Journal articles on the topic 'SoP Automotive Radar Applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'SoP Automotive Radar Applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gadringer, Michael Ernst, Franz Michael Maier, Helmut Schreiber, Vamsi Prakash Makkapati, Andreas Gruber, Michael Vorderderfler, Dominik Amschl, et al. "Radar target stimulation for automotive applications." IET Radar, Sonar & Navigation 12, no. 10 (September 4, 2018): 1096–103. http://dx.doi.org/10.1049/iet-rsn.2018.5126.
Full textFischer, Gerhard G., and Srdjan Glisic. "SiGe:C BiCMOS Technologies for Automotive Radar Applications." ECS Transactions 16, no. 10 (December 18, 2019): 1041–51. http://dx.doi.org/10.1149/1.2986867.
Full textTsang, S. H., P. S. Hall, E. G. Hoare, and N. J. Clarke. "Advance Path Measurement for Automotive Radar Applications." IEEE Transactions on Intelligent Transportation Systems 7, no. 3 (September 2006): 273–81. http://dx.doi.org/10.1109/tits.2006.880614.
Full textGrubert, J., J. Heyen, C. Metz, L. C. Stange, and A. F. Jacob. "Planar millimeter wave radar frontend for automotive applications." Advances in Radio Science 1 (May 5, 2003): 125–29. http://dx.doi.org/10.5194/ars-1-125-2003.
Full textTak, Jinpil, Eun Jeong, and Jaehoon Choi. "Metamaterial absorbers for 24-GHz automotive radar applications." Journal of Electromagnetic Waves and Applications 31, no. 6 (March 10, 2017): 577–93. http://dx.doi.org/10.1080/09205071.2017.1297257.
Full textSantos, Luís Carlos, Filipe Neves dos Santos, Raul Morais, and Cândido Duarte. "Potential Non-Invasive Technique for Accessing Plant Water Contents Using a Radar System." Agronomy 11, no. 2 (February 2, 2021): 279. http://dx.doi.org/10.3390/agronomy11020279.
Full textHyodo, Akihiko, Shigeru Oho, and Toshiyuki Nagasaku. "Single-Chip 77GHz Radar Sensor and its Automotive Applications." SAE International Journal of Passenger Cars - Electronic and Electrical Systems 5, no. 1 (April 16, 2012): 272–79. http://dx.doi.org/10.4271/2012-01-0937.
Full textAbdallah, Meriem Ben, and Jamal Bel Hadj Tahar. "Dual Band Slotted Antenna for Radar and Automotive Applications." Procedia Computer Science 73 (2015): 187–92. http://dx.doi.org/10.1016/j.procs.2015.12.011.
Full textHu, Chenxi, Yimin Liu, Huadong Meng, and Xiqin Wang. "Randomized Switched Antenna Array FMCW Radar for Automotive Applications." IEEE Transactions on Vehicular Technology 63, no. 8 (October 2014): 3624–41. http://dx.doi.org/10.1109/tvt.2014.2308895.
Full textCavarra, Andrea, Giuseppe Papotto, Alessandro Parisi, Alessandro Finocchiaro, Claudio Nocera, and Giuseppe Palmisano. "Transformer-Based VCO for W-Band Automotive Radar Applications." Electronics 10, no. 5 (February 25, 2021): 531. http://dx.doi.org/10.3390/electronics10050531.
Full textNguyen, Quang Ngoc, Myoung Yeol Park, Young Su Kim, and Franklin Bien. "A 24 GHz dual FMCW radar to improve target detection for automotive radar applications." International Journal of Information and Communication Technology 13, no. 2 (2018): 243. http://dx.doi.org/10.1504/ijict.2018.090561.
Full textBien, Franklin, Myoung Yeol Park, Young Su Kim, and Quang Ngoc Nguyen. "A 24 GHz dual FMCW radar to improve target detection for automotive radar applications." International Journal of Information and Communication Technology 13, no. 2 (2018): 243. http://dx.doi.org/10.1504/ijict.2018.10011705.
Full textBlöecher, H. L., M. Andres, C. Fischer, A. Sailer, M. Goppelt, and J. Dickmann. "Impact of system parameter selection on radar sensor performance in automotive applications." Advances in Radio Science 10 (September 18, 2012): 33–37. http://dx.doi.org/10.5194/ars-10-33-2012.
Full textWang, Xin, Sebastian Brunner, Manfred Stadler, Andreas Stelzer, and Klaus Aichholzer. "LTCC SOLUTION FOR MILLIMETER-WAVE AUTOMOTIVE SHORT-RANGE RADAR APPLICATIONS." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, CICMT (September 1, 2015): 000058–61. http://dx.doi.org/10.4071/cicmt-tp12.
Full textITOH, Y. "77-GHz MMIC Module Design Techniques for Automotive Radar Applications." IEICE Transactions on Electronics E88-C, no. 10 (October 1, 2005): 1939–46. http://dx.doi.org/10.1093/ietele/e88-c.10.1939.
Full textHong-Yeh Chang, Huei Wang, M. Yu, and Yonghui Shu. "A 77-GHz MMIC power amplifier for automotive radar applications." IEEE Microwave and Wireless Components Letters 13, no. 4 (April 2003): 143–45. http://dx.doi.org/10.1109/lmwc.2003.811059.
Full textYeap, Siew Bee, Xianming Qing, and Zhi Ning Chen. "77-GHz Dual-Layer Transmit-Array for Automotive Radar Applications." IEEE Transactions on Antennas and Propagation 63, no. 6 (June 2015): 2833–37. http://dx.doi.org/10.1109/tap.2015.2419691.
Full textTeshirogi, T., S. Saito, M. Uchino, M. Ejima, K. Hamaguchi, H. Ogawa, and R. Kohno. "Residual-carrier-free burst oscillator for automotive UWB radar applications." Electronics Letters 41, no. 9 (2005): 535. http://dx.doi.org/10.1049/el:20050604.
Full textOlbrich, M. O., A. Grübl, R. H. Raßhofer, and E. M. Biebl. "A planar hybrid transceiving mixer at 76.5GHz for automotive radar applications." Advances in Radio Science 1 (May 5, 2003): 207–10. http://dx.doi.org/10.5194/ars-1-207-2003.
Full textLinz, Sarah, Gabor Vinci, Sebastian Mann, Stefan Lindner, Francesco Barbon, R. Weigel, and Alexander Koelpin. "A Compact, Versatile Six-Port Radar Module for Industrial and Medical Applications." Journal of Electrical and Computer Engineering 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/382913.
Full textViikari, V. V., T. Varpula, and M. Kantanen. "Road-Condition Recognition Using 24-GHz Automotive Radar." IEEE Transactions on Intelligent Transportation Systems 10, no. 4 (December 2009): 639–48. http://dx.doi.org/10.1109/tits.2009.2026307.
Full textFolster, F., and H. Rohling. "Data Association and Tracking for Automotive Radar Networks." IEEE Transactions on Intelligent Transportation Systems 6, no. 4 (December 2005): 370–77. http://dx.doi.org/10.1109/tits.2005.858784.
Full textBaselice, Fabio, Giampaolo Ferraioli, Sergyi Lukin, Gianfranco Matuozzo, Vito Pascazio, and Gilda Schirinzi. "A New Methodology for 3D Target Detection in Automotive Radar Applications." Sensors 16, no. 5 (April 29, 2016): 614. http://dx.doi.org/10.3390/s16050614.
Full textMassen, Joachim, Michael Frei, Wolfgang Menzel, and Ulrich Möller. "A 79 GHz SiGe short-range radar sensor for automotive applications." International Journal of Microwave and Wireless Technologies 5, no. 1 (January 4, 2013): 5–14. http://dx.doi.org/10.1017/s1759078712000669.
Full textYi, Xiang, Guangyin Feng, Zhipeng Liang, Cheng Wang, Bei Liu, Chenyang Li, Kaituo Yang, Chirn Chye Boon, and Quan Xue. "A 24/77 GHz Dual-Band Receiver for Automotive Radar Applications." IEEE Access 7 (2019): 48053–59. http://dx.doi.org/10.1109/access.2019.2904493.
Full textMosalanejad, Mohammad, Ilja Ocket, Charlotte Soens, and Guy A. E. Vandenbosch. "Multilayer Compact Grid Antenna Array for 79 GHz Automotive Radar Applications." IEEE Antennas and Wireless Propagation Letters 17, no. 9 (September 2018): 1677–81. http://dx.doi.org/10.1109/lawp.2018.2862946.
Full textAmeri, H., A. Attaran, and M. Moghavvemi. "Planning of low-cost 77-GHz radar transceivers for automotive applications." IEEE Aerospace and Electronic Systems Magazine 27, no. 4 (April 2012): 25–31. http://dx.doi.org/10.1109/maes.2012.6203715.
Full textLaribi, Amir, Markus Hahn, Jürgen Dickmann, and Christian Waldschmidt. "A Novel Target-Height Estimation Approach Using Radar-Wave Multipath Propagation for Automotive Applications." Advances in Radio Science 15 (September 21, 2017): 61–67. http://dx.doi.org/10.5194/ars-15-61-2017.
Full textLee, Young Pyo, Jong Min Lee, Jae Sik Bang, Tae Yong Jung, Jong Seon Lee, Dong Hwan Lee, Hyun Sang Lyu, and Keum Cheol Hwang. "Gap-Coupled Series-Fed Millimeter-Wave Array Antenna for Automotive Radar Applications." Journal of Korean Institute of Electromagnetic Engineering and Science 31, no. 4 (April 2020): 394–97. http://dx.doi.org/10.5515/kjkiees.2020.31.4.394.
Full textSchoepfel, Jan, Simon Kueppers, Klaus Aufinger, and Nils Pohl. "A SiGe transceiver chipset for automotive radar applications using wideband modulation sequences." International Journal of Microwave and Wireless Technologies 11, no. 7 (May 31, 2019): 676–85. http://dx.doi.org/10.1017/s1759078719000849.
Full textMosalanejad, Mohammad, Ilja Ocket, Charlotte Soens, and Guy A. E. Vandenbosch. "Wideband Compact Comb-Line Antenna Array for 79 GHz Automotive Radar Applications." IEEE Antennas and Wireless Propagation Letters 17, no. 9 (September 2018): 1580–83. http://dx.doi.org/10.1109/lawp.2018.2853804.
Full textSteinhauer, Matthias, Hans-Oliver Ruoss, Hans Irion, and Wolfgang Menzel. "Millimeter-Wave-Radar Sensor Based on a Transceiver Array for Automotive Applications." IEEE Transactions on Microwave Theory and Techniques 56, no. 2 (February 2008): 261–69. http://dx.doi.org/10.1109/tmtt.2007.914635.
Full textBöck, J., M. Wojnowski, C. Wagner, H. Knapp, W. Hartner, M. Treml, F. J. Schmückle, S. Sinha, and R. Lachner. "Low-cost eWLB packaging for automotive radar MMICs in the 76–81 GHz range." International Journal of Microwave and Wireless Technologies 5, no. 1 (January 23, 2013): 25–34. http://dx.doi.org/10.1017/s1759078712000621.
Full textCiattaglia, Gianluca, Adelmo De Santis, Deivis Disha, Susanna Spinsante, Paolo Castellini, and Ennio Gambi. "Performance Evaluation of Vibrational Measurements through mmWave Automotive Radars." Remote Sensing 13, no. 1 (December 30, 2020): 98. http://dx.doi.org/10.3390/rs13010098.
Full textRajamani, R. "Radar Health Monitoring for Highway Vehicle Applications." Vehicle System Dynamics 38, no. 1 (July 1, 2002): 23–54. http://dx.doi.org/10.1076/vesd.38.1.23.3518.
Full textAbdullah, Haythem, Mohamed Mabrouk, Ahmed Abd-Elnaby Kabeel, and Amr Hussein. "High-Resolution and Large-Detection-Range Virtual Antenna Array for Automotive Radar Applications." Sensors 21, no. 5 (March 2, 2021): 1702. http://dx.doi.org/10.3390/s21051702.
Full textHarter, Marlene, Jurgen Hildebrandt, Andreas Ziroff, and Thomas Zwick. "Self-Calibration of a 3-D-Digital Beamforming Radar System for Automotive Applications With Installation Behind Automotive Covers." IEEE Transactions on Microwave Theory and Techniques 64, no. 9 (September 2016): 2994–3000. http://dx.doi.org/10.1109/tmtt.2016.2593731.
Full textPatwari, Ashish, and Ramachandra Reddy Gudheti. "NOVEL MRA-BASED SPARSE MIMO AND SIMO ANTENNA ARRAYS FOR AUTOMOTIVE RADAR APPLICATIONS." Progress In Electromagnetics Research B 86 (2020): 103–19. http://dx.doi.org/10.2528/pierb19121602.
Full textStriano, Pasquale, Christos V. Ilioudis, Carmine Clemente, and John J. Soraghan. "Communicating radar using frequency-shift keying and fractional Fourier transform for automotive applications." Journal of Engineering 2019, no. 19 (October 1, 2019): 6016–20. http://dx.doi.org/10.1049/joe.2019.0141.
Full textWahl, Martine, Didier Georges, and Michel Dang. "A Microwave Radar Data Analysis Algorithm for Obstacle Detection in Automotive Applications 1." IFAC Proceedings Volumes 31, no. 3 (March 1998): 477–81. http://dx.doi.org/10.1016/s1474-6670(17)44131-0.
Full textWang, Hsiao-Ning, Ying-Wei Huang, and Shyh-Jong Chung. "Spatial Diversity 24-GHz FMCW Radar With Ground Effect Compensation for Automotive Applications." IEEE Transactions on Vehicular Technology 66, no. 2 (February 2017): 965–73. http://dx.doi.org/10.1109/tvt.2016.2565608.
Full textNanda Kumar, M., and T. Shanmuganantham. "Division shaped substrate integrated waveguide slot antenna for millimeter wireless/automotive radar applications." Computers & Electrical Engineering 71 (October 2018): 667–75. http://dx.doi.org/10.1016/j.compeleceng.2018.08.011.
Full textLiao, Xin, Xing Jiang, Xue-Long Zhu, Lin Peng, Kai-Fa Wang, Ji-Heng Wang, and Li-Mei Huang. "SUBSTRATE INTEGRATED WAVEGUIDE SLOT ARRAY ANTENNA FOR 77 GHZ AUTOMOTIVE ANGULAR RADAR APPLICATIONS." Progress In Electromagnetics Research C 112 (2021): 153–64. http://dx.doi.org/10.2528/pierc21032404.
Full textSchnabel, Raik, Raphael Hellinger, Dirk Steinbuch, Joachim Selinger, Michael Klar, and Bernhard Lucas. "Development of a mid range automotive radar sensor for future driver assistance systems." International Journal of Microwave and Wireless Technologies 5, no. 1 (January 24, 2013): 15–23. http://dx.doi.org/10.1017/s1759078712000724.
Full textKim, Woosuk, Hyunwoong Cho, Jongseok Kim, Byungkwan Kim, and Seongwook Lee. "YOLO-Based Simultaneous Target Detection and Classification in Automotive FMCW Radar Systems." Sensors 20, no. 10 (May 20, 2020): 2897. http://dx.doi.org/10.3390/s20102897.
Full textBelgiovane, Domenic J., Chi-Chih Chen, Stanley Y. P. Chien, and Rini Sherony. "Surrogate Bicycle Design for Millimeter-Wave Automotive Radar Pre-Collision Testing." IEEE Transactions on Intelligent Transportation Systems 18, no. 9 (September 2017): 2413–22. http://dx.doi.org/10.1109/tits.2016.2642889.
Full textRao, Shengyu, Chunqi Shi, and Runxi Zhang. "A 76–81 GHz CMOS mmW quadrature down-conversion mixer for automotive radar applications." IEICE Electronics Express 17, no. 4 (2020): 20190740. http://dx.doi.org/10.1587/elex.17.20190740.
Full textAqlan, Basem, Hamsakutty Vettikalladi, and Majeed A. S. Alkanhal. "Millimeter wave antenna with frequency selective surface (FSS) for 79 GHz automotive radar applications." International Journal of Microwave and Wireless Technologies 9, no. 2 (February 10, 2016): 281–90. http://dx.doi.org/10.1017/s1759078716000027.
Full textChartier, S., B. Schleicher, T. Feger, T. Purtova, G. Fischer, and H. Schumacher. "79 GHz fully integrated fully differential Si/SiGe HBT amplifier for automotive radar applications." Analog Integrated Circuits and Signal Processing 55, no. 1 (February 21, 2008): 77–83. http://dx.doi.org/10.1007/s10470-008-9149-x.
Full textLee, Jae-Min, Hong-Kyun Ryu, Jong-Myung Woo, and Bon-Hee Koo. "Design of a Rectangular Waveguide Antenna for Automotive Side and Rear Radar Sensor Applications." Journal of The Korea Institute of Intelligent Transport Systems 11, no. 1 (February 28, 2012): 42–52. http://dx.doi.org/10.12815/kits.2012.11.1.042.
Full text