8 dB input, fundamental suppression of 20 dB, NF of 12 dB and it consumes 42 mA current from supply. The layout occupies an area of 0.12 mm2 without pads and baluns at both input and output ports. The frequency multiplier circuits have been designed using Cadence Design Tool.

APA, Harvard, Vancouver, ISO, and other styles
7

Park, Young-Jin [Verfasser]. "Applications of photonic bandgap structures with arbitrary surface impedance to Luneburg lenses for automotive radar / Young-Jin Park." Karlsruhe : IHE, 2002. http://d-nb.info/1005498512/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bel, kamel Emna. "Modélisation du canal en ondes millimétriques pour des applications radar automobile." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0042/document.

Full text
Abstract:
L’amélioration de la sécurité routière ainsi que le développement des systèmes de transports intelligents sont des enjeux d’avenir dans le secteur automobile avec un essor considérable du véhicule semi autonome et autonome. Les systèmes de sécurité active qui équipent de plus en plus les véhicules commercialisés utilisent des capteurs radar (longue et courte portée) fonctionnant dans les bandes 24 GHz ou 77 GHz. L’étude et la mise au point de tels capteurs peuvent être facilitées via l’utilisation d’une plate-forme de simulation générique permettant de simuler un système radar couplé à son environnement selon des scénarios types prédéfinis. Il est alors nécessaire de disposer d’une représentation fiable et réaliste de l’environnement et des objets présents.Cette thèse aborde la caractérisation et la modélisation du canal de propagation et plus largement de l’environnement radioélectrique en ondes millimétriques pour des applications radar, en termes de phénomènes de propagation (trajets multiples, réflexion, diffraction …) et de cibles électriquement larges. Une combinaison de méthodes asymptotiques a été mise en œuvre afin de permettre l'analyse de problèmes électriquement larges en bande W, tout en réduisant les exigences en temps de calcul et en capacité de mémoire. La précision du simulateur a été évaluée à l’aide d’une campagne de mesures de SER de cibles canoniques et complexes de petite taille (inférieure 6cm) dans une chambre anéchoïque. Le banc de mesure mis en œuvre a permis également de valider une procédure expérimentale de détermination de la signature radar. En effet, la procédure expérimentale a été généralisée à la mesure de la signature radar d’objets de taille réelle, dans un milieu « indoor ». Les mesures effectuées ont montré une bonne adéquation avec les résultats présentés dans la littérature. En outre, ces données expérimentales permettent d’extraire une description de la cible par des points brillants qui modélisent les phénomènes de diffusion et de réflexion spéculaire. La réponse à haute fréquence d’une cible peut être approchée par la somme de réponses de ses points brillants. On propose ainsi de simplifier les signatures mesurées pour maximiser l'efficacité de calcul. Comparé aux modèles géométriques détaillés d’une cible complexe, le modèle de points brillants conduit à une meilleure efficacité des simulations de propagation basées sur des rayons dans des scénarios routiers. Le modèle tient également compte de l’anisotropie des diffuseurs (dans le plan azimutal) en modélisant leurs amplitudes par des gaussiennes
Improving road safety as well as the development of intelligent transport systems are issues of the future in the automotive sector with a considerable rise of the semi-autonomous and autonomous vehicle. The active safety systems that increasingly equip commercial vehicles use radar sensors (long and short range) operating in the 24 GHz or 77GHz bands. The study and development of such sensors can be facilitated through the use of a generic simulation platform to simulate a radar system coupled to its environment according to predefined standard scenarios. It is then necessary to have a reliable and realistic representation of the environment as well as targets. This thesis deals with the characterization and modelling of the propagation channel for radar applications, in terms of propagation phenomena (multipath, reflection, diffraction …) and electrically large targets. A combination of asymptotic methods was developed for the analysis of electrically large problems in W band, while reducing the requirements in CPU time and memory. The accuracy of the simulator was evaluated with radar cross section measurement of canonical and complex small targets (not exceeding 6 cm) in an anechoic chamber. The developed bench measurement also made it possible to validate an experimental procedure for determining the radar signature. Indeed, the experimental characterization was generalized to characterize various automotive related targets in an “indoor” environment. Measurement results matched well with the results presented in the literature. Moreover, the experimental data allows the extraction of a simple target description in terms of scattering points which model the diffusion and specular reflection phenomena. The high frequency response of a target can be approached by the sum of the responses of its scattering centres. It is thus proposed to simplify the measured signatures in order to increase the computation efficiency. Compared to detailed geometrical representation of a complex target, scattering centre model leads to better efficiency of ray-based propagation simulations of road scenarios. The model also takes into account the scattering centre anisotropy (in the azimuth plan) by modelling their amplitudes by Gaussian ones
APA, Harvard, Vancouver, ISO, and other styles
9

Yankevich, Evgeny. "Design of an Airborne Multi-input Multi-output Radar Emulator Testbed for Ground Moving Target Identification Applications." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345571650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dudek, Manuel [Verfasser]. "Towards Future Automotive Safety Applications based on Phased-Array FMCW-Radar Sensors - a Holistic Simulative Approach Incorporating RF-Frontend Impairments / Manuel Dudek." München : Verlag Dr. Hut, 2015. http://d-nb.info/1077403887/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Imbert, Villà Marc. "Design and performance evaluation of millimeter-wave flat lens antennas for communications, radar and imaging applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/397648.

Full text
Abstract:
Millimeter-wave systems introduce a set of particular severe requirements from the antenna point of view in order to achieve specific performances. In this sense, high directive antennas are required to overcome the huge extra path loss. Moreover, each particular application introduces additional requirements. For example, in very high throughput (VHT) wireless personal area networks (WPANs) communication systems at 60 GHz band beam-steering antennas are needed to deal with high user random mobility and human-body shadowing characteristic of indoor environments. Similarly, beam-steering capabilities are also needed in automotive radar applications at 79 GHz, since the determination of the exact position of an object is essential for most of the functions realized by the radar sensor. In the same way, beam-scanning, which is still commonly mechanically performed nowadays, is also needed in passive imaging systems at 94 GHz. Finally, from the integration perspective, the antennas must be small, low-profile, light weight and low-cost, in order to be successfully integrated in a commercial millimeter-wave wireless system. For these reasons, many types of antenna structures have been considered to achieve high directivity and beam-steering capabilities for the aforementioned millimeter-wave communication, radar and imaging applications at 60, 79 and 94 GHz. The most part of the currently adopted solutions are based on the expensive, complex and bulky phased-array antena concept. Actually, phased-array antenna systems can scan the beam at a fast rate. However, they require a complex integration of many expensive, lossy and bulky circuits, such as solid-state phase shifters and beam-forming networks. This doctoral thesis has contributed to the study, development, and assessment of the performance of innovative antena solutions in order to improve the existing architectures at millimeter-wave frequencies, conveniently solving the problems related specifically to short-range high data rate communication systems at 60 GHz WPAN band (including future 5G millimeter-wave systems), automotive radar sensors at 79 GHz band, and communications, radar, and imaging systems at 94 GHz. The specific goals pursued in this work, focused on defining an alternative antenna architecture able to achieve a full reconfigurable 2-D beam-scanning of high gain radiation beams at millimeter-wave frequencies, has been fulfilled. In this sense, this thesis has been mainly devoted to study in depth and practically develop the fundamental part of an innovative switched-beam antenna array concept: novel inhomogeneous gradient-index dielectric flat lenses, which, despite their planar antenna profile configurations, allow full 2-D beam-scanning of high gain radiation beams. A transversal study, going from theoretical investigations, passing by numerical analysis, new fabrication strategies, performance evaluation, and to full experimental assessment of the new antenna architectures in real application environment has been successfully carried out.
Los sistemas a frecuencias de ondas milimétricas introducen una serie de requisitos muy estrictos desde el punto de vista de la antena con el objetivo de conseguir unos rendimientos específicos. En este sentido, se requieren antenas con una muy alta directividad con tal de conseguir superar las enormes pérdidas adicionales por propagación. Además, cada aplicación en concreto introduce unos requisitos adicionales. Por ejemplo, en redes de área personal de alta velocidad para sistemas de comunicación a la banda de 60 GHz, antenas con la capacidad de reconfiguración del haz de radiación son necesarias para poder tratar la problemática de la alta movilidad de los usuarios en entornos cerrados. De la misma forma, capacidades de reconfiguración de la orientación del haz de radiación son necesarias en aplicaciones relacionadas con radar de automoción a 79 GHz, dado que la determinación de la posición exacta de un objeto es esencial para muchas de las funciones del sensor de radar. De forma muy similar, la capacidad de apuntamiento del haz, que muchas veces todavía se realiza mediante sistemas mecánicos, es también imprescindible en sistemas de escaneo para aplicaciones biomédicas y de seguridad a 94 GHz. Finalmente, desde la perspectiva de la integración, las antenas deben ser eléctricamente pequeñas, ligeras, y económicas para poder ser incorporadas a un sistema inalámbrico comercial a frecuencias de onda milimétricas. Por todos estos motivos, diferentes tipos de estructuras de antenas han sido propuestos para conseguir alta directividad, junto con capacidades de reconfiguración y apuntamiento del haz de radiación para las aplicaciones anteriormente mencionadas y descritas en la banda de 60, 79, y 94 GHz. La solución tradicionalmente adoptada en este tipo de casos està estrictamente basada en el siempre caro, complejo y aparatoso concepto del phased-array. De hecho, los phased-arrays permiten el rápido escaneo de haces de radiación de alta directividad. Sin embargo, el hecho que requieran una compleja integración de muchos y caros componentes a alta frecuencia, tales como desfasadores de estado sólido o redes de conformación, los cuales introducen ciertos niveles de pérdidas, siendo además aparatosos, hacen que esta solución resulte inviable. La presente tesis doctoral contribuye al estudio, desarrollo, y ensayo experimental del rendimiento de soluciones de antenas innovadoras para la mejora de las existentes arquitecturas de antena en la banda frecuencial de las ondas milimétricas, convenientemente solucionando los problemas asociados específicamente a los sistemas de comunicación de corto alcance y alta velocidad a 60 GHz (incluyendo los futuros sistemas 5G a milimétricas), a los sistemas de radar de automoción a 79 GHz, y a los sistemas de comunicación, radar, y escaneo para aplicaciones a 94 GHz. Los objetivos específicos perseguidos en este trabajo académico, focalizados en definir una arquitectura alternativa de antena, capaz de conseguir una completa reconfiguración y escaneo de los haces de radiación en dos dimensiones del espacio a frecuencias de onda milimétricas, se han conseguido plenamente. En este sentido, esta tesis doctoral ha sido dedicada esencialmente al estudio en profundidad y desarrollo práctico de la parte fundamental del innovador concepto del switchedbeam array: nuevas lentes dieléctricas inhomogéneas de gradiente de índice con estructura plana, las cuales, a pesar de su configuración física totalmente llana, permiten una reconfiguración total, en dos dimensiones del espacio, de haces de radiación de alta directividad. Un estudio eminentemente transversal, que abarca desde la investigación teórica, pasando por el análisis numérico, nuevas metodologías y técnicas de fabricación, evaluación de rendimientos, hasta una completa caracterización y ensayo del rendimiento en entornos reales de aplicación de las nuevas arquitecturas de antena, se ha llevado a cabo con total éxito.
Els sistemes a freqüències d'ones mil·limètriques introdueixen una sèrie de requisits molt estrictes des del punt de vista de l'antena per tal d’aconseguir uns rendiments específics. En aquest sentit, es requereixen antenes amb una alta directivitat per aconseguir superar les enormes pèrdues addicionals per propagació. A més a més, cada aplicació en concret introdueix uns requeriments addicionals . Per exemple, en xarxes d'àrea personal d'alta velocitat per a sistemes de comunicació a la banda de 60 GHz, antenes amb la capacitat de reconfiguració del feix de radiació són necessàries per tal de poder tractar la problemàtica de l'alta mobilitat dels usuaris en entorns tancats . De la mateixa manera, capacitats de reconfiguració de l'orientació del feix de radiació són necessàries en aplicacions associades a radar d'automoció a 79 GHz, donat que la determinació de la posició exacta d'un objecte és essencial per moltes de les funcions portades a terme pels ens or del radar. De forma molt similar, la capacitat d'apuntament del feix, que moltes vegades encara es realitza per mitjà de sistemes mecànics, és també imprescindible en sistemes d'escaneig per aplicacions mèdiques i de seguretat a 94 GHz. Finalment, des de la perspectiva de la integració, les antenes han de ser petites en termes elèctrics, lleugeres, i econòmiques per tal de poder ser incorporades en un sistema sense fils comercial a freqüència d'ones mil·limètriques. Per aquestes raons , diversos tipus d'estructures d'antenes han sigut proposats per aconseguir alta directivitat, conjuntament amb la capacitat d'apuntament del feix de radiació per les aplicacions anteriorment descrites a les bandes de 60, 79, i 94 GHz. La solució tradicionalment adoptada en aquests casos és estrictament basada en el sempre car, complexe, i aparatós concepte del phased-array. De fet, els phased-arrays tenen la capacitat de reconfigurar a gran velocitat feixos de radiació d'alta directivitat. Tot i això, el fet que requereixin la complexa integració de molts components cars a alta freqüència, amb certs nivells de pèrdues i aparatosos, com són els desfasadors d'estat sòlid, i les xarxes de conformació, fan d'aquesta solució inviable. La present tesis doctoral contribueix a l'estudi, des envolupament, i assaig experimental del rendiment de solucions d'antenes innovadores per tal de millorar les existents arquitectures d'antena a la banda freqüencial de les ones mil·limètriques, convenientment solucionant els problemes associats específicament als sistemes de comunicació de rang proper d'alta velocitat a 60 GHz (incloent els futurs sistemes 5G a mil·limètriques ), als sistemes de radar d'automoció a la banda dels 79 GHz, i als sistemes de comunicació, radar, i escaneig per aplicacions a 94 GHz. Els objectius específics perseguits en aquest treball acadèmic, focalitzats en definir una arquitectura d'antena alternativa, capaç d'aconseguir una completa reconfiguració i escaneig dels feixos de radiació en dues dimensions de l'espaia freqüències d'ona mil·limètriques , s'han plenament aconseguit. En aquest sentit, aquesta tesis doctoral s'ha dedicat essencialment a l'estudi en profunditat i desenvolupament pràctic de la part fonamental de l'innovador concepte del switched-beam array: noves lents dielèctriques inhomogenees de gradient d'índex amb estructura planar, les quals, tot i preservar una configuració física totalment plana, permeten una reconfiguració total en dues dimensions de l'espai de feixos de radiació d'alta directivitat. Un estudi transversal, que comprèn des de la investigació teòrica, passant per l'anàlisi numèric, noves metodologies i tècniques de fabricació, avaluació de rendiments, fins a una completa caracterització i assaig del rendiment en entorns reals d'aplicació de les noves arquitectures d'antena s'ha dut a terme amb total èxit.
APA, Harvard, Vancouver, ISO, and other styles
12

Khalid, Muhammad Umair. "LTCC Fresnel Lens Designs For 24 GHz SoP Automotive Radar Applications." Thesis, 2010. http://hdl.handle.net/10754/134736.

Full text
Abstract:
In this thesis, a novel System-on-Package (SoP) antenna concept has been developed for 24 GHz automotive radar applications. High-performance applications such as automotive radars require miniaturization, excellent performance and a high level of integration. The multi-layer Low-temperature co-fired ceramic (LTCC) SOP approach is an effective solution to meet these stringent needs as it offers not only great capability of integrating embedded functions, but also the real estate efficiency and cost-savings. The antenna concept utilizes a mixed LTCC tape system and combines for the first time a fractal antenna array and an integrated grooved Fresnel lens. The overall gain of the system is 15 dB which includes a 6 dB gain enhancement due to the integration of the lens. The bandwidth is 1.8 GHz which is 7.5% of the center frequency. The three types of dielectric Fresnel lenses (grooved, multi-dielectric and perforated) have been investigated as gain enhancement and beam shaping components for high performance LTCC SoP applications. A high dielectric constant material has been utilized to realize the lenses in the LTCC medium. All three lenses perform well with significant gain enhancement (>6 dB) and beam shaping despite their compact sizes (2.4 cm x 2.4 cm). The excellent performance makes all three lenses highly suitable for high performance SoP applications with the grooved lens being most suitable due to the relative ease of fabrication.
APA, Harvard, Vancouver, ISO, and other styles
13

Zhang, Yu-Cheng, and 張育誠. "Frequency Tripler for 24GHz and 77GHz Automotive Radar Applications." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/69541803986327893849.

Full text
Abstract:
碩士
國立中興大學
電機工程學系所
105
Recently, CMOS process technology is making integrated circuit can be used in the microwave frequency bands, such as 24 GHz, 77 GHz and 79 GHz automotive crash radars. High-frequency VCO exhibits the limitation of tuning rang and operation frequencies. In orderto reduce the design burden, the frequency multiplier with an oscillator can be adopted to provide the required high-frequency signals. The thesis presents the design and realization of two stages of triplers using injection-locked and sub-harmonic mixing techniques, respectively. In order to provide higher frequency output with nine times of the oscillation frequency, the sub-harmonic mixer is followed by the injection-locked frequency tripler which is applied at the output stage of the oscillator. The 8GHz voltage-controlled oscillator (VCO) provides the signals which are injected into the frequency tripler for frequency mixing. The VCO provides the tuning of 7.86-8.91 GHz. The proposed 1st-stage frequency tripler provides the tuning range 23.6-26.7 GHz and dissipate 30.9mW, and the simulated phase noise is -99.5 dBc/Hz at 1-MHz frequency offset. The 2nd-stage frequency tripler with output buffer provides the tuning range 70.8-80.2 GHz and dissipates 14.6mW in the whole circuit, and the simulated phase noise is -88.6dBc/Hz at 1-MHz frequency offset.
APA, Harvard, Vancouver, ISO, and other styles
14

Wu, Yi-shuo, and 吳翊碩. "Design of 24 GHz Radar Integrated Circuits for Automotive Applications." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/89601760925151925237.

Full text
Abstract:
碩士
國立中央大學
電機工程研究所
97
The goal of the thesis is to design and implement a 24-GHz radar integrated circuits for the automotive radar applications. The radar integrated circuits have been designed and fabricated using WIN Semiconductors 0.5-?m E/D-PHEMT technology. First, the introduction and the theory of the oscillation are presented in chapter 1 and chapter 2, respectively. In chapter 3, a differential voltage controlled oscillation circuit is presented for K-band applications. The frequency of the differential VCO is from 18.8 to 27.5 GHz with a tuning bandwidth of 38% and an output power of higher than 4 dBm. The differential VCO demonstrates a figure-of-merit of -177 dBc/Hz. Besides, a user-defined varactor model has been presented in this chapter. The radar receiver and transmitter for the automotive radar applications are presented in chapter 4 and chapter 5, respectively. The radar transmitter consistes of a differential VCO and a two-stage power amplifier. The frequency of the radar transmitter is from 21.7 to 26 GHz with an output power of higher than 13 dBm. The radar receiver consistes of a differential VCO, a low noise amplifier, a buffer amplifier and a mixer. The RF frequency of the radar receiver is from 21.7 to 26 GHz with a conversion gain of higher than 9 dB and an IF frequency of from 0.1 to 3.4 GHz. The frequency synthesizer are presented using TSMC 0.18-?m CMOS peocess in chapter 6. The measured output frequency is locked at 1.472 GHz in close loop condition. Finally, the conclusion is given in chapter 7.
APA, Harvard, Vancouver, ISO, and other styles
15

Hsieh, Yi-Keng, and 謝易耕. "Dual-Mode and Dual-Band Circuit Techniques for CMOS Automotive Radar Transmitter Applications." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/67772741354745851209.

Full text
Abstract:
博士
國立臺灣大學
電子工程學研究所
104
In this thesis, dual-mode and dual-band circuit techniques for CMOS automotive radar transmitter applications are developed. The first technique is motivated by facilitating the frequency planning of a novel 77-GHz FMCW transceiver architecture. By means of a 19-GHz integer-N phase-locked loop along with a frequency modulation loop, the required 19-GHz sinusoidal signal and 19–19.5 GHz FMCW frequency chirp can be generated simultaneously without excessive hardware overhead. The second technique targets on the concurrent operation for 22–29 GHz short-range pulse radar and 76–77 GHz long-range FMCW radar. Based on the previous signal generation concept, the required K-band sinusoidal carrier and W-band FMCW frequency chirp can be provided simultaneously. Besides signal generators, a novel 24/77-GHz dual-band PA topology is presented. By exploring the optimal load impedance for both bands in a systematic manner, on-chip passive devices for the output matching network is effectively reused. As a result, a two-way power-combing scheme for dual-band operation is established. In addition, the bulky input matching networks of a 24-GHz and a 77-GHz PA are amalgamated into the same hardware by introducing MOS switches for reconfiguration.
APA, Harvard, Vancouver, ISO, and other styles
16

Peng, Pen-Jui, and 彭朋瑞. "Design of Microwave and Millimeter-wave Radar Systems for Imaging and Automotive Applications." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/36852924258170482911.

Full text
Abstract:
博士
國立臺灣大學
電子工程學研究所
103
This dissertation presents the research on microwave and millimeter-wave radar systems. Three individual radar systems operating in W-band and K-band have been reported, including the chipsets and assembly modules. A fully-integrated W-band 3D image radar engine operated at 94 GHz utilizing phased-array-fed for electrical scanning and precise ranging technique for distance measurement has been realized. Four transmitters and four receivers form a sensor frontend with phase shifters and power combiners adjusting the beam direction. A built-in 31.3-GHz clock source and a frequency tripler provide both RF carrier and counting clocks for the distance measurement. Flipchip technique with low-temperature co-fired ceramic (LTCC) antenna design creates a miniature module as small as 6.5 x 4.4 x 0.8 cm^3. Designed and fabricated in 65-nm CMOS technology, the transceiver array chip dissipates 960 mW from a 1.2-V supply and occupies chip area of 3.6 x 2.1 mm^2. This prototype achieves +/-28° scanning range, 2-m maximum distance, and 1-mm depth resolution. A 79-GHz fully-integrated bidirectional pulse radar system with injection-regenerative receiver is demonstrated in 65 nm CMOS. The novel design for the impedance transformation of PA/LNA improves the TX efficiency and RX noise figure significantly in comparison with the traditional RF switch. The injection-regenerative oscillator is proposed to increase the receiver gain as well as the system efficiency. The measured TX peak Pout and RX conversion gain are 9.2 dBm and 42 dB, respectively. Using an 8 × 8 patch antenna array with on board matching network to compensate bonding wire effect, the TX EIRP is 25 dBm with the beamwidth of 11.5° and 10° in E and H plane, respectively. The distance measurement for 0.3 ~ 1.5 m with the maximum error of less than 7.2 mm. The overall dc consumption is only 107 mW from a single 1.2 V supply under pulse modulation with 0.1% duty cycle. Finally, a K-band fully-integrated 1TX/4RX pulse-modulated radar system fabricated in 65-nm CMOS technology is presented. Due to the 4 x 4 Butler matrix beamformer, this prototype achieves >90° radar field of view with 30° angular resolution at a distance of 1 m. The switchable PA improves the average carrier leakage power as well as the power consumption. The programmable pulse width, pulse repetition interval, and the temperature compensation technique in PLL, making the radar system more robust. The measured distance error is less than 9.1 mm inside the range of 1.2 m with the average power consumption of only 149 mW under pulse modulation with 0.06% duty cycle.
APA, Harvard, Vancouver, ISO, and other styles
17

Chen, Xi-syuan, and 陳逸軒. "Design of CMOS VCOs for 24-GHz FMCW Automotive Radar and 60-GHz WPAN Applications." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/21206527351967980822.

Full text
Abstract:
碩士
國立成功大學
電腦與通信工程研究所
96
This thesis presents the design of CMOS VCOs for 24-GHz FMCW automotive radar and 60-GHz WPAN applications. A 12-GHz low-voltage and low-power VCO and Miller divider are implemented by TSMC 0.18-μm CMOS process. The modified low-voltage corss-coupled pair VCO is used to design the 12-GHz VCO. A 24-GHz VCO which used an active nonlinear FET freuquency doubler is implemented by TSMC 0.18-μm CMOS process. A 54-GHz VCO which used a transmission gate freuquency doubler is implemented by TSMC 0.13-μm CMOS process. A 12-GHz low-voltage and low-power VCO and Miller divider are implemented by TSMC 0.18-μm CMOS process. The modified low-voltage corss-coupled pair VCO is used to design the 12-GHz VCO. The measurement results of 12-GHz VCO show: The output frequency is between 12.66-13.7 GHz, the output power is greater than -6dBm, the phase noise is -112 dBc/Hz@1 MHz at 13.49-GHz center frequency and the VCO core consumes 6.2 mW. The measurement results of Miller divider show: The dividing range is 11.4-14.2 GHz, the minimum sensitivity is -4.75 dBm@11.5 GHz. A 24-GHz VCO which used an active nonlinear FET freuquency doubler is implemented by TSMC 0.18-μm CMOS process. The measurement results of 24-GHz VCO show: The output frequency of 24 GHz VCO is between 22.6-24.5 GHz, the phase noise is -107.4 dBc/Hz@1 MHz at 24-GHz center frequency, the output power is greater than -13 dBm, and the 24-GHz VCO consumes 30 mW. A 54-GHz VCO which used a transmission gate freuquency doubler is implemented by TSMC 0.13-μm CMOS process. The measurement results of 24-GHz VCO show: the output frequency is 52.92-54.83 GHz, the phase noise is -91.8 dBc/Hz@1 MHz offset at center frequency of 53.34 GHz, the output power is greater than -16 dBm. The 54GHz VCO consumes 11 mW.
APA, Harvard, Vancouver, ISO, and other styles
18

Kai, Wen Tan, and 譚凱文. "Design of Transmitter and Phase-locked Loop in CMOS for Microwave Ultra-wideband Automotive Radar Applications." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/45232259160338638201.

Full text
Abstract:
博士
國立清華大學
電子工程研究所
103
This dissertation presents two K-band transmitter front-ends and a W-band wide tuning range PLL for automotive radar applications with different standards. These circuits are all implemented in CMOS technology aiming for low cost, high integration level, and desired functionality. First, a K-band ultra-wideband (UWB) pulse-compression (PC) automotive radar transmitter in 90 nm CMOS is presented, which is composed of the fully-integrated pulse generator, mixer, driver amplifier, phase-locked loop (PLL), and timing circuitry. The PC technique with coding gain can effectively enhance the detection resolution and also improve the signal-to-noise ratio. We propose a PC transmitter allowing fast and precise code generation with small power consumption and chip area, and also offering reconfigurable capability. Compared with previously reported UWB pulse radars with relatively simple coding schemes, the proposed transmitter features a much more challenging 15-bit pseudo noise (PN) code design using high speed shift registers, which can improve signal-to-noise ratio (SNR) up to 23.5 dB. The measured results demonstrate correct output waveforms corresponding to different modulation codes with the spectrum well confined under the regulation mask. With a modulation rate over 3 Gb/s (pulse repeat frequency of 6.125 MHz), a resolution of ~ 5 cm can be achieved. Second, a K-band UWB PC automotive radar transmitter modified based on the first work is presented. This design proposes the bandwidth extension and pulse shaping techniques to further improve the performance of the transmitter. The conversion of non-return zero (NRZ) to return zero (RZ) signal format is performed in each bits of compressed pulse. The bandwidth of the output pulse can be doubled, leading to increased resolution of radar systems. Besides, a pulse shaping technique is employed based on an adjustable low-pass filter. The pulse shaping technique can reduce the peak power of side lobe of the PC pulse to satisfy the FCC mask regulation and also enhance the spectrum efficiency. The output spectrum of PC pulse will be well-confined in the FCC mask to improve the SNR of the radar system. Under the a reduced modulation rate of 1.5 Gb/s (only half rate compared with that in the first work), a same resolution of ~ 5 cm can be achieved. Also, the proposed pulse shaping can reduce the peak power of side lobe by 5 dB. Finally, a wide tuning range W-band phase-locked loop (PLL) in 90 nm CMOS is presented. A novel frequency tripling topology with a single cross-coupled pair and a dual tank is proposed for the voltage-controlled oscillator (VCO) to achieve wide tuning characteristics under low power consumption. The locking range of the PLL at the fundamental tone is 25.4–29.7 GHz, and an excellent tuning range at the third harmonic frequency up to 12.9 GHz (from 76.2 to 89.1 GHz, 15.6%) is obtained. Under a 1.2 V supply voltage (Pdiss= 62.4 mW), the measured closed-loop phase noise of the PLL is 83.5 dBc/Hz at 78.34 GHz. To the best of our knowledge, the achieved turning range is the highest currently reported for the PLLs operating in a similar frequency range in CMOS technology.
APA, Harvard, Vancouver, ISO, and other styles
19

Lin, Jian-An, and 林建安. "Design of Broadband Image Rejection Down-Conversion Mixer and Frequency Synthesizer for 77GHz Anti-Collision Automotive Radar and SATAⅢ Applications." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/16591413872939486926.

Full text
Abstract:
碩士
國立臺灣大學
電信工程學研究所
102
Mixers and frequency synthesizers (FS) are important circuit components in radio frequency transceivers. Broadband image rejection mixer is an crucial design issues in modern direct-down receiver. Mixers with good image rejection can avoid the image signal in-band interference in IF ports. The W-band FS correspond to new specifications of anti-collision automotive radar and EMI problems resulted from high power and high frequency clock generated by FS are urgent problems. By use of the complementary metal oxide semiconductor manufacturing process , a broadband image rejection down mixer and FS for anti-collision automotive radar and SATAⅢ are proposed. In chapterⅡ , a broadband image rejection down mixer for K band communication is proposed. Broadband image rejection can be achieved by ring-shape polyphase filter, minimizing the amplitude and phase imbalance of on-chip baluns, and symmetry layout, while maintaining reasonable conversion gain and DC power consumption. In chapterⅢ, we replace the doublers by use of the characteristics of impedance translation skill of microstrip line. With the push-push technique to raise the oscillation frequency to simplify the divider chain, we implement 77GHz phase lock loop design. In Chapter Ⅳ, using 2nd delta-sigma fractional-N phase-locked loop and a built-in periodical counter to realize the triangular wave modulation and the function of spreading spectrum, so the electromagnetic interference caused by high power and high frequency clock can be reduced .
APA, Harvard, Vancouver, ISO, and other styles
20

Huang, Hsiang-Ting, and 黃湘婷. "Design and Analysis of W-Band Transformer-coupled Frequency Tripler and Phase-Locked Loops for Automotive Collision Avoidance and Vital Sign Detection Radar Applications." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/80881521210855019340.

Full text
Abstract:
碩士
國立臺灣大學
電信工程學研究所
103
In this thesis, we present the design, analysis, and implement for three CMOS millimeter-wave integrated circuits. Including W-Band transformer-coupled frequency tripler, K-band LO generator for automotive collision avoidance and X-band phase-locked loops vital sign detection radar applications. In chapter 2, the W-band injection-locked frequency tripler using bandwidth-enhanced transformer-coupled technique is proposed. Smart cars are the future application trend, which require the internet of vehicles (IOV) and autopilot functions. Through a Marchand balun, the K-band input signal can be converted into differential signals. This frequency tripler is adequate to generate W-band signal with the advantages of wide bandwidth, good phase noise, low dc power and small chip size. In chapter 3, the direct combination of a 8-10 GHz PLL with a 24 GHz frequency tripler for K-band Local Oscillator (LO) generation is proposed. The power consumption can be reduced without inserting a buffer stage between the VCO and the mixer-type tripler. With the shunt-peaking technique at second harmonic, it can improve the phase noise in VCO and results in better phase noise in frequency tripler output. In chapter 4, the proposed X-band fraction-N Phase-Locked Loop with lower phase noise and low dc consumption is proposed and is for vital sign detection radar application. To decrease the phase noise and increase the tuning range, we achieve small K_VCO using band-switching complementary LC VCO. The operation-amplifier type charge pump successfully solves the current mismatch problem. A MASH 111 with 6-bit 3-order delta–sigma modulator is used in this fractional-N frequency synthesizer.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography