Academic literature on the topic 'Sorghum – Diseases and pest resistance – Genetic aspects'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sorghum – Diseases and pest resistance – Genetic aspects.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sorghum – Diseases and pest resistance – Genetic aspects"

1

Lu, Guilong, Zhoutao Wang, Fu Xu, Yong-Bao Pan, Michael P. Grisham, and Liping Xu. "Sugarcane Mosaic Disease: Characteristics, Identification and Control." Microorganisms 9, no. 9 (September 17, 2021): 1984. http://dx.doi.org/10.3390/microorganisms9091984.

Full text
Abstract:
Mosaic is one of the most important sugarcane diseases, caused by single or compound infection of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and/or Sugarcane streak mosaic virus (SCSMV). The compound infection of mosaic has become increasingly serious in the last few years. The disease directly affects the photosynthesis and growth of sugarcane, leading to a significant decrease in cane yield and sucrose content, and thus serious economic losses. This review covers four aspects of sugarcane mosaic disease management: first, the current situation of sugarcane mosaic disease and its epidemic characteristics; second, the pathogenicity and genetic diversity of the three viruses; third, the identification methods of mosaic and its pathogen species; and fourth, the prevention and control measures for sugarcane mosaic disease and potential future research focus. The review is expected to provide scientific literature and guidance for the effective prevention and control of mosaic through resistance breeding in sugarcane.
APA, Harvard, Vancouver, ISO, and other styles
2

ABBERTON, M. T., and A. H. MARSHALL. "Progress in breeding perennial clovers for temperate agriculture." Journal of Agricultural Science 143, no. 2-3 (June 2005): 117–35. http://dx.doi.org/10.1017/s0021859605005101.

Full text
Abstract:
White clover (Trifolium repens L.) and red clover (T. pratense L.) are the most important legumes of temperate pastures. The former is used largely in systems based around sheep or cattle grazing and is grown together with a companion grass. Breeding aims to optimize the white clover contribution to the sward. This means that yield per se is not the aim but rather to take full advantage of the benefits of white clover; in particular, nitrogen fixation, high protein content, digestibility, mineral content and high intake. The objective is an agronomically and, as far as possible, nutritionally balanced sward, thus persistence of white clover and yield stability over a number of years are key goals. A considerable focus of germplasm improvement has therefore been overcoming biotic and abiotic stresses to clover performance. The former include not only pests and diseases but also the impact of the ruminant animal and the competitive interaction with the companion grass, while abiotic stress could be loosely defined as ‘winter hardiness’ and ‘summer survival’ depending on the site. In recent years the focus of many breeding efforts has shifted to give more consideration to the effects of variation within white clover germplasm on animal performance and the environment. Beneficial effects on productivity have been known for many years, but recent studies of the impact of forage diets on meat and milk quality have opened up new opportunities for improvement. Diffuse pollution of nitrogen and phosphorus from agricultural sources is high on the environmental protection agenda of many governments. Breeding efforts are now being made to reduce the contribution of clovers to both direct (leaching) and indirect (through animal returns) pollution. In particular, recent insights into mechanisms affecting protein breakdown in the rumen and silo offer new prospects for breeding interventions to reduce environmental impacts.Molecular marker methods are being developed in white clover and the transfer and use of resources and information accumulating in the model legumes Medicago truncatula and Lotus japonicus is likely to be a major route by which the power of genomic approaches is translated into forage legume improvement. Hybrids of white clover and related species have been developed to introgress key traits; namely, drought tolerance, grazing tolerance of large leaf types and enhanced seed yield, for which only limited genetic variation is present within the white clover gene pool.Red clover is less persistent than white clover, is typically cut three or more times in a season and is used to make silage for winter feed. Although it is often grown with a companion grass, monocultures are common and yield per se as well as persistency and pest and disease resistance are major breeding aims. Fewer agronomic studies and less germplasm improvement have been carried out in this species and molecular studies are not as well advanced although, as with white clover, future developments are likely to benefit greatly from a close relationship to model legumes. Red clover brings considerable benefits in terms of animal production and meat and milk quality. These aspects, alongside approaches to reduce nitrogenous pollution from the silo, represent considerable opportunities for variety development.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Sorghum – Diseases and pest resistance – Genetic aspects"

1

Williams, Kevin John. "Biological and genetic studies of wheat resistance to Heterodera avenae." Title page, summary and contents only, 1994. http://web4.library.adelaide.edu.au/theses/09PH/09phw7238.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marino, Dante. "Screening of Germplasm Accessions from the Brassica Species for Resistance against PG3 and PG4 Isolates of Blackleg." Thesis, North Dakota State University, 2011. https://hdl.handle.net/10365/29053.

Full text
Abstract:
Blackleg is a disease of canola and rapeseed cultivars that is caused by the fungus Leptosphaeria maculans (Desm.) Ces. & de Not., and it is by far the most destructive pathogen of canola in North America. In recent years, blackleg strains belonging to pathogenicity groups (PG) 3 and 4 have been discovered in North Dakota. Recent outbreaks of the disease have added a sense of urgency to characterize the risk these new strains represent for the canola industry and to identify sources of resistance against them. Thus, the objectives of this study were to screen germplasm collections of Brassica rapa, B. napus. and B. juncea for their reaction to PG3 and PG4 and to evaluate the reaction of a sample of currently used canola commercial cultivars grown in North Dakota to PG3 and PG4 as means to estimate the risk these new strains represent. All canola germplasm and commercial cultivars were evaluated in replicated trials in greenhouse conditions using cotyledon bioassays. In 2009 and 2010, the effect of these strains, using five inoculation sequences, on the reaction of canola seedlings was also evaluated. Field trials were not conducted because of the limited geographical distribution of the new strains. No adequate sources of resistance were identified among the 277 B. rapa and 130 B. napus accessions evaluated; however, 22 of the 406 accessions of Brassicajuncea evaluated were considered to have moderate levels of resistance. B. juncea seedlings that survived these inoculations were self-pollinated and their progeny (F1) were also screened. As before, surviving seedlings were self-pollinated. These F2 seeds are the elite materials that could be used in future breeding programs. The complementary study evaluating the role of sequence inoculations in reaction of canola seedlings to blackleg indicated that an increased susceptibility to PG3 occurred when seedlings were first inoculated with PG4; however, reaction to PG4 was not enhanced by a prior inoculation with PG3. All 75 commercial cultivars evaluated were susceptible to PG3 and PG4, indicating that the risk these new strains represent to the canola industry of the region is serious. Further, when a subsample of 16 cultivars were challenged with PG2, they were either resistant or moderately resistant, suggesting the ratings the industry are using relate to reaction of those cultivars to PG2 but not to the new strains; thus, growers should use caution when using these ratings while deciding on which cultivars to plant.
North Dakota State University. Department of Plant Pathology
USDA North Central Canola Research Program
Northern Canola Growers Association
APA, Harvard, Vancouver, ISO, and other styles
3

Galagedara, Nelomie Nayanathara. "Identification of Quantitative Trait Loci for Resistance to Tan Spot in Durum Wheat." Thesis, North Dakota State University, 2018. https://hdl.handle.net/10365/28765.

Full text
Abstract:
Tan spot, caused by Pyrenophora tritici-repentis (Ptr), is a major foliar disease on wheat. The pathosystem involves three pairs of necrotrophic effector (NE) and host sensitivity (S) gene interactions, namely Ptr ToxA-Tsn1, Ptr ToxB-Tsc2 and Ptr ToxC-Tsc1. Additionally, genetic factors conferring race-nonspecific resistance have been identified. The objectives of this study were to map tan spot resistance QTL and investigate the role of NE-S interactions in disease in durum using association and bi-parental mapping. Evaluation of a worldwide collection of durum accessions allowed identifying highly resistant nineteen lines to multiple Ptr races. Association mapping revealed genomic regions on chromosomes 1A, 2B and 3B significantly associated with resistance to tan spot, which likely correspond to Tsc1, Tsc2 and racenonspecific resistance. Using a bi-parental population derived from Ben and PI 41025, we found that ToxA-Tsn1 interaction plays no significant role in disease, instead a major race-nonspecific QTL on chromosome 5A was identified.
APA, Harvard, Vancouver, ISO, and other styles
4

Van, Eeden C. (Christiaan). "The construction of gene silencing transformation vectors for the introduction of multiple-virus resistance in grapevines." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/53764.

Full text
Abstract:
Thesis (MSc)--University of Stellenbosch, 2004.
ENGLISH ABSTRACT: Viruses are some of the most important pathogens of grapevines. There are no effective chemical treatments, and no grapevine- or other natural resistance genes have been discovered against grapevine infecting viruses. The primary method of grapevine virus control is prevention by biological indexing and molecular- and serological screening of rootstocks and scions before propagation. Due to the spread of grapevine viruses through insect vectors, and in the case of GRSPaV the absence of serological screening, these methods of virus control are not always effective. In the past several methods, from cross-protection to pathogen derived resistance (PDR), have been applied to induce plant virus resistance, but with inconsistent results. In recent years the application of post-transcriptional gene silencing (PTGS), a naturally occurring plant defense mechanism, to induce targeted virus resistance has achieved great success. The Waterhouse research group has designed plant transformation vectors that facilitate specific virus resistance through PTGS. The primary focus of this study was the production of virus specific transformation vectors for the introduction of grapevine virus resistance. The Waterhouse system has been successfully utilised for the construction of three transformation vectors with the pHannibal vector as backbone. Each vector contains homologous virus coat protein (CP) gene segments, cloned in a complementary conformation upstream and downstream of an intron sequence. The primary vector (pHann-SAScon) contains complementary CP gene segments of both GRSPaV and GLRaV-3 and was designed for the introduction of multiple-virus resistance. For the construction of the primary vector the GRSPaV CP gene was isolated from RSP infected grapevines. A clone of the GLRaV-3 CP gene was acquired. The second vector (pHann- LR3CPsas) contains complementary CP gene segments of GLRaV-3. The third vector (pHann-LR2CPsas) contains complementary CP gene segments of GLRaV-2. The cassette containing the complementary CP gene segments of both GRSPaV and GLRaV-3 was cloned into pART27 (pART27-HSAScon), and used to transform N tabacum cv. Petit Havana (SRI), through A. tumefaciens mediated transformation. Unfortunately potential transformants failed to regenerate on rooting media; hence no molecular tests were performed to confirm transformation. Once successful transformants are generated, infection with a recombinant virus vector (consisting of PYX, the GFP gene as screenable marker and the complementary CP gene segments of both GRSPaV and GLRaV-3) will be used to test for the efficacy of the vectors to induce resistance. A secondary aim was added to this project when a need was identified within the South African viticulture industry for GRSPaV specific antibodies to be used in serological screening. To facilitate future serological detection of GRSPaV, the CP gene was isolated and expressed with a bacterial expression system (pETI4b) within the E. coli BL2I(DE3)pLysS cell line. The expressed protein will be used to generate GRSPaV CP specific antibodies.
AFRIKAANSE OPSOMMING: Virusse is van die belangrikste patogene by wingerd. Daar bestaan geen effektiewe chemiese beheer nie, en geen wingerd- of ander natuurlike weerstandsgene teen wingerdvirusse is al ontdek nie. Die primêre metode van beheer t.o.v. wingerdvirusse is voorkoming deur biologiese indeksering, en molekulêre- en serologiese toetsing van onderstokke en entlote voor verspreiding. As gevolg van die verspreiding van wingerdvirusse deur insekvektore, en in die geval van GRSPa V die tekort aan serologiese toetsing, is dié metodes van virusbeheer nie altyd effektief nie. In die verlede is metodes soos kruis-beskerming en patogeen-afgeleide weerstand (PDR) gebruik om virusweerstand te induseer, maar met inkonsekwente resultate. In onlangse jare is post-transkripsionele geenonderdrukking (PTGS), 'n natuurlike plantbeskermingsmeganisme, met groot sukses toegepas om geteikende virusweerstand te induseer. Die Waterhouse-navorsingsgroep het planttransformasievektore ontwerp wat spesifieke virusweerstand induseer d.m.v. PTGS. Die vervaardiging van virus spesifieke tranformasievektore vir die indusering van wingerdvirusweerstand was die primêre doelwit van hierdie studie. Die Waterhouse-sisteem was gebruik vir die konstruksie van drie transformasievektore, met die pHannibal vektor as basis. Elke vektor bevat homoloë virus kapsiedproteïen (CP) geensegmente, gekloneer in 'n komplementêre vorm stroom-op en stroom-af van 'n intronvolgorde. Die primêre vektor (pHann-SAScon) bevat komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, en was ontwerp vir die indusering van veelvoudige-virusweerstand. Die CP-geen van GRSPa V was vanuit RSP-geïnfekteerde wingerd geïsoleer, vir die konstruksie van die primêre vektor. 'n Kloon van die GLRa V-3 CP-geen was verkry. Die tweede vektor (pHann-LR3CPsas) bevat komplementêre CP geensegmente van GLRaV-3. Die derde vektor (pHann-LR2CPsas) bevat komplementêre CP geensegmente van GLRa V-2. Die kasset bestaande uit die komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, was gekloneer in pART27 (pART27-HSAScon), en gebruik om N tabacum cv. Petit Havana (SRI) te transformeer d.m.v. A. tumefaciens bemiddelde transformasie. Ongelukkig het potensiële transformante nie geregenereer op bewortelingsmedia nie; gevolglik was geen molekulêre toetse gedoen om transformasie te bevestig nie. Na suksesvolle transformante gegenereer is, sal infeksie met 'n rekombinante-virusvektor (bestaande uit PYX, die GFP geen as waarneembare merker en die komplementêre CP geensegmente van beide GRSPa V en GLRa V-3) gebruik word om die effektiwiteit van die vektore as weerstandsinduseerders te toets. 'n Sekondêre doelwit is by die projek gevoeg toe 'n behoefte aan GRSPaV spesifieke teenliggame binne die Suid-Afrikaanse wynbedryf geïdentifiseer is, vir gebruik in serologiese toetsing. Om toekomstige serologiese toetsing van GRSPa V te bemiddel, was die CP-geen geïsoleer en in 'n bakteriële uitdrukkingsisteem (PETI4b) uitgedruk, in die E. coli BL21(DE3)pLysS sellyn. Die uitgedrukte proteïne sal gebruik word vir die vervaardiging van GRSPa V CP spesifieke antiliggame.
APA, Harvard, Vancouver, ISO, and other styles
5

Filkowski, Jody, and University of Lethbridge Faculty of Arts and Science. "The effect of pathogens on plant genome stability." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Biological Sciences, 2004, 2004. http://hdl.handle.net/10133/254.

Full text
Abstract:
Resistance (R) genes, a key factor in determining the resistance of plants, have been shown often to be highly allelic entities existing in duplicated regions of the genome. This characteristic suggests that R-gene acquisition may have arisen through frequent genetic rearrangements as a result of transient, reduced genome stability. Tabacco plants transgenic for a recombination construct exhibited reduced genome stability upon infection with a virulent pathogen (tobacco mosaic virus). The reduced genome stability manifested as an increase in recombination events in the transgene. Such increases were observed following a virulent pathogen attack. This increase in recombination was shown to be systemic and was observed prior to systemic viral movement suggesting the presence of a systemic recombination signal. Further molecular analyses revealed that specific R-gene loci experience a large frequency of rearrangements following a virulent pathogen encounter. The possible targeting of instability to R-gene regions may be controlled through epigenetic processes, in particular, DNA methylation.
xiii, 119 leaves ; 29 cm.
APA, Harvard, Vancouver, ISO, and other styles
6

Ramburan, Viresh Premraj. "Genetic mapping of adult plant stripe rust resistance in the wheat cultivar Kariega." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53438.

Full text
Abstract:
Thesis (PhD (Agric)) -- Stellenbosch University, 2003.
ENGLISH ABSTRACT: Stripe (yellow) rust of wheat, caused by Puccinia striiformis f.sp. tritici, was first detected as a single introduction into South Africa in 1996. Two additional pathotypes have since been identified. Control of the disease may be achieved by use of genetic adult plant resistance (APR) as is present in the local cultivar 'Kariega'. The aim of this project was to understand the genetic basis of the APR in 'Kariega' to facilitate breeding of new varieties with genetic resistance to stripe rust. A partial linkage map of a 'Kariega X Avocet S' doubled haploid population covering all 21 wheat chromosomes was generated using 208 DNA markers, viz, 62 SSR, 133 AFLP, 3 RGA and 10 SRAP markers, and 4 alternative loci. The different marker techniques detected varying polymorphism, viz, overall SSR: 46%, AFLP: 7%, SRAP: 6% and RGA: 9%, and the markers produced low levels of missing data (4%) and segregation distortion (5%). A significant feature of the linkage map was the low polymorphism found in the D genome, viz, 19% of all mapped DNA markers, 11% of all AFLP markers and 30% of the total genome map distance. A region exhibiting significant segregation distortion was mapped to chromosome 4A and a seedling resistance gene for stem rust (Puccinia graminis f.sp . tritici), Sr26, mapped to chromosome 6A close to three SSR markers. The leaf tip necrosis gene, Ltn, which was also segregating in the population, mapped to chromosome 7D. Protocols for SRAP and RGA were optimised, and SRAP marker use in wheat genetic linkage studies is reported for the first time. The linkage map was used together with growth chamber and replicated field disease scores for QTL mapping. Chromosomes showing statistically significant QTL effects were then targeted with supplementary SSR markers for higher resolution mapping. The quality of disease resistance phenotypic data was confirmed by correlation analysis between the different scorers for reaction type (0.799±0.023) and for transformed percentage leaf area infected (0.942±0.007). Major QTL were consistently identified on chromosome 7D (explaining some 25-48% of the variation) and on chromosome 2B (21-46%) using transformed percentage leaf area infected and transformed reaction type scores (early and final) with interval mapping and modified interval mapping techniques. Both chromosomal regions have previously been identified in other studies and the 7D QTL is thought likely to be the previously mapped APR gene Yr 18. Minor QTL were identified on chromosomes lA and 4A with the QTL on 4A being more prominent at the early field scoring for both score types. A QTL evidently originating from 'Avocet S' was detected under growth chamber conditions but was not detected in the field, suggesting genotype-environment interaction and highlighting the need for modifications of growth chamber conditions to better simulate conditions in the field. The genetic basis of the APR to stripe rust exhibited by 'Kariega' was established by mapping of QTL controlling this trait. The linkage map constructed will be a valuable resource for future genetic studies and provides a facility for mapping other polymorphic traits in the parents of this population with a considerable saving in costs.
AFRIKAANSE OPSOMMING: Streep of geelroes van koring word veroorsaak deur Puccinia striiformis f. sp tritici, en is die eerste keer in 1996 in Suid-Afrika na introduksie van 'n enkele patotipe waargeneem. Twee verdere patotipes is sedertdien in Suid-Afrika gei"dentifiseer. Beheer van die siekte word veral moontlik gemaak deur die gebruik van genetiese volwasseplantweerstand soos gei"dentifiseer in die plaaslike kultivar 'Kariega'. Die doel van hierdie studie was om die genetiese grondslag van die streeproesweerstand te ontrafel ten einde die teling van nuwe bestande kultivars moontlik te maak. 'n Verdubbelde haplo1ede populasie uit die kruising 'Kariega X Avocet S' is aangewend om 'n gedeeltelike koppelingskaart vir die volle stel van 21 koring chromosome saam te stel. Die kaart het uit 208 DNA merkers, nl., 62 SSR, 133 AFLP, 3 RGA, 10 SRAP merkers en 4 ander lokusse bestaan. Totale polimorfisme wat deur die verskillende merkersisteme opgespoor is, was as volg: SSR: 46%, RGA: 9%, AFLP: 7% en SRAP: 6%. Die mate van ontbrekende data was gering (4%) asook die mate van segregasie distorsie (5%) van 'n enkele geval wat op chromosoom 4A gekarteer is. 'n Prominente kenmerk van die koppelingskaart is die relatiewe gebrek aan polimorfiese merkers op die D-genoom, nl., slegs 19% van alle DNA merkers en 11% van alle AFLP merkers wat slegs 30% van die totale genoom kaartafstand bestaan het. Die stamroes (Puccinia graminis f. sp. tritici) saailingweerstandsgeen, Sr26, karteer op chromosoom 6A naby drie SSR merkers. Die geen vir blaartipnekrose, Ltn, karteer op chromosoom 7D. Protokolle vir SRAP en RGA merkers is ge-optimiseer en gebruik van SRAP merkers in koppelings-analise word vir die eerste keer in koring gerapporteer. Die koppelingskaart is in kombinasie met groeikamerdata en gerepliseerde veldproefdata gebruik om die gene (QTL) vir volwasseplant streeproesweerstand te karteer. Chromosome met statisties betekenisvolle QTL is met aanvullende SSR merkers geteiken om die resolusie van kartering verder te verhoog. Die kwaliteit van fenotipiese data, soos in die proewe aangeteken, is bevestig deur korrelasies te bereken tussen lesings geneem deur onafhanklike plantpataloe (0.799 ± 0.023 vir reaksietipe en 0.942 ± 0.007 vir getransformeerde persentasie blaaroppervlakte besmet). Hoofeffek QTL vir die twee maatstawwe van weerstand is deur middel van die metodes van interval QTL kartering en gemodifiseerde interval QTL kartering konsekwent op chromosome 7D (25-48% van variasie verklaar) en 2B (21-46% van variasie verklaar) ge"identifiseer. In vorige studies is aangetoon dat beide chromosome 7D en 2B QTL vir volwasseplant streeproesweerstand dra. Die 7D QTL is waarskynlik die weerstandsgeen, Yr 18. QTL met klein effekte op weerstand is op chromosome lA en 4A ge"identifiseer. Die effek van laasgenoemde geen was meer prominent in die velddata in die vroee datum van weerstandsbeoordeling. Een QTL, afkomstig van 'Avocet S', is slegs onder groeikamertoestande identifiseerbaar. Dit dui op moontlike genotipe-omgewing wisselwerking en beklemtoon die noodsaaklikheid om aanpassings te maak in groeikamertoestande vir beter simulasie van veldproeftoestande. Die genetiese grondslag van volwasseplantweerstand teen streeproes in die kultivar 'Kariega' is deur QTL kartering bepaal. Die 'Kariega X Avocet S' koppelingskaart kan as 'n waardevolle basis dien vir toekomstige genetiese ontledings van ander polimorfiese kenmerke in die populasie.
APA, Harvard, Vancouver, ISO, and other styles
7

Vanstone, Vivien Alison. "The role of fungi and the root lesion nematode, Pratylenchus neglectus, in damaging wheat roots in South Australia." Title page, summary and contents only, 1991. http://web4.library.adelaide.edu.au/theses/09PH/09phv281.pdf.

Full text
Abstract:
Includes bibliographical references (leaves 265-296). Pathogens associated with root damage were investigated in the Murray Mallee region of South Australia over the 1987-1989 growing seasons. Occurence of fungal species and the root lesion nematode (Pratylenchus neglectus) was assessed, and related to the appearance and severity of symptoms on the roots. Field experiments were supplemented with innoculation tests in the glasshouse and laboratory.
APA, Harvard, Vancouver, ISO, and other styles
8

Hossain, Mohammad Abul. "Powdery mildew on barley : pathogen variability in South Australia : resistance genes in cv. Galleon /." Title page, contents and abstract only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phh8287.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Taylor, Sharyn Patricia. "The root lesion nematode, Pratylenchus neglectus, in field crops in South Australia." Title page, contents and summary only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09pht2462.pdf.

Full text
Abstract:
Includes bibliographical references (leaves 241-25). Aims to evaluate sampling procedures; assess the extent and magnitude of yield loss caused by Pratylenchus neglectus; assess the population dynamics of Pratylenchus neglectus in cereals; determine whether resistance occurs in field crops; and, assess whether variation occurs between geographically isolated species of Pratylenchus neglectus
APA, Harvard, Vancouver, ISO, and other styles
10

Mazaheri, Lucy. "Development of a Molecular Marker to Track APA G40199 Introgression in Common Bean for Bruchid Resistance." Thesis, North Dakota State University, 2018. https://hdl.handle.net/10365/29300.

Full text
Abstract:
In common bean (Phaseolus vulgaris), the main seed storage pests are the bruchid beetles. Damage done to the seed by the larvae has a large impact on seed quality and yield. Arcelin (ARC), phytohaemagglutinin (PHA), and α-amylase inhibitor (α-AI) are linked seed storage proteins that form the APA locus on chromosome Pv04 and are associated with resistance. A major breeding objective is to introduce bruchid resistance into common bean from a resistant tepary genotype, G40199, by introgressing the resistant APA locus into susceptible common bean backgrounds. Here we developed a molecular marker that tracks the introgression. A set of PCR primers to the α-amylase inhibitor locus amplified a DNA fragment that showed a 45 base pair insertion in the middle of a lectin Leg_b domain. This enhanced locus characterization and insertion/deletion marker may preclude the need for bruchid resistance screening early in the breeding.
United States. Agency for International Development
United States. Global Hunger and Food Security Initiative (Cooperative Agreement No. EDH-A-00-07-00005-00)
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Sorghum – Diseases and pest resistance – Genetic aspects"

1

Heinrichs, E. A. Genetic evaluation for insect resistance in rice. Manila, Philippines: International Rice Research Institute, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Breeding for resistance to diseases and insect pests. Berlin: Springer-Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, Dhan Pal. Breeding for resistance to diseases and insect pests. Berlin: Springer-Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hoff, R. J. Resistance of ponderosa pine to the gouty pitch midge (cecidomyia piniinopis). Ogden, UT: U.S. Dept. of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hoff, R. J. Resistance of ponderosa pine to the gouty pitch midge (Cecidomyia piniinopis). [Ogden, Utah]: U.S. Dept. of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hoff, R. J. Resistance of ponderosa pine to the gouty pitch midge (Cecidomyia piniinopis). Ogden, UT: U.S. Dept. of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Carlson-Nilsson, B. Ulrika. Variation in Rosa with emphasis on the improvement of winter hardiness and resistance to Marssonina rosae (Blackspot). Alnarp: Swedish University of Agricultural Sciences, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vavilov, N. I. Immunitet rasteniĭ k infekt͡s︡ionnym zabolevanii͡a︡m. Moskva: "Nauka", 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hoff, R. J. Susceptibility of inland Douglas-fir to Rhabdocline needle cast. Ogden, UT: U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cornide, María Teresa. La resistencia genética de las plantas cultivadas. La Habana: Ed. Científico-Técnica, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Sorghum – Diseases and pest resistance – Genetic aspects"

1

Guimaraes, Claudia Teixeira, and Jurandir Vieira de Magalhaes. "Recent molecular breeding advances for improving aluminium tolerance in maize and sorghum." In Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield, 318–24. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789245431.0018.

Full text
Abstract:
Abstract Citrate transporters belonging to the multidrug and toxic compound extrusion (MATE) family of membrane transporters in sorghum and maize, SbMATE and ZmMATE1, respectively, play a major role in aluminium (Al) tolerance. However, these MATE members show regulatory differences, as well as peculiarities in their genetic effect and mode of action. These aspects, which are discussed in this chapter, have to be considered to design successful breeding programmes in order to achieve maximum Al tolerance and, consequently, to improve grain and biomass production in regions of the world with Al toxicity. As shown in this chapter, target genes with major effects and molecular tools are available for marker-assisted breeding for improving Al tolerance both in sorghum and maize. However, wide adaptation to acid soils should be sought by pyramiding genes controlling different traits such as drought tolerance, P acquisition, resistance to diseases and other stresses commonly found in each agroecological environment.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography