Academic literature on the topic 'Sound diffraction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sound diffraction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sound diffraction"

1

Lyamshev, L. M., and I. A. Urusovskii. "Sound diffraction at Sierpinski carpet." Acoustical Physics 49, no. 6 (November 2003): 700–703. http://dx.doi.org/10.1134/1.1626183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abrosimov, D. I. "Diffraction Focusing of Sound Field in an Underwater Sound Channel." Acoustical Physics 46, no. 2 (March 2000): 113. http://dx.doi.org/10.1134/1.29862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Piechowicz, J. "Sound Wave Diffraction at the Edge of a Sound Barrier." Acta Physica Polonica A 119, no. 6A (June 2011): 1040–45. http://dx.doi.org/10.12693/aphyspola.119.1040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Remhof, A., K. D. Liß, and A. Magerl. "Neutron diffraction from sound-excited crystals." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 391, no. 3 (June 1997): 485–91. http://dx.doi.org/10.1016/s0168-9002(97)00411-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peterson, Arnold P. G. "Sound diffraction for a spherical microphone." Journal of the Acoustical Society of America 78, no. 1 (July 1985): 266–67. http://dx.doi.org/10.1121/1.392529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gluck, Paul. "A diffraction grating for sound waves." Physics Education 38, no. 4 (June 30, 2003): 285–86. http://dx.doi.org/10.1088/0031-9120/38/4/404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Daigle, G. A., and T. F. W. Embleton. "Diffraction of sound over curved ground." Journal of the Acoustical Society of America 79, S1 (May 1986): S20. http://dx.doi.org/10.1121/1.2023104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

S. T. Park and 전동렬. "Instrumentation for Sound Interference and Diffraction Measurement." School Science Journal 3, no. 1 (February 2009): 30–36. http://dx.doi.org/10.15737/ssj.3.1.200902.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Ji‐Xun, Xue‐Zhen Zhang, and Yun S. Chase. "Sound diffraction by an underwater topographical ridge." Journal of the Acoustical Society of America 105, no. 2 (February 1999): 1167. http://dx.doi.org/10.1121/1.425539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Osipov, Andrey V. "On sound diffraction by an impedance wedge." Journal of the Acoustical Society of America 95, no. 5 (May 1994): 2839. http://dx.doi.org/10.1121/1.409609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sound diffraction"

1

Chase, Yun S. "Sound diffraction by an underwater ridge with finite impedance." Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/17773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Qin. "Acoustic pulse diffraction by curved and planar structures with edges." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/32005.

Full text
Abstract:
Efficient and accurate solutions of acoustic wave diffraction by a rigid step discontinuity and a curved half-plane are derived by the uniform geometrical theory of diffraction. These solutions can be used in seismic data processing to evaluate and, eventually, to improve the existing data processing procedures. They can also find applications in electromagnetics, microwave antenna design, acoustic design and sound engineering. The rigid step discontinuity solution given in this thesis is more accurate than the existing solutions which are based on Kirchhoff theory of diffraction. This solution removes the previous restriction on the source and the receiver arrangement. It also provides high efficiency by the use of ray theory. This solution is further generalized to two offset half-planes and an inclined wedge. Solutions for more complicated structures can be obtained by superposition of these solutions with added interactions. The complex source position method is used to extend the omnidirectional point source solution to a beam source solution. The effect of changes of the directivity and orientation of the beam source is studied. Time-domain single and double diffraction coefficients are determined through direct Fourier transforming and convolution. An infinite impulse response filter is applied to the time-domain direct computation of single diffraction. This combination achieves a total saving of 75% of computing time over the frequency-domain approach. Diffraction by a curved half-plane is analyzed with the inclusion of creeping wave diffraction and second order edge diffraction. An acoustic model of a curved half-plane is designed to verify the theory. The experimental results obtained by Mellema have verified the existence of the creeping wave diffraction and weak traces of the second order edge diffraction.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
3

Chambers, James P. "Scale model experiments on the diffraction and scattering of sound by geometrical step discontinuities and curved rough surfaces." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/17858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kearns, James A. "An investigation of the diffraction of an acoustic plane wave by a curved surface of finite impedance." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/16749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ivanov, Angelov Mitko. "Sound Scattering by Lattices of Heated Wires." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/63275.

Full text
Abstract:
[EN] The aim of this work is to demonstrate theoretically and experimentally how acoustic wave propagation can be controlled by temperature gradients. Starting with the simplest case of two hot wires in air the study extends over periodic structures known as Sonic Crystals (SCs). The Finite Elements Method (FEM) has been employed to perform numerical simulations in order to demonstrate collimation and focusing effect of acoustic waves in two-dimensional (2D) SC whose filling fraction is adjusted by temperature gradients. As a part of the research, Bragg reflection and Fabry-Perot type of acoustic effects are investigated for the proposed type of SC. As example, a SC with desired transmittance can be tailored. Also, gradient index (GRIN) 2D sonic lenses are studied. Using parallel rows of heated wires whose temperatures vary according to a prefixed gradient index law a GRIN lens can be designed with a given performance. Moreover, by changing the temperature of the wires a change in the filling fraction inside the GRIN SC can be achieved. Thus, the local refraction index, which is directly related to the filling fraction, is changed too and an index gradient variation inside the GRIN SC is obtained. This GRIN SC is a direct analogy of gradient media observed in nature. Like their optical counterparts, the investigated 2D GRIN SC lenses have flat surfaces and are easier for fabrication than curved SC lenses. The bending of sound waves obtained by GRIN acoustics structures can be used to focusing and collimating acoustic waves. Another aspect of this work is about tuning some SC properties as effective refractive index, effective mass density, etc. in order to obtain a SC with prefixed properties. Since active tuning of the phononic band gaps is certainly desirable for future applications with enhanced functionalities, few attempts have been made to develop tunable SCs thus far. By controlling the incident angle or operating frequency, a GRIN SC can dynamically adjust the curved trajectory of acoustic wave propagation inside the SC structure. Among the last studies of tunable SCs, the filling fractions were tuned either by direct physical deformation of the structure or external stimuli. The former is impractical for most applications and the latter often requires very strong stimuli to produce only modest adjustment. In this work another way to tune the SC properties is proposed. Hot and cold media have different density, speed of sound, refractive index, etc. in comparison with the same properties at normal conditions, so inserting temperature gradients inside the medium can be used to tune the SC properties in certain limits. The proposed way to obtain temperature gradients inside SC is by wires made of Nicrom which are heated by electrical currents. There are some important advantages of this method. First, changing the electrical current intensity through the wires the SC properties can be changed dynamically. Second, it is relatively easier to change the filling fraction simply by adjusting the current intensity than physically changing the structure or applying strong electric or magnetic fields. In conclusion, the method proposed in this thesis allows us, in principle, to get materials and structures with dynamically adjustable acoustic properties using the temperature control through electric current in the wires, within certain limits. Thus, it is easy to carry out experiments of wave propagation phenomena in a macroscopic scale similar to those that occur in microscopic structures for the propagation of electromagnetic waves of high frequency (microwaves and light).
[ES] El objetivo de este trabajo es demostrar teoréticamente y experimentalmente como la propagación de ondas acústicas puede ser controlada por gradientes de temperatura. Empezando con el caso más simple de dos hilos calientes en aire, el estudio se extiende sobre estructuras periódicas conocidas como cristales sónicos (CS). Se ha utilizado el Método de Elementos Finitos (FEM) para realizar simulaciones numéricas con el objetivo de demonstrar la colimación y focalización de ondas acústicas en CS bidimensionales (2D) cuya fracción de llenado es ajustable mediante gradientes de temperatura. Como parte de la investigación se ha analizado la reflexión de Bragg y el efecto de tipo Fabry-Perot asociados con los CSs estudiados. Entre los ejemplos tratados figuran un CS con una transmitancia ajustable a voluntad, dentro de ciertos límites. También se han estudiado lentes acústicas bidimensionales de gradiente de índice, basadas en gradiente de temperatura. Utilizando cortinas paralelas de hilos calientes cuya temperatura varía según una ley dada se puede diseñar una lente GRIN con propiedades determinadas. Por otra parte, cambiando la temperatura de los hilos se puede lograr un cambio en la fracción de llenado dentro del GRIN CS. Así, el índice de refracción local, que está directamente relacionado con la fracción de llenado, se cambia también y se obtiene una variación de gradiente de índice dentro del GRIN CS. Este GRIN CS es una analogía directa de medios con gradiente, observados en la naturaleza. Otro aspecto de este trabajo trata sobre el ajuste de algunas propiedades de un SC como el índice de refracción efectivo o la densidad efectiva con el objetivo de obtener unas propiedades deseadas del cristal. Como el ajuste activo de los bandgaps fonónicos es ciertamente deseado para futuras aplicaciones con funcionalidades mejoradas, hasta ahora se han hecho varios intentos de desarrollar CSs de características ajustables. Controlando el ángulo de incidencia o la frecuencia de funcionamiento, un GRIN CS puede ajustar dinámicamente la curvatura de la trayectoria de propagación dentro de la estructura CS. Entre los últimos estudios de CSs las fracciones de llenado se ajustaron mediante una deformación física directa de la estructura o mediante estímulos externos (por ejemplo campos eléctricos o magnéticos). El primero es poco práctico para una gran parte de las aplicaciones y el segundo a menudo requiere estímulos muy fuertes para ajustes modestos. En este trabajo se propone otra forma de ajustar las propiedades de un CS. Las propiedades acústicas del medio de propagación (densidad, índice de refracción) dependen de la temperatura, por tanto, introduciendo gradientes de temperatura dentro de dicho medio pueden ajustarse a voluntad las propiedades del CS dentro de ciertos límites. La manera de obtener gradientes de temperatura dentro del CS, propuesta en este estudio, es mediante hilos de nicrom calentados con corrientes eléctricas. Hay algunas ventajas importantes de este método. En primer lugar, cambiando la intensidad de corriente eléctrica que circula por los hilos se puede conseguir cambiar dinámicamente las propiedades del CS. En segundo lugar, es relativamente más fácil de cambiar la fracción de llenado simplemente ajustando la intensidad de la corriente eléctrica que modificar físicamente la estructura o aplicar fuertes campos eléctricos o magnéticos. En conclusión, el método propuesto en esta tesis permite, en principio, conseguir materiales y estructuras con propiedades acústicas ajustables dinámicamente mediante el control de la temperatura a través de la corriente eléctrica en los hilos, dentro de ciertos límites. De esta forma se puede experimentar fácilmente a escala macroscópica fenómenos de propagación de ondas análogos a los que ocurren en estructuras microscópicas para la propagación de ondas electromagnéticas de alta frecuencia (microondas y l
[CAT] L'objectiu d'este treball és demostrar teorèticament i experimentalment com la propagació d'ones acústiques pot ser controlada per gradients de temperatura. Començant amb el cas més simple de dos fils calents en aire, l'estudi s'estén sobre estructures periòdiques conegudes com a cristalls sónics (CS) . S'ha utilitzat el Mètode d'Elements Finits (FEM) per a realitzar simulacions numèriques amb l'objectiu de demonstrar la col¿limació i focalització d'ones acústiques en CS bidimensionals (2D) la fracció de omplit de la qual és ajustable per mitjà de gradients de temperatura. Com a part de la investigació s'ha analitzat la reflexió de Bragg i l'efecte de tipus Fabry-Perot associats amb els CSs estudiats. Entre els exemples tractats figuren un CS amb una transmitancia ajustable a voluntat, dins de certs límits. També s'han estudiat lents acústiques bidimensionals de gradient d'índex, basades en gradient de temperatura. Utilitzant cortines paral¿leles de fils calents la temperatura de la qual varia segons una llei donada es pot dissenyar una lent GRIN amb propietats determinades. D'altra banda, canviant la temperatura dels fils es pot aconseguir un canvi en la fracció d'ompliment dins del GRIN CS. Així, l'índex de refracció local, que està directament relacionat amb la fracció d'ompliment, es canvia també i s'obté una variació de gradient d'índex dins del GRIN CS. Este GRIN CS és una analogia directa de mitjans amb gradient, observats en la naturalesa. Com les seues analogies òptiques, les lents, estudiades en este treball, tenen les superfícies planes i són més fàcils de fabricar que les lents corbades. La deflexión de les ones acústiques obtinguda per mitjà d'una lent de gradient GRIN es pot utilitzar per a focalitzar o colimar feixos de so. Un altre aspecte d'este treball tracta sobre l'ajust d'algunes propietats d'un SC com l'índex de refracció efectiu o la densitat efectiva amb l'objectiu d'obtindre unes propietats desitjades del cristall. Com l'ajust actiu dels bandgaps fonónicos és certament desitjat per a futures aplicacions amb funcionalitats millorades, fins ara s'han fet diversos intents de desenrotllar CSs de característiques ajustables. Controlant l'angle d'incidència o la freqüència de funcionament, un GRIN CS pot ajustar dinàmicament la curvatura de la trajectòria de propagació dins de l'estructura CS. Entre els últims estudis de CSs les fraccions d'ompliment es van ajustar per mitjà d'una deformació física directa de l'estructura o per mitjà d'estímuls externs. El primer és poc pràctic per a una gran part de les aplicacions i el segon sovint requerix estímuls molt forts per a ajustos modestos. En este treball es proposa una altra forma d'ajustar les propietats d'un CS. Les propietats acústiques del mig de propagació (densitat, índex de refracció) depenen de la temperatura, per tant, introduint gradients de temperatura dins del dit mitjà poden ajustar-se a voluntat les propietats del CS dins de certs límits. La manera d'obtindre gradients de temperatura dins del CS, proposta en este estudi, és per mitjà de fils de Nicrom calfats amb corrents elèctrics. Hi ha alguns avantatges importants d'este mètode. En primer lloc, canviant la intensitat de corrent elèctric que circula pels fils es pot aconseguir canviar dinàmicament les propietats del CS. En segon lloc, és relativament més fàcil de canviar la fracció d'ompliment simplement ajustant la intensitat del corrent elèctric que modificar físicament l'estructura o aplicar forts camps elèctrics o magnètics. En conclusió, el mètode proposat en esta tesi permet, en principi, aconseguir materials i estructures amb propietats acústiques ajustables dinàmicament per mitjà del control de la temperatura a través del corrent elèctric en els fils, dins de certs límits. D'esta manera es pot experimentar fàcilment a escala macroscòpica fenòmens de propagació d'ones anàlegs a què ocorren e
Ivanov Angelov, M. (2016). Sound Scattering by Lattices of Heated Wires [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/63275
TESIS
APA, Harvard, Vancouver, ISO, and other styles
6

Shaw, Anurupa. "Ice thickness estimation using low frequencies, and an investigation of diffraction of sound in samples with micro structures using ultrasound." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54242.

Full text
Abstract:
In the first section, the thickness of ice on the lakes and canals is estimated by analyzing the sound spectrum generated by dispersion of Lamb type waves propagating in ice. In winters when the lakes and canals freeze, it is important to know the thickness of the ice layer before setting foot on it. When a stone is thrown on the ice layer, a fluting sound can be heard. This is recorded for different thicknesses of ice, and the sound spectrum is compared with the results simulated using a parameterized model. This model is created using a combination of plane waves for different incident angles and frequencies to generate dispersion curves for different thicknesses of ice. The frequencies of the reflected sound are then compared with the frequencies of musical instruments in order to assign different musical notes to different thicknesses of ice. The technique enables thickness estimation without the use of specialized equipment or time consuming drilling and may therefore be of practical value in the preservation of the lives of ice skaters and playing children. In the second half of the study, high frequencies (400 MHz and 1 GHz) are used to investigate samples with micro structures. Acoustic microscopy is a well established technique as far as smooth surfaces are concerned. V (z) curves are obtained from which, through surface wave generation, important features concerning elasticity and related properties can be extracted. Recently, high resolution imaging using high frequency focused transducers, based on acoustic microscopy has appeared. The surface profiles of the samples used in this study, have periodic structures but lack smoothness. The periodicity causes sound diffraction and the roughness influences the acoustic microscopic investigation. The small acoustic contrast between the substrate and the periodic corrugation on the material, gives us information about the additional stresses which develop and affect the bonding between the two materials. In this study, experiments are conducted using samples with corrugations of different periodicity, and a comparison is made between the results for smoother surfaces and results for the periodic structures of the same material. An attempt is made to analyse the effects described above.
APA, Harvard, Vancouver, ISO, and other styles
7

Sigwalt, Michel. "Nouvelle formulation de la diffraction impulsionnelle application au couplage radiatif /." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37609925c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lindberg, Anders Sven Axel. "Airborne noise characterisation of a complex machine using a dummy source approach." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0082/document.

Full text
Abstract:
La caractérisation des sources sonores dues aux vibrations est un défi dans le domaine du bruit et des vibrations. Dans cette thèse, une approche expérimentale pour caractériser la propagation du son d’une machine complexe a été étudiée. Pour caractériser de manière appropriée la source sonore placée dans un environnement quelconque, il a été indispensable de prendre en compte les phénomènes de rayonnement et de diffraction. Cela permet de prédire une pression acoustique. Une technique particulière, appelée source mannequin, a été développée pour répondre à cette problématique. Le mannequin est une enceinte fermée de taille similaire mais qui a une forme simplifiée par rapport à la machine complexe, et sert de modèle de diffraction sonore. Le mannequin est équipé d’une série de haut-parleurs alignés dans le prolongement de la surface de l’enceinte. La superposition du champ acoustique créé par chaque haut-parleur modélise le rayonnement acoustique de la machine complexe. Cette thèse introduit donc le concept de source mannequin et traite de trois problèmes émanant de la mise en pratique de celui-ci : (1) l’estimation du transfert d’impédance dans l’espace (fonction de Green), (2) les spécifications de l’enceinte et de la série de haut-parleurs, et (3) l’estimation des sources équivalentes en termes de débit volumique. L’approche est étudiée au travers de cas d’études expérimentaux et numériques
The characterisation of vibrating sound sources is a challenge in noise and vibration engineering. In this thesis, an experimental approach to the characterisation of air-borne sound from a complex machine is investigated. A proper characterisation has to account for both radiation and diffraction phenomena in order to describe the sound source when inserted into an arbitrary space which enables prediction of sound pressure. A particular technique — a dummy source — has been conceived to deal with this problem. The dummy is a closed cabinet of similar size but much simpler shape than the complex machine, and it serves as a model of sound diffraction. The dummy is equipped with a flush-mounted array of loudspeaker drivers. The superposition of sound fields created by the individual drivers models sound radiation of the complex machine. This thesis introduces the concept of a dummy source and discusses three problems that need to be addressed for its practical application: (1) estimation of the transfer impedance of the space (the Green’s function), (2) the specification of the cabinet and the driver array, and (3) the estimation of the equivalent source strengths in terms of volume velocity. The approach is investigated via experimental and numerical case studies
APA, Harvard, Vancouver, ISO, and other styles
9

Chobeau, Pierre. "Modeling of sound propagation in forests using the transmission line matrix method : study of multiple scattering and ground effects related to forests." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1016/document.

Full text
Abstract:
Les trois principaux phénomènes acoustiques propres au milieu forestier nécessitant d'être pris en compte sont (1) l'absorption due à la présence d'un sol multi-couche, (2) la diffusion multiple due à la présence d'obstacles tels que les troncs, (3) les effets micro-météorologiques rattachés aux variations des gradients de vitesse de vent et de température. Parmi les méthodes numériques de référence, la méthode des lignes de transmission (TLM), semble particulièrement adaptée pour la modélisation de la propagation acoustique en présence de forêt, à condition de procéder à de nouveaux développements. La première nécessité pour l'adaptation de la méthode TLM aux simulations acoustiques sur de grandes distances est la définition de couches absorbantes, permettant de tronquer efficacement le domaine d'étude, sans introduire de réflexions parasites. La formulation ainsi développée dans le cadre de la thèse est rigoureusement équivalente à l'équation de propagation des ondes amorties, et se traduit dans la méthode TLM par l'introduction et l'optimisation d'un terme de dissipation. L'étape suivante a consisté à vérifier la capacité de la méthode TLM à modéliser les phénomènes de diffusion par des cylindres. L’une des originalités introduites dans cette thèse réside dans le placement des éléments diffuseurs, à partir de lois de distribution aléatoire et de Gibbs, permettant ainsi de définir des répartitions proches de celles rencontrées en forêt. À titre d'application de la méthode développée dans le cadre de la thèse, une étude paramétrique a été réalisée afin de définir les conditions pour lesquelles une forêt peut également être considérée comme un dispositif de protection
The prediction of sound propagation in presence of forest remains a major challenge for the outdoor sound propagation community. Reference numerical models such as the Transmission Line Matrix (TLM) method can be developed in order to accurately predict each acoustical phenomenon that takes place inside forest. The first need for the TLM method is an efficient theory-based absorbing layer formulation that enables the truncation of the numerical domain. The two proposed absorbing layer formulations are based on the approximation of the perfectly matched layer theory. The most efficient proposed formulation is shown to be equivalent to wave propagation in a lossy media, which, in the TLM method formulation, is introduced using an additional dissipation term. Then, the ability of the TLM method for the simulation of scattering is studied comparing the numerical results to both analytical solutions and measurements on scale models. Lastly, the attenuation of acoustic levels by a simplified forest is numerically studied using several arrangements of cylinders placed normal to either reflecting or absorbing ground. It is observed that randomly spaced arrangements are more inclined to attenuate acoustic waves than periodic arrangements. Moreover, the sensitivity to the density, the length of the array and the ground absorption is tested. The main trend shows that the density and the distribution are two important parameters for the attenuation. In future work, it can be interesting to look at the sensitivity of each parameter. This study could then be used to relate the morphology (i.e. distribution, density, length) of a forest to the acoustical properties of the forest
APA, Harvard, Vancouver, ISO, and other styles
10

Anderson, Monty J. "Active Control of the Human Voice from a Sphere." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5295.

Full text
Abstract:
This work investigates the application of active noise control (ANC) to speech. ANC has had success reducing tonal noise. In this work, that success was extended to noise that is not completely tonal but has some tonal elements such as speech. Limitations such as causality were established on the active control of human speech. An optimal configuration for control actuators was developed for a sphere using a genetic algorithm. The optimal error sensor location was found from exploring the nulls associated with the magnitude of the radiated pressure with reference to the primary pressure field. Both numerically predicted and experimentally validated results for the attenuation of single frequency tones were shown. The differences between the numerically predicted results for attenuation with a sphere present in the pressure field and monopoles in the free-field are also discussed.The attenuation from ANC of both monotone and natural speech is shown and a discussion about the effect of causality on the results is given. The sentence “Joe took father’s shoe bench out” was used for both monotone and natural speech. Over this entire monotone speech sentence, the average attenuation was 8.6 dB with a peak attenuation of 10.6 dB for the syllable “Joe”. Natural speech attenuation was 1.1 dB for the sentence average with a peak attenuation on the syllable “bench” of 2.4 dB. In addition to the lower attenuation values for natural speech, the pressure level for the word “took” was increased by 2.3 dB. Also, the harmonic at 420 Hz in the word “father’s” of monotone speech was reduced globally up to 20 dB. Based on the results of the attenuation of monotone and natural speech, it was concluded that a reasonable amount of attenuation could be achieved on natural speech if its correlation could approach that of monotone speech.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Sound diffraction"

1

Snakowska, Anna. Analiza pola akustycznego falowodu cylindrycznego z uwzględnieniem zjawisk dyfrakcyjnych na wylocie. Rzeszów: Wydawnictwo Uniwersytetu Rzeszowskiego, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Podilʹchuk, I͡Uriĭ Nikolaevich. Luchevye metody v teorii rasprostranenii͡a i rassei͡anii͡a voln. Kiev: Nauk. dumka, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kleshchev, A. A. Gidroakusticheskie rasseivateli. S.-Peterburg: "Sudostroenie", 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Medvedskiĭ, A. L. Metod poverkhnostnykh funkt︠s︡iĭ vlii︠a︡nii︠a︡ v nestat︠s︡ionarnykh zadachakh difrakt︠s︡ii. Moskva: Moskovskiĭ gos. aviat︠s︡ionnyĭ in-t, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

L, Dyshko A., and Maksimova N. O, eds. Difrakt͡s︡ii͡a︡ ploskoĭ zvukovoĭ volny na tonkom uprugom tele vrashchenii͡a︡. Moskva: Vychislitelʹnyĭ t͡s︡entr AN SSSR, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Difrakt͡s︡ii͡a︡ zvuka na uprugikh obolochkakh: Metody, teorii͡a︡, ėksperiment. Moskva: "Nauka", 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stamnes, Jakob J. Waves in focal regions: Propagation, diffraction, and focusing of light, sound, and water waves. Bristol: A. Hilger, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

V, Pak T., ed. Difrakt͡sii͡a ploskoĭ zvukovoĭ volny na zhestkom vyti͡anutom sferoide. Moskva: Vychislitelʹnyĭ t͡sentr AN SSSR, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Construction Engineering Research Laboratories (U.S.), ed. Diffraction of sound by objects in the one-wavelength size range. [Champaign, Ill.]: US Army Corps of Engineers, Construction Engineering Research Laboratories, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Matula, Thomas John. Generation, diffraction and radiation of subsonic flexural waves on membranes and plates: Observations of structural and acoustical wavefields. 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Sound diffraction"

1

Kuttruff, Heinrich. "Sound Radiation and Sound Diffraction." In Ultrasonics, 49–78. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3846-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eargle, John M. "Fresnel Diffraction Over Sound Barriers." In Electroacoustical Reference Data, 32–33. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2027-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eargle, John M. "Diffraction of Sound by a Cylinder, a Cube, and a Sphere." In Electroacoustical Reference Data, 28–29. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2027-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Soenarko, Benjamin. "Radiation and Diffraction of Sound from Bodies Mounted on an Infinite Baffle Using Boundary Element Method." In Differential Equations Theory, Numerics and Applications, 345–54. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5157-3_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Radiation, Scattering, and Diffraction." In Sound Propagation, 177–271. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470825853.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Radiation, Scattering, and Diffraction." In Sound Visualization and Manipulation, 49–97. Singapore: John Wiley & Sons Singapore Pte. Ltd., 2013. http://dx.doi.org/10.1002/9781118368480.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Influence of source motion on ground effect and diffraction." In Predicting Outdoor Sound, 188–222. CRC Press, 2006. http://dx.doi.org/10.1201/9781482295023-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Attenborough, Keith, and Timothy Van Renterghem. "Influence of Source Motion on Ground Effect and Diffraction." In Predicting Outdoor Sound, 305–40. 2nd ed. CRC Press, 2021. http://dx.doi.org/10.1201/9780429470806-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goldsmith, Mike. "2. The nature of sound." In Sound: A Very Short Introduction, 10–35. Oxford University Press, 2015. http://dx.doi.org/10.1093/actrade/9780198708445.003.0002.

Full text
Abstract:
Sound is a physical phenomenon as well as a sensual one. The relationships between the physical and sensual aspects of sound are complex in that many of the impressions sound makes on us are related to its physical parameters but not reducible to them. ‘The nature of sound’ considers the physical aspects of sound, which are far better understood than the emotional ones. It discusses pressure waves; how sound is carried; the velocity, refraction, frequency, and diffraction of sound; the power of sound, including loudness and the decibel measurement system; standing waves and resonances; charting sound; sound filters; and sound synthesis.
APA, Harvard, Vancouver, ISO, and other styles
10

Kuroiwa, K., and K. Hiraoka. "Detection of edge wave for sound diffraction using the correlation and inverse filtering techniques." In Advanced Computational and Design Techniques in Applied Electromagnetic Systems, 575–78. Elsevier, 1995. http://dx.doi.org/10.1016/b978-0-444-82139-3.50150-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sound diffraction"

1

Pereselkov, Sergey A., Pavel V. Rybyanets, Elena S. Kaznacheeva, Mohsen Badiey, and Venedikt M. Kuz'kin. "Broadband sound scattering by intense internal waves." In 2020 Days on Diffraction (DD). IEEE, 2020. http://dx.doi.org/10.1109/dd49902.2020.9274630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Belyaev, Alexander K., Vladimir A. Polyanskiy, Aleksandr M. Lobachev, Victor S. Modestov, Artem S. Semenov, Aleksey I. Grishchenko, Yuriy A. Yakovlev, Lev V. Shtukin, and Dmitriy A. Tretyakov. "Propagation of sound waves in stressed elasto-plastic material." In 2016 Days on Diffraction (DD). IEEE, 2016. http://dx.doi.org/10.1109/dd.2016.7756813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gusev, Vladimir A. "Nonlinear sound beam propagation in the porous viscoelastic medium." In 2015 Days on Diffraction (DD). IEEE, 2015. http://dx.doi.org/10.1109/dd.2015.7354847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Makarov, D. V. "Modeling of sound propagation in the ocean by means of random matrices." In 2017 Days on Diffraction (DD). IEEE, 2017. http://dx.doi.org/10.1109/dd.2017.8168029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Petrov, P. S., and Tatyana N. Petrova. "On sound propagation in a shallow-water acoustical waveguide with variable bottom slope." In 2016 Days on Diffraction (DD). IEEE, 2016. http://dx.doi.org/10.1109/dd.2016.7756867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pestov, Leonid, and Dmytro Strelnikov. "Approximate boundary controllability of wave equation with mixed boundary conditions and sound-speed reconstruction." In 2019 Days on Diffraction (DD). IEEE, 2019. http://dx.doi.org/10.1109/dd46733.2019.9016430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Al-Arja, O. A., Yu A. Lavrov, and V. D. Lukyanov. "Sound transmission through a thin elastic partition, loaded with mass points, in a rectangular waveguide." In Proceedings of Day on Diffraction. IEEE, 2002. http://dx.doi.org/10.1109/dd.2002.1177887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Petrov, Pavel S., Mikhail Yu Trofimov, and Alyona D. Zakharenko. "Mode parabolic equations for the modeling of sound propagation in 3D-varying shallow water waveguides." In Days on Diffraction 2012 (DD). IEEE, 2012. http://dx.doi.org/10.1109/dd.2012.6402778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Creuze, V., B. Jouvencel, and P. Baccou. "Using sound diffraction to determine the seabed slope." In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005. http://dx.doi.org/10.1109/iros.2005.1545228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lunkov, Andrey A., Mikhail V. Volkov, Valery G. Petnikov, and Valery A. Grigoriev. "Normal mode coupling in a waveguide with a range-dependent sound speed profile in the bottom." In 2019 Days on Diffraction (DD). IEEE, 2019. http://dx.doi.org/10.1109/dd46733.2019.9016564.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sound diffraction"

1

Lee, Soon Y. Diffraction of Sound by Objects in the One-Wavelength Size Range. Fort Belvoir, VA: Defense Technical Information Center, May 1997. http://dx.doi.org/10.21236/ada325438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography