Academic literature on the topic 'Space division multiplexing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Space division multiplexing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Space division multiplexing"

1

TSUCHIDA, Yukihiro, Koichi MAEDA, and Ryuichi SUGIZAKI. "Multicore EDFA for Space Division Multiplexing." IEICE Transactions on Communications E97.B, no. 7 (2014): 1265–71. http://dx.doi.org/10.1587/transcom.e97.b.1265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richardson, D. J., J. M. Fini, and L. E. Nelson. "Space-division multiplexing in optical fibres." Nature Photonics 7, no. 5 (April 29, 2013): 354–62. http://dx.doi.org/10.1038/nphoton.2013.94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pan, Z., K. K. Wong, and T. S. Ng. "Generalized Multiuser Orthogonal Space-Division Multiplexing." IEEE Transactions on Wireless Communications 3, no. 6 (November 2004): 1969–73. http://dx.doi.org/10.1109/twc.2004.837449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Chao, Aneesh Alex, Janarthanan Rasakanthan, and Yutao Ma. "Space-division multiplexing optical coherence tomography." Optics Express 21, no. 16 (August 6, 2013): 19219. http://dx.doi.org/10.1364/oe.21.019219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Guifang, Magnus Karlsson, Xiang Liu, and Yves Quiquempois. "Focus issue introduction: space-division multiplexing." Optics Express 22, no. 26 (December 29, 2014): 32526. http://dx.doi.org/10.1364/oe.22.032526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carboni, Christian, and Guifang Li. "Novel applications of space-division multiplexing." Frontiers of Optoelectronics 9, no. 2 (April 9, 2016): 270–76. http://dx.doi.org/10.1007/s12200-016-0607-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tu Jiajing, 涂佳静, and 李朝晖 Li Zhaohui. "Review of Space Division Multiplexing Fibers." Acta Optica Sinica 41, no. 1 (2021): 0106003. http://dx.doi.org/10.3788/aos202141.0106003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mizuno, Takayuki, and Yutaka Miyamoto. "High-capacity dense space division multiplexing transmission." Optical Fiber Technology 35 (February 2017): 108–17. http://dx.doi.org/10.1016/j.yofte.2016.09.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jia, Dagong, Haiwei Zhang, Zhe Ji, Neng Bai, and Guifang Li. "Optical fiber amplifiers for space-division multiplexing." Frontiers of Optoelectronics 5, no. 4 (November 8, 2012): 351–57. http://dx.doi.org/10.1007/s12200-012-0294-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Puttnam, Benjamin J., Georg Rademacher, and Ruben S. Luís. "Space-division multiplexing for optical fiber communications." Optica 8, no. 9 (September 2, 2021): 1186. http://dx.doi.org/10.1364/optica.427631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Space division multiplexing"

1

Saridis, Georgios. "Space division multiplexing towards all-optical data centre networks." Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.720834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jin, Cang. "Spatially integrated erbium-doped fiber amplifiers enabling space-division multiplexing." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27018.

Full text
Abstract:
L'augmentation exponentielle de la demande de bande passante pour les communications laisse présager une saturation prochaine de la capacité des réseaux de télécommunications qui devrait se matérialiser au cours de la prochaine décennie. En effet, la théorie de l’information prédit que les effets non linéaires dans les fibres monomodes limite la capacité de transmission de celles-ci et peu de gain à ce niveau peut être espéré des techniques traditionnelles de multiplexage développées et utilisées jusqu’à présent dans les systèmes à haut débit. La dimension spatiale du canal optique est proposée comme un nouveau degré de liberté qui peut être utilisé pour augmenter le nombre de canaux de transmission et, par conséquent, résoudre cette menace de «crise de capacité». Ainsi, inspirée par les techniques micro-ondes, la technique émergente appelée multiplexage spatial (SDM) est une technologie prometteuse pour la création de réseaux optiques de prochaine génération. Pour réaliser le SDM dans les liens de fibres optiques, il faut réexaminer tous les dispositifs intégrés, les équipements et les sous-systèmes. Parmi ces éléments, l'amplificateur optique SDM est critique, en particulier pour les systèmes de transmission pour les longues distances. En raison des excellentes caractéristiques de l'amplificateur à fibre dopée à l'erbium (EDFA) utilisé dans les systèmes actuels de pointe, l'EDFA est à nouveau un candidat de choix pour la mise en œuvre des amplificateurs SDM pratiques. Toutefois, étant donné que le SDM introduit une variation spatiale du champ dans le plan transversal de la fibre, les amplificateurs à fibre dopée à l'erbium spatialement intégrés (SIEDFA) nécessitent une conception soignée. Dans cette thèse, nous examinons tout d'abord les progrès récents du SDM, en particulier les amplificateurs optiques SDM. Ensuite, nous identifions et discutons les principaux enjeux des SIEDFA qui exigent un examen scientifique. Suite à cela, la théorie des EDFA est brièvement présentée et une modélisation numérique pouvant être utilisée pour simuler les SIEDFA est proposée. Sur la base d'un outil de simulation fait maison, nous proposons une nouvelle conception des profils de dopage annulaire des fibres à quelques-modes dopées à l'erbium (ED-FMF) et nous évaluons numériquement la performance d’un amplificateur à un étage, avec fibre à dopage annulaire, à ainsi qu’un amplificateur à double étage pour les communications sur des fibres ne comportant que quelques modes. Par la suite, nous concevons des fibres dopées à l'erbium avec une gaine annulaire et multi-cœurs (ED-MCF). Nous avons évalué numériquement le recouvrement de la pompe avec les multiples cœurs de ces amplificateurs. En plus de la conception, nous fabriquons et caractérisons une fibre multi-cœurs à quelques modes dopées à l'erbium. Nous réalisons la première démonstration des amplificateurs à fibre optique spatialement intégrés incorporant de telles fibres dopées. Enfin, nous présentons les conclusions ainsi que les perspectives de cette recherche. La recherche et le développement des SIEDFA offriront d'énormes avantages non seulement pour les systèmes de transmission future SDM, mais aussi pour les systèmes de transmission monomode sur des fibres standards à un cœur car ils permettent de remplacer plusieurs amplificateurs par un amplificateur intégré.
The exponential increase of communication bandwidth demand is giving rise to the so-called ‘capacity crunch’ expected to materialize within the next decade. Due to the nonlinear limit of the single mode fiber predicted by the information theory, all the state-of-the-art techniques which have so far been developed and utilized in order to extend the optical fiber communication capacity are exhausted. The spatial domain of the lightwave links is proposed as a new degree of freedom that can be employed to increase the number of transmission paths and, subsequently, overcome the looming ‘capacity crunch’. Therefore, the emerging technique named space-division multiplexing (SDM) is a promising candidate for creating next-generation optical networks. To realize SDM in optical fiber links, one needs to investigate novel spatially integrated devices, equipment, and subsystems. Among these elements, the SDM amplifier is a critical subsystem, in particular for the long-haul transmission system. Due to the excellent features of the erbium-doped fiber amplifier (EDFA) used in current state-of-the-art systems, the EDFA is again a prime candidate for implementing practical SDM amplifiers. However, since the SDM introduces a spatial variation of the field in the transverse plane of the optical fibers, spatially integrated erbium-doped fiber amplifiers (SIEDFA) require a careful design. In this thesis, we firstly review the recent progress in SDM, in particular, the SDM optical amplifiers. Next, we identify and discuss the key issues of SIEDFA that require scientific investigation. After that, the EDFA theory is briefly introduced and a corresponding numerical modeling that can be used for simulating the SIEDFA is proposed. Based on a home-made simulation tool, we propose a novel design of an annular based doping profile of few-mode erbium-doped fibers (FM-EDF) and numerically evaluate the performance of single stage as well as double-stage few-mode erbium-doped fiber amplifiers (FM-EDFA) based on such fibers. Afterward, we design annular-cladding erbium-doped multicore fibers (MC-EDF) and numerically evaluate the cladding pumped multicore erbium-doped fiber amplifier (MC-EDFA) based on these fibers as well. In addition to fiber design, we fabricate and characterize a multicore few-mode erbium-doped fiber (MC-FM-EDF), and perform the first demonstration of the spatially integrated optical fiber amplifiers incorporating such specialty doped fibers. Finally, we present the conclusions as well as the perspectives of this research. In general, the investigation and development of the SIEDFA will bring tremendous benefits not only for future SDM transmission systems but also for current state-of-the-art single-mode single-core transmission systems by replacing plural amplifiers by one integrated amplifier.
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, King F. "Space-time and space-frequency coded orthogonal frequency division multiplexing transmitter diversity techniques." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/14981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jain, Saurabh. "Development of multi-element fibres for applications in space-division multiplexing." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/391292/.

Full text
Abstract:
This thesis presents a novel multi-element fibre (MEF) technology for implementing space-division multiplexing (SDM) in optical fibres. MEF comprises multiple fibre-elements that are drawn and coated together using a common polymer coating. In MEF, the fibre-elements are compatible with current technology i. e. the fibre-elements can be directly fusion spliced to standard single mode pigtail fibre. Thus, a smooth upgrade from WDM based systems to SDM system is possible. In this work, MEF technology has been implemented for both, passive SDM fibres and SDM amplifiers. Erbium-doped Core-pump MEF amplifiers have been demonstrated exhibiting similar gain and noise figure performance to conventional Er-doped fibre amplifier while maintaining ultralow crosstalk levels. In addition, an Erbium/Ytterbium-doped cladding-pumped MEF amplifier has been developed, and a novel technique to achieve a broadband gain has been demonstrated which could cover wavelength region of 1536nm-1615nm using a single multimode pump. Furthermore, MEF technology has been combined with mode-division multiplexing to show that higher spatial multiplicity could be achieved by implementing the MEF with other SDM technologies. In passive MEFs, the fabricated fibres have been characterised for their loss and transmission properties, showing low loss and error-free transmission. Also, the MEFs are proof-tested showing high strength. The compatibility of MEF fibres have been tested in a concatenated SDM system demonstrating their flexibility in the telecom network.
APA, Harvard, Vancouver, ISO, and other styles
5

Rende, Deniz. "Bit-interleaved space-frequency coded modulation for orthogonal frequency-division multiplexing systems." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0006420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pelegrina, Bonilla Gabriel [Verfasser]. "Asymmetric fused fiber couplers for wavelength- and space-division multiplexing / Gabriel Pelegrina Bonilla." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2015. http://d-nb.info/1077017774/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wong, Kar Lun (Clarence). "Space-time-frequency channel estimation for multiple-antenna orthogonal frequency division multiplexing systems." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100244.

Full text
Abstract:
We propose a linear mean square error channel estimator that exploits the joint space-time-frequency (STF) correlations of the wireless fading channel for applications in multiple-antenna orthogonal frequency division multiplexing systems. Our work generalizes existing channel estimators to the full dimensions including transmit spatial, receive spatial, time, and frequency. This allows versatile applications of our STF channel estimator to any fading environment, ranging from spatially-uncorrelated slow-varying frequency-flat channels to spatially-correlated fast-varying frequency-selective channels.
The proposed STF channel estimator reduces to a time-frequency (TF) channel estimator when no spatial correlations exist. In another perspective, the lower-dimension TF channel estimator can be viewed as an STF channel estimator with spatial correlation mismatch for space-time-frequency selective channels.
Computer simulations were performed to study the mean-square-error (MSE) behavior with different pilot parameters. We then evaluate the suitability of our STF channel estimator on a space-frequency block coded OFDM system. Bit error rate (BER) performance degradation, with respect to perfect coherent detection, is limited to less than 2 dB at a BER of 10-5 in the modified 3GPP fast-fading suburban macro environment. Modifications to the 3GPP channel involves reducing the base station angle spread to imitate a high transmit spatial correlation scenario to emphasize the benefit of exploiting spatial correlation in our STF channel estimator.
APA, Harvard, Vancouver, ISO, and other styles
8

Corsi, Alessandro. "Design and characterization of few-mode fibers for space division multiplexing on fiber eigenmodes." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/67890.

Full text
Abstract:
La croissance constante et exponentielle de la demande de trafic de données Internet conduit nos réseaux de télécommunications optiques, principalement composés de liaisons de fibre monomode, à une pénurie imminente de capacité. La limite non linéaire de la fibre monomode, prédite par la théorie de l'information, ne laisse aucune place à l'amélioration de la capacité de communication par fibre optique. Dans ce contexte, la prochaine technologie de rupture dans les transmissions optiques à haute capacité devrait être le multiplexage par répartition spatiale (SDM). La base du SDM consiste à utiliser différents canaux spatiaux d'une seule fibre optique pour transmettre des données indépendantes. Le SDM fournit ainsi une augmentation de la capacité de transport de données d'un facteur qui dépend du nombre de chemins spatiaux qui sont établis. Une façon de réaliser le SDM consiste à utiliser des fibres faiblement multimodes (FMF) spécialisées, conçues pour présenter un couplage faible entre les modes guidés. Un traitement MIMO réduit peut alors être utilisé pour annuler le couplage résiduel des modes. Dans cette thèse, nous donnons tout d'abord un aperçu des progrès récents du multiplexage par répartition de modes (MDM). Les modes à polarisation linéaire (LP), les modes de moment angulaire orbital (OAM) et les modes vectoriels représentent différentes bases de modes orthogonaux possibles dans la fibre. Nous comparons les travaux utilisant ces modes en termes de conception de fibre proposée, nombre de modes, complexité MIMO et résultats expérimentaux de transmission de données. Ensuite, nous introduisons la modélisation de la fibre optique réalisée avec les solveurs numériques de COMSOL Multiphysics, et nous discutons de quelques travaux utilisant cette modélisation de fibre. Nous proposons une nouvelle FMF, composée d'un noyau hautement elliptique et d'une tranchée adjacente ajoutée pour réduire la perte de courbure des modes d'ordre supérieur. La fibre est conçue et optimisée pour prendre en charge cinq modes spatiaux avec une dégénérescence de polarisation double, pour un total de dix canaux. La fibre proposée montre une différence d'indice effectif entre les modes spatiaux supérieure à 1 × 10-3sur la bande C. Ensuite, nous fabriquons la fibre avec un procédé standard de dépôt chimique en phase vapeur modifié (MCVD), et nous caractérisons la fibre en laboratoire. La caractérisation expérimentale a révélé que la fibre présente une propriété de maintien de polarisation. Ceci est obtenu grâce à la combinaison de la structure centrale asymétrique et de la contrainte thermique introduite lors de la fabrication. Nous mesurons la biréfringence avec une technique de réseau de Bragg inscrit dans la fibre (FBG). En incluant la contrainte thermique dans notre modélisation de fibre, un bon accord est obtenu entre la biréfringence simulée et mesurée. Nous avons réussi à effectuer la première transmission de données sur la fibre proposée, en transmettant deux signaux QPSK sur les deux polarisations de chaque mode spatial, sans utiliser de traitement MIMO. Enfin, nous présentons une amélioration d'une technique d'interférométrie hyperfréquence (MICT) précédemment proposée, afin de mesurer expérimentalement la perte en fonction du mode (MDL) des groupes de modes FMF. En conclusion, nous résumons les résultats et présentons les perspectives d'avenir de cette recherche. En résumé, de nouveaux FMF doivent être étudiés si nous voulons résoudre la pénurie imminente de capacité de nos technologies système. Les résultats de cette thèse indique que le FMF à maintien de polarisation proposée dans cette recherche représente une amélioration significative dans le domaine des systèmes de transmission MDM sans MIMO pour des liaisons de communication courtes ; c’est-à-dire distribuant des données sur une longueur inférieure à 10 km. Nous espérons que ce travail conduira au développement de nouveaux composants SD Mutilisant cette fibre, tels que de nouveaux amplificateurs à fibre, ou de nouveaux multiplexeurs/démultiplexeurs, comme par exemple des coupleurs en mode fibre fusionnée ou des dispositifs photoniques au silicium.
The constant and exponential growth of Internet data traffic demand is driving our optical telecommunication networks, mainly composed of single-mode fiber links, to an imminent capacity shortage. The nonlinear limit of the single-mode fiber, predicted by the information theory, leave no room for optical fiber communication capacity improvements. In this direction, the next disruptive technology in high-capacity communication transmissions is expected to be Space Division Multiplexing (SDM). The basic of SDM consists of using different spatial channels of a single optical fiber to transmit information data. SDM thus provides an increase in the data-carrying capacity by a factor that depends on the number of spatial paths that are established. A way to realize SDM is through the use of specialty few-mode fibers (FMFs), designed to have a weak coupling between the guided modes. A reduced MIMO processing can be used to undo the residual mode coupling. In this thesis, we firstly give an overview of the recent progress in mode division multiplexing (MDM). Linearly polarized (LP) modes, orbital angular momentum (OAM) modes and vector modes represent the possible orthogonal modes guided into the fiber. We compare works, making use of those modes, in terms of proposed fiber design, number of modes, MIMO complexity and data transmission experiments. After that, we introduce the optical fiber modelling performed with the numerical solvers of COMSOL Multiphysics, and we discuss some works making use of this fiber modelling. Next, we propose a novel FMF, composed of a highly elliptical core and a surrounding trench added to reduce the bending loss of the higher order modes. The fiber is designed and optimized to support five spatial modes with twofold polarization degeneracy, for a total of ten channels. The proposed fiber shows an effective index difference between the spatial modes higher than 1×10-3 over the C-band. Afterwards, we fabricate the fiber with standard modified chemical vapor deposition (MCVD) process, and we characterize the fiber in the laboratory. The experimental characterization revealed the polarization maintaining properties of the fiber. This is obtained with the combination of the asymmetric core structure and the thermal stress introduced during the fabrication. We measure the birefringence with a fiber Bragg grating (FBG) technique, and we included the thermal stress in our fiber modelling. A good agreement was found between the simulated and measured birefringence. We successfully demonstrate the first data transmission over the proposed fiber, by transmitting two QPSK signals over the two polarizations of each spatial mode, without the use of any MIMO processing. Lastly, we present an improvement of a previously proposed microwave interferometric technique (MICT), in order to experimentally measure the mode dependent loss (MDL) of FMF mode groups. Finally, we present the conclusions and the future perspectives of this research. To conclude, novel FMFs need to be investigated if we want to solve the imminent capacity shortage of our system technologies. We truly believe that the polarization-maintaining FMF proposed in this research represents a significant improvement to the field of MIMO-free MDM transmission systems for short communication links, distributing data over length less than 10 km. We hope that this work will drive the development of new SDM components making use of this fiber, such as new fiber amplifiers, or new mux/demux, as for example fused fiber mode couplers or silicon photonic devices.
APA, Harvard, Vancouver, ISO, and other styles
9

Karaoglu, Bulent. "A comparison of frequency offset estimation methods in Orthogonal Frequency Division Multiplexing (OFDM) systems." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FKaraoglu.pdf.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, Dec. 2004.
Thesis Advisor(s): Roberto Cristi, Murali Tummala. Includes bibliographical references (p. 45-46). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
10

Saglam, Halil Derya. "Simulation performance of multiple-input multiple-output systems employing single-carrier modulation and orthogonal frequency division multiplexing." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FSaglam.pdf.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, Dec. 2004.
Thesis advisor(s): Murali Tummala, Roberto Cristi. Includes bibliographical references (p. 69-71). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Space division multiplexing"

1

Redinbo, Robert. Fault tolerance in space-based digital signal processing and switching systems: Protecting up-link processing resources, demultiplexer, demodulator, and decoder : final report June 1990 - September 1994. [Washington, DC: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fault tolerance in space-based digital signal processing and switching systems: Protecting up-link processing resources, demultiplexer, demodulator, and decoder : final report June 1990 - September 1994. [Washington, DC: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

United States. National Aeronautics and Space Administration., ed. Fault tolerance in space-based digital signal processing and switching systems: Protecting up-link processing resources, demultiplexer, demodulator, and decoder : final report June 1990 - September 1994. [Washington, DC: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Space division multiplexing"

1

Weik, Martin H. "space-division multiplexing." In Computer Science and Communications Dictionary, 1623. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ryf, Roland, and Cristian Antonelli. "Space-Division Multiplexing." In Springer Handbook of Optical Networks, 353–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-16250-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weik, Martin H. "optical space-division multiplexing." In Computer Science and Communications Dictionary, 1186. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_13146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ryf, Roland, and Nicolas K. Fontaine. "Space-Division Multiplexing and MIMO Processing." In Enabling Technologies for High Spectral-Efficiency Coherent Optical Communication Networks, 547–608. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119078289.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hayashi, Tetsuya. "Multi-core Fibers for Space Division Multiplexing." In Handbook of Optical Fibers, 1–46. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-1477-2_66-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hayashi, Tetsuya. "Multi-core Fibers for Space Division Multiplexing." In Handbook of Optical Fibers, 1–46. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-1477-2_66-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hayashi, Tetsuya. "Multi-core Fibers for Space Division Multiplexing." In Handbook of Optical Fibers, 1–47. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-1477-2_66-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hayashi, Tetsuya. "Multi-core Fibers for Space Division Multiplexing." In Handbook of Optical Fibers, 99–145. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-7087-7_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shariati, Behnam, Jaume Comellas, Dimitrios Klonidis, Luis Velasco, and Ioannis Tomkos. "High Capacity Optical Networks Based on Space Division Multiplexing." In Provisioning, Recovery, and In-operation Planning in Elastic Optical Networks, 313–43. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119338628.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abedin, Kazi S. "Cladding-Pumped Multicore Fiber Amplifier for Space Division Multiplexing." In Handbook of Optical Fibers, 1–28. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-1477-2_50-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Space division multiplexing"

1

Li, Guifang, and Benyuan Zhu. "Space-division-multiplexing." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/acpc.2013.aw3e.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Guifang, and Benyuan Zhu. "Space-division-multiplexing." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/acp.2013.aw3e.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lin, L. Y., E. L. Goldstein, and R. W. Tkach. "Free-Space Micromachined Optical Switches with Submillisecond Switching Time for Large-Scale Optical Crossconnects." In Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fontaine, Nicolas K. "Components For Space-Division Multiplexing." In 2017 European Conference on Optical Communication (ECOC). IEEE, 2017. http://dx.doi.org/10.1109/ecoc.2017.8346243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Antonio-Lopez, J. E., Z. Sanjabi Eznaveh, J. C. Alvarado-Zacarias, R. Ryf, N. K. Fontaine, A. Schülzgen, and R. Amezcua Correa. "Space Division Multiplexing Fibers and Amplifiers." In Photonic Networks and Devices. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/networks.2017.new3b.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Haoshuo Chen, Nicolas K. Fontaine, and Roland Ryf. "Compact multiplexers for space-division multiplexing." In 2015 IEEE Photonics Conference (IPC). IEEE, 2015. http://dx.doi.org/10.1109/ipcon.2015.7323718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fontaine, Nicolas K. "Integrated Photonics for Space-Division Multiplexing." In Frontiers in Optics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/fio.2014.ftu4d.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Klaus, Werner, Jun Sakaguchi, Benjamin J. Puttnam, Yoshinari Awaji, and Naoya Wada. "Optical technologies for space division multiplexing." In 2014 13th Workshop on Information Optics (WIO). IEEE, 2014. http://dx.doi.org/10.1109/wio.2014.6933294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Doerr, Christopher R. "Silicon photonics for space-division multiplexing." In 2012 IEEE Photonics Society Summer Topical Meeting Series. IEEE, 2012. http://dx.doi.org/10.1109/phosst.2012.6280817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Space-division multiplexing for optical communication." In 2013 IEEE Photonics Society Summer Topical Meeting Series. IEEE, 2013. http://dx.doi.org/10.1109/phosst.2013.6614430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography