Academic literature on the topic 'Sound engineering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sound engineering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sound engineering"
IFUKUBE, Tohru. "Application of Sound to Engineering. Sound-based Assistive Engineering." Journal of the Japan Society for Precision Engineering 65, no. 12 (1999): 1704–8. http://dx.doi.org/10.2493/jjspe.65.1704.
Full textMiranda, Eduardo R., and John Matthias. "Music Neurotechnology for Sound Synthesis: Sound Synthesis with Spiking Neuronal Networks." Leonardo 42, no. 5 (October 2009): 439–42. http://dx.doi.org/10.1162/leon.2009.42.5.439.
Full textMin, Dongki, Buhm Park, and Junhong Park. "Artificial Engine Sound Synthesis Method for Modification of the Acoustic Characteristics of Electric Vehicles." Shock and Vibration 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/5209207.
Full textLee, Sang-Kwon, Byung-Soo Kim, and Dong-Chul Park. "Objective evaluation of the rumbling sound in passenger cars based on an artificial neural network." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219, no. 4 (April 1, 2005): 457–69. http://dx.doi.org/10.1243/095440705x11112.
Full textBoning, Willem, and Alban Bassuet. "From the sound up: Reverse-engineering room shapes from sound signatures." Journal of the Acoustical Society of America 136, no. 4 (October 2014): 2218. http://dx.doi.org/10.1121/1.4900050.
Full textKONDO, Takashi, Seiji HARA, Motoyasu SAKAGUCHI, Kenji TORII, Tatsunori TSURUTA, Koichi YOSIOKA, and Masaya MIYAZAWA. "Engine Sound Design by Kansei Engineering." Transactions of Japan Society of Kansei Engineering 19, no. 1 (2019): 1–10. http://dx.doi.org/10.5057/jjske.tjske-d-19-00035.
Full textAsri, Ag Ibrahim Ag, Shin Yi Yiap, and Macdonnel Andrias Ryan. "Kansei Engineering Concept in Sound Design." Advanced Science Letters 24, no. 2 (February 1, 2018): 1320–24. http://dx.doi.org/10.1166/asl.2018.10741.
Full textPejuan, Arcadi, Xavier Bohigas, Xavier Jaén, and Cristina Periago. "Misconceptions About Sound Among Engineering Students." Journal of Science Education and Technology 21, no. 6 (December 18, 2011): 669–85. http://dx.doi.org/10.1007/s10956-011-9356-6.
Full textFontana, Bill. "The Relocation of Ambient Sound: Urban Sound Sculpture." Leonardo 41, no. 2 (April 2008): 154–58. http://dx.doi.org/10.1162/leon.2008.41.2.154.
Full textGhaffari, Sasan, Hassan Sadeghi Naeini, Karmegam Karuppiah, Aminreza Shokouhi, and Saba Beizaei. "Case study: Sonic effect of product setup on perceived quality: an approach to home appliance design." Noise Control Engineering Journal 67, no. 5 (September 1, 2019): 373–79. http://dx.doi.org/10.3397/1/376732.
Full textDissertations / Theses on the topic "Sound engineering"
DelGizzi, Jesse D. "Zydeco Aesthetics| Instrumentation, Performance Practice, and Sound Engineering." Thesis, University of Louisiana at Lafayette, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10816360.
Full textThis thesis examines aesthetics, sonic characteristics, and performance practices of zydeco music as heard in south Louisiana today. The first chapter describes the roles of instruments in a zydeco band, focusing specifically on the importance of the kick drum and the snare drum. It also details the evolution of the modern zydeco sound and how certain instruments, their modifications, and their timbres came to characterize the style especially prevalent among a group of artists who play for zydeco trail rides. The second chapter examines the tempo of modern zydeco music through quantitative analysis of musical recordings. This chapter also elucidates the use of beat patterns and drumming techniques within the genre, providing evidence for a current preference for the boogaloo beat over the on-the-one and the double beats. The third chapter discusses sonic goals and values of the sound engineer in zydeco music in live performance. This chapter also includes analysis of the frequency spectrum profiles of live zydeco recordings which depict how sound reinforcement practices, instrument modifications, and playing techniques discussed in the thesis are manifested in these performances. Research methods employed for this thesis include interviews with zydeco musicians, empirical analysis of live musical recordings, and examination of spectrograms.
Enoksson, Karl, and Bohan Zhou. "Sound following robot." Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226665.
Full textIdag finns det många olika användningsområden för ljudlokalisering. Konceptet används inte enbart till att lokalisera en person som pratar men kan också appliceras för att hitta en person i nöd. En metod för att lokalisera en ljudkällas position innebär kortfattat att med flera mikrofoner registrera de olika tiderna då ljudet når de olika mikrofonerna. Utifrån denna information kan riktningen till ljudkällans position beräknas med hjälp av trigonometri. Målet med denna rapport är att undersöka hur precist en ljudkällas position kan beräknas med den ovannämnda teknik genom att variera avståndet och vinkeln till ljudkällan. I syfte att genomföra tester byggdes en prototyp. På ett färdigbyggt chassi monterades fyra mikrofoner som användes för att bestämma riktningen till ljudkällan. Därefter roterade roboten mot ljudkällan med hjälp av en IMU som håller reda på hur mycket den har roterat. Efter denna rörelse utfördes en jämförelse mellan robotens riktning och ljudets faktiska riktning. Slutligen placerades en ultraljudssensor på roboten för att detektera objekt när den spårade ljudet. Fordonet färdades rakt fram tills ett objekt låg för nära ultraljudssensorn. Resultaten visar att ett ökat avstånd ger en mer nogrann ljudlokalisering samt att för vissa vinklar fungerade ljudlokaliseringen bättre.
Pogaku, Sindhuja. "SOUND MODE APPLICATION." CSUSB ScholarWorks, 2017. https://scholarworks.lib.csusb.edu/etd/445.
Full textMeng, Helen M. "Phonological parsing for bi-directional letter-to-sound/sound-to-letter generation." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11413.
Full textIncludes bibliographical references (leaves 185-195).
by Helen Mei-Ling Meng.
Ph.D.
Villareal, Steven G. (Steven Gregory). "Sound enhancements for graphical simulations." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43411.
Full textPutra, Azma. "Sound radiation from perforated plates." Thesis, University of Southampton, 2008. https://eprints.soton.ac.uk/63161/.
Full textStrayer, Jayson D. (Jayson Dee). "Underwater sound puluse generator." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/40200.
Full textIncludes bibliographical references (leaves 52-53).
by Jayson D. Strayer.
M.Eng.
Jonsson, Kaj, and Dennis Lioubartsev. "Sound Localization in Robotic Application." Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226682.
Full textFör att undersöka hur en dator kan tolka sin omgivninghar denna rapport fokuserat på att implementera ljudlokalisationi robotik och att lokalisera vinkel samt distans tillen ljudkälla. För att visa det funna värdet har en skjutmekanismkonstruerats och implementerats för att skjutaen projektil till positionen. Kärnan i projektet har varit attså exakt som möjligt mäta tiden för det inkommna ljudeti form av ett impulsljud med hjälp av mikrofoner, analyseradenna data för att hitta ljudkällan och att bygga enkonstruktion som vrider sig mot källan och levererar enprojektil till positionen.Tidsdifferansen från fyra mikrofoner analyseras för atthitta vinkel och distans till ljudkällan med triangulering.Exaktheten av dessa metoder testas.I denna rapport så presenteras den fullständiga konstruktionenoch den relevanta teorin. Den färdiga produktenkan hitta vinkel till ljudkällan och skjuta en projektiltill en bestämt punkt. Trianguleringen ansågs vara ineffektivpå grund av känslighet mot fel.
Chatterley, James J. "Sound Quality Analysis of Sewing Machines." BYU ScholarsArchive, 2005. https://scholarsarchive.byu.edu/etd/424.
Full textSedighian, Pouye. "Pediatric heart sound segmentation." Thesis, California State University, Long Beach, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1526952.
Full textRecent advances in technology have facilitated the prospect of automatic cardiac auscultation by using digital stethoscopes. This in turn creates the need for development of algorithms capable of automatic segmentation of the heart sound. Pediatric heart sound segmentation is a challenging task due to various factors including the significant influence of respiration on the heart sound. This project studies the application of homomorphic filtering and Hidden Markov Model for the purpose of pediatric heart sound segmentation. The efficacy of the proposed method is evaluated on a publicly available dataset and its performance is compared with those of three other existing methods. The results show that our proposed method achieves accuracy of 92.4% ±1.1% and 93.5% ±1.1% in identification of first and second heart sound components, and is superior to four other existing methods in term of accuracy or time complexity.
Books on the topic "Sound engineering"
1930-, Davis Carolyn, ed. Sound system engineering. 2nd ed. Boston: Focal Press, 1987.
Find full text1930-, Davis Carolyn, ed. Sound system engineering. 2nd ed. Indianapolis, IN, USA: H.W. Sams, 1987.
Find full textEugene, Patronis, ed. Sound system engineering. 3rd ed. Amsterdam: Elsevier Focal Press, 2006.
Find full textDavis, Don. Sound System engineering. 2nd ed. Indianapolis: Howard W. Sams & Co, 1987.
Find full textClyde, Stuart. Sound Engineering Made Easy. Prior Muir, St Andrews: Softplanet, 2008.
Find full textGenuit, Klaus, ed. Sound-Engineering im Automobilbereich. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01415-4.
Full textChris, Foreman, ed. Audio engineering for sound reinforcement. Milwaukee, Wisc: Hal Leonard, 2002.
Find full textBader, Rolf. Sound - Perception - Performance. Heidelberg: Springer International Publishing, 2013.
Find full textBook chapters on the topic "Sound engineering"
Möser, Michael. "Sound absorbers." In Engineering Acoustics, 171–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92723-5_6.
Full textMöser, Michael. "Sound Absorbers." In Engineering Acoustics, 119–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05391-1_6.
Full textFrench, Richard Mark. "Sound Quality." In Engineering the Guitar, 1–27. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-74369-1_7.
Full textSchlögl, Anita. "Sound-Engineering – Musikfabrik Berlin." In Mehrwert Musik, 51–129. Wiesbaden: VS Verlag für Sozialwissenschaften, 2011. http://dx.doi.org/10.1007/978-3-531-93117-3_3.
Full textBirringer, Johannes. "Retro-Engineering: Wearable Sound." In Theatre, Performance and Analogue Technology, 133–58. London: Palgrave Macmillan UK, 2013. http://dx.doi.org/10.1057/9781137319678_8.
Full textFrisch, Harald. "Sound Reinforcement." In Handbook of Engineering Acoustics, 335–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-69460-1_13.
Full textFuchs, H. V., and M. Möser. "Sound Absorbers." In Handbook of Engineering Acoustics, 165–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-69460-1_8.
Full textMöser, Michael. "Perception of sound." In Engineering Acoustics, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92723-5_1.
Full textMöser, Michael. "Structure-borne sound." In Engineering Acoustics, 117–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92723-5_4.
Full textMöser, Michael. "Perception of Sound." In Engineering Acoustics, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05391-1_1.
Full textConference papers on the topic "Sound engineering"
Hill, A. J., and J. Burton. "A CASE STUDY ON THE IMPACT LIVE EVENT SOUND LEVEL REGULATIONS HAVE ON SOUND ENGINEERING PRACTICE." In REPRODUCED SOUND 2020. Institute of Acoustics, 2020. http://dx.doi.org/10.25144/13382.
Full textHill, A. J., and J. Burton. "A CASE STUDY ON THE IMPACT LIVE EVENT SOUND LEVEL REGULATIONS HAVE ON SOUND ENGINEERING PRACTICE." In REPRODUCED SOUND 2020. Institute of Acoustics, 2020. http://dx.doi.org/10.25144/13382.
Full textQuinn, David C., and Ruediger Von Hofe. "Engineering Vehicle Sound Quality." In SAE Noise and Vibration Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/972063.
Full textPetiot, Jean-François, Bjørn G. Kristensen, and Anja M. Maier. "How Should an Electric Vehicle Sound? User and Expert Perception." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12535.
Full textKhrystoslavenko, Olga, and Raimondas Grubliauskas. "Theoretical End Experimental Evaluation of Perforations Effect on Sound Insulation." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.027.
Full textO’ Neill, Eric, and John Ventura. "Touch Sound." In International Engineering Science Technology Online Conference. CLOUD PUBLICATIONS, 2020. http://dx.doi.org/10.23953/cloud.iestoc.463.
Full textVan der Auweraer, Herman, Katrien Wyckaert, and Wim Hendricx. "An Engineering Approach to Sound Quality." In Symposium on International Automotive Technology. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/962491.
Full textMacIsaac, Dawn, and Adrian C. Chan. "Sound Software Development for Engineering Simulations." In 2006 Canadian Conference on Electrical and Computer Engineering. IEEE, 2006. http://dx.doi.org/10.1109/ccece.2006.277497.
Full textFreeman, Todd, and Bret Engels. "Door Closure Sound Quality Engineering Process." In Noise and Vibration Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2019. http://dx.doi.org/10.4271/2019-01-1523.
Full textJansche, Martin. "Re-engineering letter-to-sound rules." In Second meeting of the North American Chapter of the Association for Computational Linguistics. Morristown, NJ, USA: Association for Computational Linguistics, 2001. http://dx.doi.org/10.3115/1073336.1073351.
Full textReports on the topic "Sound engineering"
Zeller, Peter, and Alfred Zeitler. Psychoacoustic-Based Sound Design in Vehicle Engineering. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0028.
Full textEngineering research report: evaluation of smartphone sound measurement applications. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, December 2013. http://dx.doi.org/10.26616/nioshephb34912a.
Full text