Academic literature on the topic 'Soybean – Weed control – Kansas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soybean – Weed control – Kansas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Soybean – Weed control – Kansas"

1

Regehr, David L., and Keith A. Janssen. "Preplant Weed Control in a Ridge-Till Soybean (Glycine max) and Grain Sorghum (Sorghum bicolor) Rotation." Weed Technology 3, no. 4 (December 1989): 621–26. http://dx.doi.org/10.1017/s0890037x00032917.

Full text
Abstract:
Research in Kansas from 1983 to 1986 evaluated early preplant (30 to 45 days) and late preplant (10 to 14 days) herbicide treatments for weed control before ridge-till planting in a soybean and sorghum rotation. Control of fall panicum and common lambsquarters at planting time averaged at least 95% for all early preplant and 92% for late preplant treatments. Where no preplant treatment was used, heavy weed growth in spring delayed soil dry-down, which resulted in poor ridge-till planting conditions and reduced plant stands, and ultimately reduced sorghum grain yields by 24% and soybean yields by 12%. Horsenettle population declined significantly, and honeyvine milkweed population increased. Smooth groundcherry populations fluctuated from year to year with no overall change.
APA, Harvard, Vancouver, ISO, and other styles
2

Devlin, Daniel L., James H. Long, and Larry D. Maddux. "Using Reduced Rates of Postemergence Herbicides in Soybeans (Glycine max)." Weed Technology 5, no. 4 (December 1991): 834–40. http://dx.doi.org/10.1017/s0890037x00033947.

Full text
Abstract:
Eight field studies were conducted in soybeans at seven locations in Kansas over a 3-yr period to examine the efficacy of using reduced rates of the herbicides acifluorfen, bentazon, chlorimuron, and tank mixes of acifluorfen and bentazon. POST applications of these herbicides at 1/2X rates at 2 wk after planting (WAP) resulted in broadleaf weed control similar to that obtained from standard treatments of 1X rates applied at 4 WAP at six of seven studies with acifluorfen, bentazon, and acifluorfen plus bentazon and at five of seven studies with chlorimuron. One-quarter rates applied 2 WAP were equivalent to standard treatments for broadleaf weed control in four of seven studies with acifluorfen and chlorimuron, five of seven studies with bentazon, and six of seven studies with acifluorfen plus bentazon. One cultivation at 4 WAP, increased the broadleaf weed control with all herbicide treatments.
APA, Harvard, Vancouver, ISO, and other styles
3

Sbatella, Gustavo M., Albert T. Adjesiwor, Andrew R. Kniss, Phillip W. Stahlman, Phil Westra, Michael Moechnig, and Robert G. Wilson. "Herbicide options for glyphosate-resistant kochia (Bassia scoparia) management in the Great Plains." Weed Technology 33, no. 5 (June 20, 2019): 658–63. http://dx.doi.org/10.1017/wet.2019.48.

Full text
Abstract:
AbstractKochia is one of the most problematic weeds in the United States. Field studies were conducted in five states (Wyoming, Colorado, Kansas, Nebraska, and South Dakota) over 2 yr (2010 and 2011) to evaluate kochia control with selected herbicides registered in five common crop scenarios: winter wheat, fallow, corn, soybean, and sugar beet to provide insight for diversifying kochia management in crop rotations. Kochia control varied by experimental site such that more variation in kochia control and biomass production was explained by experimental site than herbicide choice within a crop. Kochia control with herbicides currently labeled for use in sugar beet averaged 32% across locations. Kochia control was greatest and most consistent from corn herbicide programs (99%), followed by soybean (96%) and fallow (97%) herbicide programs. Kochia control from wheat herbicide programs was 93%. With respect to the availability of effective herbicide options, glyphosate-resistant kochia control was easiest in corn, soybean, and fallow, followed by wheat; and difficult to manage with herbicides in sugar beet.
APA, Harvard, Vancouver, ISO, and other styles
4

Yadav, Ramawatar, Vipan Kumar, and Prashant Jha. "Herbicide programs to manage glyphosate/dicamba-resistant kochia (Bassia scoparia) in glyphosate/dicamba-resistant soybean." Weed Technology 34, no. 4 (January 13, 2020): 568–74. http://dx.doi.org/10.1017/wet.2020.3.

Full text
Abstract:
AbstractEvolution of kochia resistance to glyphosate and dicamba is a concern for growers in the US Great Plains. An increasing use of glyphosate and dicamba with the widespread adoption of glyphosate/dicamba-resistant (GDR) soybean in recent years may warrant greater attention. Long-term stewardship of this new stacked-trait technology will require the implementation of diverse weed control strategies, such as the use of soil-residual herbicides (PRE) aimed at effective control of GDR kochia. Field experiments were conducted in Huntley, MT, in 2017 and 2018, and Hays, KS, in 2018 to determine the effectiveness of various PRE herbicides applied alone or followed by (fb) a POST treatment of glyphosate plus dicamba for controlling GDR kochia in GDR soybean. Among PRE herbicides tested, sulfentrazone provided complete (100%), season-long control of GDR kochia at both sites. In addition, PRE fb POST programs tested in this study brought 71% to 100% control of GDR kochia throughout the season at both sites. Pyroxasulfone applied PRE resulted in 57% to 70% control across sites at 9 to 10 wk after PRE (WAPRE). However, mixing dicamba with pyroxasulfone improved control up to 25% at both sites. Kochia plants surviving pyroxasulfone applied PRE alone produced 2,530 seeds m−2 compared with pyroxasulfone + dicamba (230 seeds m−2) at the Montana site. No differences in soybean grain yields were observed with PRE alone or PRE fb POST treatments at the Montana site; however, dicamba, pyroxasulfone, and pendimethalin + dimethenamid-P applied PRE brought lower grain yield (1,150 kg ha−1) compared to all other tested programs at the Kansas site. In conclusion, effective PRE or PRE fb POST (two-pass) programs tested in this research should be proactively utilized by the growers to manage GDR kochia in GDR soybean.
APA, Harvard, Vancouver, ISO, and other styles
5

Chatham, Laura A., Kevin W. Bradley, Greg R. Kruger, James R. Martin, Micheal D. K. Owen, Dallas E. Peterson, Jugulam Mithila, and Patrick J. Tranel. "A Multistate Study of the Association Between Glyphosate Resistance and EPSPS Gene Amplification in Waterhemp (Amaranthus tuberculatus)." Weed Science 63, no. 3 (September 2015): 569–77. http://dx.doi.org/10.1614/ws-d-14-00149.1.

Full text
Abstract:
Waterhemp is an increasingly problematic weed in the U.S. Midwest, having now evolved resistances to herbicides from six different site-of-action groups. Glyphosate-resistant waterhemp in the Midwest is especially concerning given the economic importance of glyphosate in corn and soybean production. Amplification of the target-site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) was found to be the mechanism of glyphosate resistance in Palmer amaranth, a species closely related to waterhemp. Here, the relationship between glyphosate resistance and EPSPS gene amplification in waterhemp was investigated. Glyphosate dose response studies were performed at field sites with glyphosate-resistant waterhemp in Illinois, Kansas, Kentucky, Missouri, and Nebraska, and relative EPSPS copy number of survivors was determined via quantitative real-time polymerase chain reaction (qPCR). Waterhemp control increased with increasing glyphosate rate at all locations, but no population was completely controlled even at the highest rate (3,360 g ae ha−1). EPSPS gene amplification was present in plants from four of five locations (Illinois, Kansas, Missouri, and Nebraska) and the proportion of plants with elevated copy number was generally higher in survivors from glyphosate-treated plots than in plants from the untreated control plots. Copy number magnitude varied by site, but an overall trend of increasing copy number with increasing rate was observed in populations with gene amplification, suggesting that waterhemp plants with more EPSPS copies are more resistant. Survivors from the Kentucky population did not have elevated EPSPS copy number. Instead, resistance in this population was attributed to the EPSPS Pro106Ser mutation. Results herein show a quantitative relationship between glyphosate resistance and EPSPS gene amplification in some waterhemp populations, while highlighting that other mechanisms also confer glyphosate resistance in waterhemp.
APA, Harvard, Vancouver, ISO, and other styles
6

Chhokar, Rajender Singh, and Rajender Singh Balyan. "Competition and control of weeds in soybean." Weed Science 47, no. 1 (February 1999): 107–11. http://dx.doi.org/10.1017/s004317450009072x.

Full text
Abstract:
Two field experiments were carried out from 1993 to 1995 to evaluate the critical period of weed control and to develop suitable weed management practices for jungle rice, horse purslane, and cockscomb in soybean. Horse purslane was more competitive during early growth stages (up to 45 days after sowing [DAS]) and cockscomb was more competitive during later growth stages, whereas jungle rice was competitive throughout the growing season. The critical period of weed control was found to be 30 to 45 DAS. Weed-free maintenance up to 45 DAS resulted in a 74% increase in grain yield of soybean over the unweeded control. Keeping soybean weed free for 45 d or allowing weeds to remain in the crop for less than 30 d resulted in no significant yield loss. Sequential application of a reduced rate of soil-applied trifluralin 1.0 kg ha–1(0.67 ×) with postemergence fluazifop 0.75 kg ha–1(0.75 ×) or a reduced rate of soil-applied trifluralin or pendimethalin at 1.0 kg ha–1(0.67 ×) followed by hand hoeing 35 DAS provided better control of a broad spectrum of weeds than a single application of a postemergence herbicide applied at reduced or recommended rates. Integration of reduced rates of soil-applied herbicides with post-emergence herbicides or hand hoeing 35 DAS produced soybean yields similar to the hand-weeded treatment. Compared to the weed-free or integrated weed control, a single application of soil-applied or postemergence herbicide did not control a broad spectrum of weeds and reduced soybean yield.
APA, Harvard, Vancouver, ISO, and other styles
7

Buhler, Douglas D., and Jeffery L. Gunsolus. "Effect of Date of Preplant Tillage and Planting on Weed Populations and Mechanical Weed Control in Soybean (Glycine max)." Weed Science 44, no. 2 (June 1996): 373–79. http://dx.doi.org/10.1017/s0043174500094029.

Full text
Abstract:
Additional information on mechanical weed management systems is needed so producers can develop systems that meet their production and weed control goals without sacrificing profitability. Field research was conducted at Rosemount, MN, in 1989, 1990, and 1991 to determine the effect of preplant tillage and soybean planting date on weed populations and effectiveness of mechanical weed control operations. Delaying soybean planting from mid-May to early-June reduced weed densities and yield losses from weeds. Weed control with a herbicide treatment was not affected by planting date, but control with rotary hoeing and cultivation was often increased by delaying soybean planting. Early-planted soybean usually yielded better following herbicide treatment than mechanical weed control. However, when preplant tillage and planting were delayed, weed densities were reduced and mechanical weed control operations usually resulted in soybean yield similar to the herbicide treatment. While delaying soybean planting reduced weed densities and improved mechanical weed control, there is potential for reduced soybean yields with delayed planting.
APA, Harvard, Vancouver, ISO, and other styles
8

Barnes, Jeff W., and Lawrence R. Oliver. "Preemergence Weed Control in Soybean with Cloransulam." Weed Technology 18, no. 4 (December 2004): 1077–90. http://dx.doi.org/10.1614/wt-03-254r1.

Full text
Abstract:
Field experiments were conducted from 1999 to 2001 to evaluate preemergence (PRE) activity of cloransulam on broadleaf weed species and to determine the effectiveness of cloransulam as a PRE herbicide in glyphosate-resistant soybean weed management systems. Cloransulam PRE controlled prickly sida, velvetleaf, and morningglory species even at reduced rates (recommended rate 36 g ai/ha) but only suppressed growth of Palmer amaranth, hemp sesbania, and sicklepod. Cloransulam applied PRE provided initial control or suppression of most weeds, but late-season control declined appreciably. Adding metribuzin to cloransulam PRE generally improved control of hemp sesbania, Palmer amaranth, annual grasses, and morningglory species, leading to soybean yield increases. Control of weeds was greater on a silt loam soil compared with a silty clay soil. Delayed herbicide activation by rainfall or irrigation reduced control of hemp sesbania and prickly sida and affected efficacy more than soil texture. Single postemergence (POST) applications of glyphosate or fomesafen plus fluazifop-P provided 90% or less control of most weed species. When glyphosate POST or fomesafen plus fluazifop-P POST followed PRE applications of cloransulam or cloransulam plus metribuzin PRE, control of all weeds was generally greater than 85%. The highest soybean yields were recorded from treatments that contained sequential PRE followed by (fb) POST herbicide applications. Composition of weed flora determined the effect of herbicide program on soybean seed yield. No yield benefit was gained from the sequential program when the dominant species was Palmer amaranth, which was controlled by glyphosate. When hemp sesbania was the dominant species, PRE herbicides fb glyphosate POST increased yield compared with total POST glyphosate.
APA, Harvard, Vancouver, ISO, and other styles
9

Swanton, Kevin Chandler, Anil Shrestha, and. "Weed seed return as influenced by the critical weed-free period and row spacing of no-till glyphosate-resistant soybean." Canadian Journal of Plant Science 81, no. 4 (October 1, 2001): 877–80. http://dx.doi.org/10.4141/p01-049.

Full text
Abstract:
Seed return from later-emerging weeds is a concern in soybean management systems based on critical periods for weed control. This study in Ontario estimated the weed seed return to the soil surface as influenced by the duration of weed control in soybean and soybean row spacing. Weeds emerging after the 1- to 2-trifoliate stage of soybean development did not increase the weed seedbank population compared to the residual population in the weed-free control. Weed seed return was greater in 76 cm than in 38 cm or 19 cm (twin rows) soybean row spacings. Key words: Seedbank, weed population dynamics, integrated weed management, glyphosate-resistant soybean, [Glycine max (L.) Merr].
APA, Harvard, Vancouver, ISO, and other styles
10

Belfry, Kimberly D., Kristen E. McNaughton, and Peter H. Sikkema. "Weed control in soybean using pyroxasulfone and sulfentrazone." Canadian Journal of Plant Science 95, no. 6 (November 2015): 1199–204. http://dx.doi.org/10.4141/cjps-2015-114.

Full text
Abstract:
Belfry, K. D., McNaughton, K. E. and Sikkema, P. H. 2015. Weed control in soybean using pyroxasulfone and sulfentrazone. Can. J. Plant Sci. 95: 1199–1204. Pyroxasulfone and sulfentrazone are new herbicides currently being evaluated for weed control in soybean [Glycine max (L.) Merr.] in Ontario, Canada. Seven experiments were conducted over a 3-yr period (2011 to 2013) at Ridgetown and Exeter, Ontario, to evaluate weed management using pyroxasulfone, sulfentrazone and their tank-mixes relative to the industry standard, imazethapyr plus metribuzin. Tank-mixing pyroxasulfone and sulfentrazone provided up to 97, 46, 60, 100 and 71% control of common lambsquarters (Chenopodium album L.), common ragweed (Ambrosia artemisiifolia L.), green foxtail [Setaria viridis (L.) Beauv.], Powell amaranth [Amaranthus powellii (S.) Wats.] and velvetleaf (Abutilon theophrasti Medic.), respectively, at 2 wk after treatment. Control with pyroxasulfone and sulfentrazone was improved when tank-mixed, relative to application of each herbicide separately. Although control was variable across weed species, no difference in control was identified between pyroxasulfone plus sulfentrazone and imazethapyr plus metribuzin. Soybean yield was up to 2.7, 2.4 and 2.9 t ha−1 for pyroxasulfone, sulfentrazone and pyroxasulfone plus sulfentrazone application, yet imazethapyr plus metribuzin provided the highest yield (3.3 t ha−1). This research demonstrates that pyroxasulfone plus sulfentrazone may be used as a valuable weed control option in soybean; however, weed community composition may limit herbicidal utility.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Soybean – Weed control – Kansas"

1

Vongsaroj, Prasan. "Agronomy and weed control for rice-soybean cropping systems." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/46596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Perron, France. "Weed response to weed control, tillage and nutrient source in a corn-soybean rotation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0025/MQ50854.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Refsell, Dawn E. "Integrated weed management in Kansas winter wheat." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/15742.

Full text
Abstract:
Doctor of Philosophy
Department of Agronomy
J. Anita Dille
Integrated weed management (IWM) is an ecological approach to weed control that reduces dependence on herbicides through understanding of weed biology and involves using multiple weed control measures including cultural, chemical, mechanical and biological methods. The critical period of weed control is the duration of the crop life cycle in which it must be kept weed-free to prevent yield loss from weed interference. Eight experiments were conducted throughout Kansas between October 2010 and June 2012 to identify this period in winter wheat grown under dryland and irrigated conditions. Impact of henbit and downy brome density on winter wheat yields were evaluated on four farmer’s fields with natural populations and on a research station with overseeded populations. Henbit density up to 156 plants m-2 did not affect winter wheat yield, while downy brome at a density of 40 plants m-2 reduced yield by 33 and 13% in 2011 and 2012, respectively. In the presence of downy brome, winter wheat should be kept weed-free approximately 30 to 45 days after planting to prevent yield loss; otherwise, weeds need to be removed immediately following release from winter dormancy to prevent yield loss due to existing weed populations. Flumioxazin and pyroxasulfone are herbicides registered for use in winter wheat, soybean and corn for control of broadleaf and grass weeds. Flumioxazin and pyroxasulfone were evaluated for plant response to localized herbicide exposure to roots, shoots, or both roots and shoots utilizing a novel technique. Two weed species, ivyleaf morningglory and shattercane, as well as two crops, wheat and soybean, were evaluated for injury after localized exposures. The location and expression of symptoms from the flumioxazin and pyroxasulfone herbicides were determined to be the shoot of seedling plants. The utilization of preemergence herbicides in winter wheat is not a common practice, although application may protect winter wheat from early season yield losses as determined by the critical weed-free period. Kansas wheat growers should evaluate the presence and density of weed species to determine which weed management strategy is most advantageous to preserving winter wheat yield.
APA, Harvard, Vancouver, ISO, and other styles
4

Webb, Jared S. "The influence of winter annual weed control on soybean cyst nematode and summer annual weed growth and management /." Available to subscribers only, 2007. http://proquest.umi.com/pqdweb?did=1324369591&sid=3&Fmt=2&clientId=1509&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sarver, Jason. "INFLUENCE OF VARIOUS PLANT POPULATIONS ON WEED REMOVAL TIMING IN GLYPHOSATE-RESISTANT SOYBEAN." UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_theses/591.

Full text
Abstract:
Reduced plant population in glyphosate-resistant soybean [Glycine max (L) Merr.] may influence the critical time of herbicide application. Field studies were conducted in 2007 and 2008 at two locations in Kentucky to determine the effect of four weed control programs on soybean seed yield, seed quality, crop canopy, and weed pressure when planted at three densities - 185,000, 309,000, and 432,000 plants ha-1. Plots were treated with glyphosate at either 3 weeks after planting (WAP), 5 WAP, 7 WAP, 3 & 7 WAP, representing common weed control protocols within the state. No differences in seed yield were discovered between plant densities in two of four siteyears. 254,500 plants ha-1 was sufficient for maximum yields in all site-years and was also sufficient to achieve maximum canopy amongst those populations tested in the study. Sequential applications at 3 and 7 WAP provided the highest seed yield, while the 5 WAP and 7 WAP application timings were generally the single applications that allowed for the highest yield and canopy closure, along with the highest visual estimate of weeds controlled. Plant density did not influence the critical period for weed control.
APA, Harvard, Vancouver, ISO, and other styles
6

Vencill, William K. "Field and laboratory investigations on the efficacy, selectivity, and action of the herbicide clomazone." Diss., Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/77751.

Full text
Abstract:
Clomazone is a recently introduced herbicide for the selective control of grass and broadleaf weeds in soybeans. Field studies were conducted in full-season no-till soybeans to determine the efficacy of clomazone as a preplant and preemergence herbicide. Clomazone applied preemergence provided large crabgrass (Digitaria sanguinalis L.) control equivalent to that of oryzalin applied preplant or preemergence and provided better control of several broadleaf weeds. Control from preplant applications of clomazone was not adequate. Preemergence and preplant incorporated applications of clomazone were compared in conventionally-tilled soybeans. Clomazone efficacy at two depths of incorporation was also investigated. Clomazone applied preemergence generally provided control of large crabgrass and several broadleaf weed species equivalent to preplant incorporated applications. The addition of imazaquin or chlorimuron plus linuron improved smooth pigweed (Amaranthus hybridus L.) control over that provided by clomazone alone. These combinations generally did not improve large crabgrass, jimsonweed (Datura stramonium L.), and common lambsquarters (Chenopodium album L.) control over that of clomazone alone. Shallow incorporation (4 cm) of clomazone provided better weed control than deep incorporations (8 cm). Studies were conducted to evaluate efficacy and to quantify volatilization of three clomazone formulations (emulsifiable concentrate, wettable powder, and a microencapsulated formulation) following soil application. Samples were collected at the first, second, and tenth day after clomazone application. The three clomazone formulations provided control of large crabgrass. Clomazone volatilization was greatest 24 h after application from the emulsifiable concentrate and wettable powder formulations and declined at the second and tenth day after application. Volatilization from the microencapsulated formulation was lower than the other two formulations at all sampling times. Clomazone volatilization was greater from preemergence than preplant incorporated applications. Differential selectivity studies were initiated to determine the absorption, translocation, and metabolism of clomazone in tolerant soybean and smooth pigweed and susceptible redroot pigweed and livid amaranth exposed to foliar and root applied clomazone. Redroot pigweed and livid amaranth absorbed more clomazone through the roots than soybean and smooth pigweed. Absorption of foliar-applied clomazone was limited in all species. Of the clomazone absorbed in all species, most was translocated to the leaf tissue. Two metabolites of clomazone were found. One was determined to be a GS-clomazone conjugate. Differences in clomazone metabolism among species examined were not found. Growth and physiological responses of a normal hybrid ('DeKalb XL67'), a dwarf mutant, and an albino mutant of corn (Zea mays L.) to clomazone and interactions of gibberellin with clomazone on normal corn were examined. The dwarf mutant displayed greater tolerance to clomazone than normal corn. Growth measurements suggested that gibberellin was antagonistic with clomazone.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
7

Hustedde, Nicholas Victor. "Optimum® GAT® Concepts: Herbicide Combinations for Foliar and Residual Weed Control in Soybean and Corn." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/theses/604.

Full text
Abstract:
Field and greenhouse research was conducted in 2009 and 2010 on herbicide applications enabled by the integration of Optimum GAT crop traits providing for resistance to glyphosate and certain ALS-inhibiting herbicides. The herbicide concepts were evaluated for control of several winter and summer annual weed species, as well as the effect of the resulting weed control on grain yield of Optimum GAT soybean. The combination of chlorimuron + rimsulfuron did not provide sufficient efficacy on the winter annual grass species little barley and annual bluegrass. Factors contributing the sub-lethal activity include: 1) a relatively low inherent sensitivity of the species to these herbicides, 2) a significant reduction in herbicide efficacy with increases in weed plant height, and 3) a lack of herbicide enhancement with more aggressive foliar adjuvants. The tank-mixture of glyphosate with chlorimuron + rimsulfuron was frequently necessary to achieve a maximum herbicide activity above 90% on annual bluegrass and little barley. Optimum GAT herbicide treatments including chlorimuron + rimsulfuron + flumioxazin in field experiments provided the greatest control of horseweed and common waterhemp in glyphosate-susceptible and -resistant populations. The addition of chlorimuron + rimsulfuron to glyphosate and 2,4-D improved horseweed control above glyphosate and 2,4-D applied alone even as weed height increased with applications made closer to soybean planting. However, removal of competitive vegetation with herbicide combinations including chlorimuron + rimsulfuron selected for emergence of ALS-resistant common waterhemp. Inclusion of flumioxazin with chlorimuron + rimsulfuron was beneficial for control of common waterhemp when applied 7 days before planting. However, chlorimuron + rimsulfuron + flumioxazin provided only 80% control of common waterhemp in a glyphosate-resistant population which demonstrates opportunity for improvement in herbicide concepts enabled by Optimum GAT. Grain yield of Optimum GAT soybean was greatest for herbicide treatments which provided effective weed management throughout the growing season which were the herbicide treatments applied the closest to soybean planting (7 days before planting). Optimum GAT herbicide concepts for corn include chlorimuron + thifensulfruon + tribenuron, chlorimuron + rimsulfuron, and rimsulfuron + tribenuron + mesotrione. These herbicides provided similar to slightly increased control of annual morningglory (Ipomoea spp.) in comparison to glyphosate alone. The addition of atrazine increased the consistency of control of annual morningglory for any herbicide treatment with additional residual activity at 28 days after treatment. Optimum GAT enabled herbicide concepts can improve control of some problematic weed species, including some glyphosate-resistant weed populations, compared to current herbicide tactics that rely primarily on glyphosate for weed control in commercial glyphosate-resistant soybean and corn. However, the integration of postemergence soybean herbicides beyond the ALS chemistry is necessary to provide a broader spectrum of weed control when considering the challenges of managing both glyphosate- and ALS-resistant weed species that are becoming more frequent in commercial fields.
APA, Harvard, Vancouver, ISO, and other styles
8

Goel, Pradeep Kumar. "Hyper-spectral remote sensing for weed and nitrogen stress detection." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82882.

Full text
Abstract:
This study investigated the possibility of using data, acquired from airborne multi-spectral or hyper-spectral sensors, to detect nitrogen status and presence of weeds in crops; with the ultimate aim of contributing towards the development of a decision support system for precision crop management (PCM).
A 24-waveband (spectrum range 475 to 910 nm) multi-spectral sensor was used to detect weeds in corn (Zea mays L.) and soybean ( Glycine max (L.) Merr.) in 1999. Analysis of variance (ANOVA), followed by Scheffe's test, were used to determine which wavebands displayed significant differences in aerial spectral data due to weed treatments. It was found that the radiance values were mainly indicative of the contribution of weeds to the total vegetation cover in various plots, rather than indicative of changes in radiance of the crops themselves, or of differences in radiance between the weed populations and the crop species.
In the year 2000, a 72-waveband (spectrum range 407 to 949 nm) hyperspectral sensor was used to detect weeds in corn gown at three nitrogen levels (60, 120 and 250 kg N/ha). The weed treatments were: no control of weeds, control of grasses, control of broadleaved weeds and control of all weeds. Imagery was acquired at the early growth, tassel, and fully-mature stages of corn. Hyper-spectral measurements were also taken with a 512-waveband field spectroradiometer (spectrum range 270 to 1072 nm). Measurements were also carried out on crop physiological and associated parameters. ANOVA and contrast analyses indicated that there were significant (alpha = 0.05) differences in reflectance at certain wavebands, due to weed control strategies and nitrogen application rates. Weed controls were best distinguished at tassel stage. Nitrogen levels were most closely related to reflectance, at 498 nm and 671 nm, in the aerial data set. Differences in other wavebands, whether related to nitrogen or weeds, appeared to be dependent on the growth stage. Better results were obtained from aerial than ground-based spectral data.
Regression models, representing crop biophysical parameters and yield in terms of reflectance, at one or more wavebands, were developed using the maximum r2 criterion. The coefficients of determination (r 2) were generally greater than 0.7 when models were based on spectral data obtained at the tassel stage. Models based on normalized difference vegetation indices (NDVI) were more reliable at estimating the validation data sets than were the reflectance models. The wavebands at 701 nm and 839 nm were the most prevalent in these models.
Decision trees, artificial neural networks (ANNs), and seven other classifiers were used to classify spectral data into the weed and nitrogen treatment categories. Success rates for validation data were lower than 68% (mediocre) when training was done for all treatment categories, but good to excellent (up to 99% success) for classification into levels of one or the other treatment (i.e. weed or nitrogen) and also classification into pairs of levels within one treatment. Not one classifier was determined best for all situations.
The results of the study suggested that spectral data acquired from airborne platforms can provide vital information on weed presence and nitrogen levels in cornfields, which might then be used effectively in the development of PCM systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Carruthers, Kerry. "Intercropping of corn with soybean, lupin and forages for weed control and improved silage yield and quality in eastern Canada." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=27294.

Full text
Abstract:
The intercropping of corn with legumes is an alternative cropping strategy to corn monocropping which may help reduce inputs into the production of silage for livestock feed. The reduction of inputs will decrease costs to producers and potential damage to the environment. Two experiments were carried out at each of two sites in 1993 and 1994. The first experiment investigated the effects on silage yield and weed control of seeding soybean or lupin alone or in combination with one of three forages (annual ryegrass, Lolium multiflorum Lam.; perennial ryegrass, Lolium perenne L.; and red clover, Trifolium pratense L.). The second experiment examined the effects on silage yield and weed control of seeding date (simultaneous with corn or three weeks later) and number of rows of large-seeded legumes (one or two) seeded between the corn rows. For both experiments intercropped plots received 90 kg ha$ sp{-1}$ less nitrogen fertilizer than monocropped plots (which received 180 kg ha$ sp{-1})$. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
10

Carruthers, Kerry. "Intercropping of corn with soybean, lupin and forages for weed control and improved silage yield and quality in eastern Canada." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0001/MQ29669.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Soybean – Weed control – Kansas"

1

Korres, Nicholas E., Krishna N. Reddy, Christopher Rouse, and Andy C. King. ""Section 2.2: Row Crops"Sustainable Weed Control in Soybean." In Weed Control, 288–305. Boca Raton, FL:CRC Press,[2018]"A Science publishers book."|Include bibliographical references and index.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315155913-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Padgette, Stephen R., and James C. Graham. "New Weed Control Strategies for Soybeans." In Pest Management in Soybean, 325–31. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2870-4_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Knake, Ellery L. "Weed Control for Soybean in the Nineties." In Pest Management in Soybean, 360–68. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2870-4_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mitidieri, Agustin. "Soybean Weed Problems in Argentina and their Control." In Pest Management in Soybean, 272–81. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2870-4_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yorinori, Jose T., and Dionisio L. P. Gazziero. "The Control of Milk Weed (Euphorbia Heterophylla) In Soybean with a Mycoherbicide." In Pest Management in Soybean, 332–38. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2870-4_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shaner, Dale L. "Developing an Integrated Weed Control Program to Prevent or Manage Herbicide Resistant Weeds in Soybeans." In Pest Management in Soybean, 339–47. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2870-4_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Weed Control." In World Soybean Research Conference II: Abstracts, edited by Frederick T. Corbin, 106–11. CRC Press, 2019. http://dx.doi.org/10.1201/9780429268120-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Soybean – Weed control – Kansas"

1

Shokun, Oleksandr, and Oksana Ishchenko. "WEED CONTROL TECHNOLOGY ON SOYBEAN CROPS IN THE CONDITOIN OF “AGRIFAS” COMPANY LTD BILOPILLIA DISTRICT SUMY REGION." In Scientific Development of New Eastern Europe. Publishing House “Baltija Publishing”, 2019. http://dx.doi.org/10.30525/978-9934-571-89-3_112.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Soybean – Weed control – Kansas"

1

Owen, Micheal, Damian Franzenburg, James Lee, Iththiphonh Macvilay, and Brady North. Preemergence and Postemergence Weed Control in Soybean. Ames: Iowa State University, Digital Repository, 2016. http://dx.doi.org/10.31274/farmprogressreports-180814-1416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Owen, Michael D., Damian D. Franzenburg, James M. Lee, James F. Lux, and Jacob S. Eeling. Two-Pass Programs for Weed Control in Soybean. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/farmprogressreports-180814-484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Owen, Micheal, Damian Franzenburg, James Lee, and Iththiphonh Macvilay. Two-Pass Programs for Weed Control in No-Till Soybean. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/farmprogressreports-180814-1649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Owen, Micheal, Damian Franzenburg, James Lee, and Jacob Eeling. Preplant and Postemergence Herbicide Programs for Weed Control in No-till Soybean. Ames: Iowa State University, Digital Repository, 2015. http://dx.doi.org/10.31274/farmprogressreports-180814-2236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography