To see the other types of publications on this topic, follow the link: Space division multiplexing.

Dissertations / Theses on the topic 'Space division multiplexing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 46 dissertations / theses for your research on the topic 'Space division multiplexing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Saridis, Georgios. "Space division multiplexing towards all-optical data centre networks." Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.720834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jin, Cang. "Spatially integrated erbium-doped fiber amplifiers enabling space-division multiplexing." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27018.

Full text
Abstract:
L'augmentation exponentielle de la demande de bande passante pour les communications laisse présager une saturation prochaine de la capacité des réseaux de télécommunications qui devrait se matérialiser au cours de la prochaine décennie. En effet, la théorie de l’information prédit que les effets non linéaires dans les fibres monomodes limite la capacité de transmission de celles-ci et peu de gain à ce niveau peut être espéré des techniques traditionnelles de multiplexage développées et utilisées jusqu’à présent dans les systèmes à haut débit. La dimension spatiale du canal optique est proposée comme un nouveau degré de liberté qui peut être utilisé pour augmenter le nombre de canaux de transmission et, par conséquent, résoudre cette menace de «crise de capacité». Ainsi, inspirée par les techniques micro-ondes, la technique émergente appelée multiplexage spatial (SDM) est une technologie prometteuse pour la création de réseaux optiques de prochaine génération. Pour réaliser le SDM dans les liens de fibres optiques, il faut réexaminer tous les dispositifs intégrés, les équipements et les sous-systèmes. Parmi ces éléments, l'amplificateur optique SDM est critique, en particulier pour les systèmes de transmission pour les longues distances. En raison des excellentes caractéristiques de l'amplificateur à fibre dopée à l'erbium (EDFA) utilisé dans les systèmes actuels de pointe, l'EDFA est à nouveau un candidat de choix pour la mise en œuvre des amplificateurs SDM pratiques. Toutefois, étant donné que le SDM introduit une variation spatiale du champ dans le plan transversal de la fibre, les amplificateurs à fibre dopée à l'erbium spatialement intégrés (SIEDFA) nécessitent une conception soignée. Dans cette thèse, nous examinons tout d'abord les progrès récents du SDM, en particulier les amplificateurs optiques SDM. Ensuite, nous identifions et discutons les principaux enjeux des SIEDFA qui exigent un examen scientifique. Suite à cela, la théorie des EDFA est brièvement présentée et une modélisation numérique pouvant être utilisée pour simuler les SIEDFA est proposée. Sur la base d'un outil de simulation fait maison, nous proposons une nouvelle conception des profils de dopage annulaire des fibres à quelques-modes dopées à l'erbium (ED-FMF) et nous évaluons numériquement la performance d’un amplificateur à un étage, avec fibre à dopage annulaire, à ainsi qu’un amplificateur à double étage pour les communications sur des fibres ne comportant que quelques modes. Par la suite, nous concevons des fibres dopées à l'erbium avec une gaine annulaire et multi-cœurs (ED-MCF). Nous avons évalué numériquement le recouvrement de la pompe avec les multiples cœurs de ces amplificateurs. En plus de la conception, nous fabriquons et caractérisons une fibre multi-cœurs à quelques modes dopées à l'erbium. Nous réalisons la première démonstration des amplificateurs à fibre optique spatialement intégrés incorporant de telles fibres dopées. Enfin, nous présentons les conclusions ainsi que les perspectives de cette recherche. La recherche et le développement des SIEDFA offriront d'énormes avantages non seulement pour les systèmes de transmission future SDM, mais aussi pour les systèmes de transmission monomode sur des fibres standards à un cœur car ils permettent de remplacer plusieurs amplificateurs par un amplificateur intégré.
The exponential increase of communication bandwidth demand is giving rise to the so-called ‘capacity crunch’ expected to materialize within the next decade. Due to the nonlinear limit of the single mode fiber predicted by the information theory, all the state-of-the-art techniques which have so far been developed and utilized in order to extend the optical fiber communication capacity are exhausted. The spatial domain of the lightwave links is proposed as a new degree of freedom that can be employed to increase the number of transmission paths and, subsequently, overcome the looming ‘capacity crunch’. Therefore, the emerging technique named space-division multiplexing (SDM) is a promising candidate for creating next-generation optical networks. To realize SDM in optical fiber links, one needs to investigate novel spatially integrated devices, equipment, and subsystems. Among these elements, the SDM amplifier is a critical subsystem, in particular for the long-haul transmission system. Due to the excellent features of the erbium-doped fiber amplifier (EDFA) used in current state-of-the-art systems, the EDFA is again a prime candidate for implementing practical SDM amplifiers. However, since the SDM introduces a spatial variation of the field in the transverse plane of the optical fibers, spatially integrated erbium-doped fiber amplifiers (SIEDFA) require a careful design. In this thesis, we firstly review the recent progress in SDM, in particular, the SDM optical amplifiers. Next, we identify and discuss the key issues of SIEDFA that require scientific investigation. After that, the EDFA theory is briefly introduced and a corresponding numerical modeling that can be used for simulating the SIEDFA is proposed. Based on a home-made simulation tool, we propose a novel design of an annular based doping profile of few-mode erbium-doped fibers (FM-EDF) and numerically evaluate the performance of single stage as well as double-stage few-mode erbium-doped fiber amplifiers (FM-EDFA) based on such fibers. Afterward, we design annular-cladding erbium-doped multicore fibers (MC-EDF) and numerically evaluate the cladding pumped multicore erbium-doped fiber amplifier (MC-EDFA) based on these fibers as well. In addition to fiber design, we fabricate and characterize a multicore few-mode erbium-doped fiber (MC-FM-EDF), and perform the first demonstration of the spatially integrated optical fiber amplifiers incorporating such specialty doped fibers. Finally, we present the conclusions as well as the perspectives of this research. In general, the investigation and development of the SIEDFA will bring tremendous benefits not only for future SDM transmission systems but also for current state-of-the-art single-mode single-core transmission systems by replacing plural amplifiers by one integrated amplifier.
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, King F. "Space-time and space-frequency coded orthogonal frequency division multiplexing transmitter diversity techniques." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/14981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jain, Saurabh. "Development of multi-element fibres for applications in space-division multiplexing." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/391292/.

Full text
Abstract:
This thesis presents a novel multi-element fibre (MEF) technology for implementing space-division multiplexing (SDM) in optical fibres. MEF comprises multiple fibre-elements that are drawn and coated together using a common polymer coating. In MEF, the fibre-elements are compatible with current technology i. e. the fibre-elements can be directly fusion spliced to standard single mode pigtail fibre. Thus, a smooth upgrade from WDM based systems to SDM system is possible. In this work, MEF technology has been implemented for both, passive SDM fibres and SDM amplifiers. Erbium-doped Core-pump MEF amplifiers have been demonstrated exhibiting similar gain and noise figure performance to conventional Er-doped fibre amplifier while maintaining ultralow crosstalk levels. In addition, an Erbium/Ytterbium-doped cladding-pumped MEF amplifier has been developed, and a novel technique to achieve a broadband gain has been demonstrated which could cover wavelength region of 1536nm-1615nm using a single multimode pump. Furthermore, MEF technology has been combined with mode-division multiplexing to show that higher spatial multiplicity could be achieved by implementing the MEF with other SDM technologies. In passive MEFs, the fabricated fibres have been characterised for their loss and transmission properties, showing low loss and error-free transmission. Also, the MEFs are proof-tested showing high strength. The compatibility of MEF fibres have been tested in a concatenated SDM system demonstrating their flexibility in the telecom network.
APA, Harvard, Vancouver, ISO, and other styles
5

Rende, Deniz. "Bit-interleaved space-frequency coded modulation for orthogonal frequency-division multiplexing systems." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0006420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pelegrina, Bonilla Gabriel [Verfasser]. "Asymmetric fused fiber couplers for wavelength- and space-division multiplexing / Gabriel Pelegrina Bonilla." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2015. http://d-nb.info/1077017774/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wong, Kar Lun (Clarence). "Space-time-frequency channel estimation for multiple-antenna orthogonal frequency division multiplexing systems." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100244.

Full text
Abstract:
We propose a linear mean square error channel estimator that exploits the joint space-time-frequency (STF) correlations of the wireless fading channel for applications in multiple-antenna orthogonal frequency division multiplexing systems. Our work generalizes existing channel estimators to the full dimensions including transmit spatial, receive spatial, time, and frequency. This allows versatile applications of our STF channel estimator to any fading environment, ranging from spatially-uncorrelated slow-varying frequency-flat channels to spatially-correlated fast-varying frequency-selective channels.
The proposed STF channel estimator reduces to a time-frequency (TF) channel estimator when no spatial correlations exist. In another perspective, the lower-dimension TF channel estimator can be viewed as an STF channel estimator with spatial correlation mismatch for space-time-frequency selective channels.
Computer simulations were performed to study the mean-square-error (MSE) behavior with different pilot parameters. We then evaluate the suitability of our STF channel estimator on a space-frequency block coded OFDM system. Bit error rate (BER) performance degradation, with respect to perfect coherent detection, is limited to less than 2 dB at a BER of 10-5 in the modified 3GPP fast-fading suburban macro environment. Modifications to the 3GPP channel involves reducing the base station angle spread to imitate a high transmit spatial correlation scenario to emphasize the benefit of exploiting spatial correlation in our STF channel estimator.
APA, Harvard, Vancouver, ISO, and other styles
8

Corsi, Alessandro. "Design and characterization of few-mode fibers for space division multiplexing on fiber eigenmodes." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/67890.

Full text
Abstract:
La croissance constante et exponentielle de la demande de trafic de données Internet conduit nos réseaux de télécommunications optiques, principalement composés de liaisons de fibre monomode, à une pénurie imminente de capacité. La limite non linéaire de la fibre monomode, prédite par la théorie de l'information, ne laisse aucune place à l'amélioration de la capacité de communication par fibre optique. Dans ce contexte, la prochaine technologie de rupture dans les transmissions optiques à haute capacité devrait être le multiplexage par répartition spatiale (SDM). La base du SDM consiste à utiliser différents canaux spatiaux d'une seule fibre optique pour transmettre des données indépendantes. Le SDM fournit ainsi une augmentation de la capacité de transport de données d'un facteur qui dépend du nombre de chemins spatiaux qui sont établis. Une façon de réaliser le SDM consiste à utiliser des fibres faiblement multimodes (FMF) spécialisées, conçues pour présenter un couplage faible entre les modes guidés. Un traitement MIMO réduit peut alors être utilisé pour annuler le couplage résiduel des modes. Dans cette thèse, nous donnons tout d'abord un aperçu des progrès récents du multiplexage par répartition de modes (MDM). Les modes à polarisation linéaire (LP), les modes de moment angulaire orbital (OAM) et les modes vectoriels représentent différentes bases de modes orthogonaux possibles dans la fibre. Nous comparons les travaux utilisant ces modes en termes de conception de fibre proposée, nombre de modes, complexité MIMO et résultats expérimentaux de transmission de données. Ensuite, nous introduisons la modélisation de la fibre optique réalisée avec les solveurs numériques de COMSOL Multiphysics, et nous discutons de quelques travaux utilisant cette modélisation de fibre. Nous proposons une nouvelle FMF, composée d'un noyau hautement elliptique et d'une tranchée adjacente ajoutée pour réduire la perte de courbure des modes d'ordre supérieur. La fibre est conçue et optimisée pour prendre en charge cinq modes spatiaux avec une dégénérescence de polarisation double, pour un total de dix canaux. La fibre proposée montre une différence d'indice effectif entre les modes spatiaux supérieure à 1 × 10-3sur la bande C. Ensuite, nous fabriquons la fibre avec un procédé standard de dépôt chimique en phase vapeur modifié (MCVD), et nous caractérisons la fibre en laboratoire. La caractérisation expérimentale a révélé que la fibre présente une propriété de maintien de polarisation. Ceci est obtenu grâce à la combinaison de la structure centrale asymétrique et de la contrainte thermique introduite lors de la fabrication. Nous mesurons la biréfringence avec une technique de réseau de Bragg inscrit dans la fibre (FBG). En incluant la contrainte thermique dans notre modélisation de fibre, un bon accord est obtenu entre la biréfringence simulée et mesurée. Nous avons réussi à effectuer la première transmission de données sur la fibre proposée, en transmettant deux signaux QPSK sur les deux polarisations de chaque mode spatial, sans utiliser de traitement MIMO. Enfin, nous présentons une amélioration d'une technique d'interférométrie hyperfréquence (MICT) précédemment proposée, afin de mesurer expérimentalement la perte en fonction du mode (MDL) des groupes de modes FMF. En conclusion, nous résumons les résultats et présentons les perspectives d'avenir de cette recherche. En résumé, de nouveaux FMF doivent être étudiés si nous voulons résoudre la pénurie imminente de capacité de nos technologies système. Les résultats de cette thèse indique que le FMF à maintien de polarisation proposée dans cette recherche représente une amélioration significative dans le domaine des systèmes de transmission MDM sans MIMO pour des liaisons de communication courtes ; c’est-à-dire distribuant des données sur une longueur inférieure à 10 km. Nous espérons que ce travail conduira au développement de nouveaux composants SD Mutilisant cette fibre, tels que de nouveaux amplificateurs à fibre, ou de nouveaux multiplexeurs/démultiplexeurs, comme par exemple des coupleurs en mode fibre fusionnée ou des dispositifs photoniques au silicium.
The constant and exponential growth of Internet data traffic demand is driving our optical telecommunication networks, mainly composed of single-mode fiber links, to an imminent capacity shortage. The nonlinear limit of the single-mode fiber, predicted by the information theory, leave no room for optical fiber communication capacity improvements. In this direction, the next disruptive technology in high-capacity communication transmissions is expected to be Space Division Multiplexing (SDM). The basic of SDM consists of using different spatial channels of a single optical fiber to transmit information data. SDM thus provides an increase in the data-carrying capacity by a factor that depends on the number of spatial paths that are established. A way to realize SDM is through the use of specialty few-mode fibers (FMFs), designed to have a weak coupling between the guided modes. A reduced MIMO processing can be used to undo the residual mode coupling. In this thesis, we firstly give an overview of the recent progress in mode division multiplexing (MDM). Linearly polarized (LP) modes, orbital angular momentum (OAM) modes and vector modes represent the possible orthogonal modes guided into the fiber. We compare works, making use of those modes, in terms of proposed fiber design, number of modes, MIMO complexity and data transmission experiments. After that, we introduce the optical fiber modelling performed with the numerical solvers of COMSOL Multiphysics, and we discuss some works making use of this fiber modelling. Next, we propose a novel FMF, composed of a highly elliptical core and a surrounding trench added to reduce the bending loss of the higher order modes. The fiber is designed and optimized to support five spatial modes with twofold polarization degeneracy, for a total of ten channels. The proposed fiber shows an effective index difference between the spatial modes higher than 1×10-3 over the C-band. Afterwards, we fabricate the fiber with standard modified chemical vapor deposition (MCVD) process, and we characterize the fiber in the laboratory. The experimental characterization revealed the polarization maintaining properties of the fiber. This is obtained with the combination of the asymmetric core structure and the thermal stress introduced during the fabrication. We measure the birefringence with a fiber Bragg grating (FBG) technique, and we included the thermal stress in our fiber modelling. A good agreement was found between the simulated and measured birefringence. We successfully demonstrate the first data transmission over the proposed fiber, by transmitting two QPSK signals over the two polarizations of each spatial mode, without the use of any MIMO processing. Lastly, we present an improvement of a previously proposed microwave interferometric technique (MICT), in order to experimentally measure the mode dependent loss (MDL) of FMF mode groups. Finally, we present the conclusions and the future perspectives of this research. To conclude, novel FMFs need to be investigated if we want to solve the imminent capacity shortage of our system technologies. We truly believe that the polarization-maintaining FMF proposed in this research represents a significant improvement to the field of MIMO-free MDM transmission systems for short communication links, distributing data over length less than 10 km. We hope that this work will drive the development of new SDM components making use of this fiber, such as new fiber amplifiers, or new mux/demux, as for example fused fiber mode couplers or silicon photonic devices.
APA, Harvard, Vancouver, ISO, and other styles
9

Karaoglu, Bulent. "A comparison of frequency offset estimation methods in Orthogonal Frequency Division Multiplexing (OFDM) systems." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FKaraoglu.pdf.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, Dec. 2004.
Thesis Advisor(s): Roberto Cristi, Murali Tummala. Includes bibliographical references (p. 45-46). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
10

Saglam, Halil Derya. "Simulation performance of multiple-input multiple-output systems employing single-carrier modulation and orthogonal frequency division multiplexing." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FSaglam.pdf.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, Dec. 2004.
Thesis advisor(s): Murali Tummala, Roberto Cristi. Includes bibliographical references (p. 69-71). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
11

Slim, Joseph. "Optical signal processing for space division multiplexed systems." Thesis, Rennes 1, 2021. http://www.theses.fr/2021REN1S004.

Full text
Abstract:
Bien que l’avantage principal des communications optiques est de permettre la transmission des capacités élevées en multiplexant les longueurs d’onde, le traitement des données, par exemple en vue de régénération ou de routage, doit être effectué dans le domaine électrique, nécessitant ainsi des conversions optique-électrique-optique. Cependant, certaines fonctions de traitement pourraient être effectuées plus efficacement directement dans le domaine optique, ce qui est connu par le traitement de signal tout-optique. Comme des nouvelles techniques exploitant la dimension spatiale dans les fibres multimodes ont été proposées afin d'augmenter la capacité de transmission, une meilleure compréhension des effets non linéaires associés aux interactions multimodes est donc souhaitable. Cette thèse visait à explorer le traitement du signal tout-optique dans le multiplexage modal. En particulier, l'objectif était de démontrer comment les effets non linéaires dans les fibres multimodes pouvaient être utilisés pour manipuler les propriétés des signaux, de manière indépendante ou dépendante du mode. Deux types de fibres ont été conçus. La première permet de réaliser certaines fonctions de traitement de signal tout-optique pour tous les modes de la fibre individuellement et simultanément, en utilisant l'effet non linéaire mélange à quatre ondes intramodal. La deuxième fibre a été conçue de manière à réaliser du traitement de signal tout-optique entre différents modes de la fibre, en utilisant le mélange à quatre ondes intermodal
While the main advantage of optical communications is to enable transmission of ultra-high capacities by multiplexing dozens of wavelength channels operating at high bit rates, the processing of the data, for instance in view of its regeneration or routing, needs to be performed in the electrical domain, thus requiring optical-to-electrical-to-optical conversions. However, some processing functionalities could be performed more efficiently directly in the optical domain, which is known as all-optical signal processing. As new techniques exploiting the spatial dimension in multimode fibers have been proposed in order to further increase the transmitted capacity, a better understanding of nonlinear effects associated with multimode interactions is desirable. This thesis aimed to explore paths for all-optical signal processing in modedivision multiplexing. In particular, the target was to demonstrate how nonlinear effects in multimode fibers could be used to manipulate the properties of optical signals, either in a mode independent way, or mode dependent way. Two types of fibers were designed. The first one allows to perform some all-optical signal processing functionalities for all the modes of the fiber individually and simultaneously, by using the intramodal fourwave mixing nonlinear effect. The second fiber was designed in a way to perform all-optical signal processing between different modes of the fiber, using intermodal four-wave mixing
APA, Harvard, Vancouver, ISO, and other styles
12

Mody, Apurva Narendra. "Signal Acquisition and Tracking for Fixed Wireless Access Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/7624.

Full text
Abstract:
The general objective of this proposed research is to design and develop signal acquisition and tracking algorithms for multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems for fixed wireless access applications. The algorithms are specifically targeted for systems that work in time division multiple access and frequency division multiple access frame modes. In our research, we first develop a comprehensive system model for a MIMO-OFDM system under the influence of the radio frequency (RF) oscillator frequency offset, sampling frequency (SF) offset, RF oscillator phase noise, frequency selective channel impairments and finally the additive white Gaussian noise. We then develop the acquisition and tracking algorithms to estimate and track all these parameters. The acquisition and tracking algorithms are assisted by a preamble consisting of one or more training sequences and pilot symbol matrices. Along with the signal acquisition and tracking algorithms, we also consider design of the MIMO-OFDM preamble and pilot signals that enable the suggested algorithms to work efficiently. Signal acquisition as defined in our research consists of time and RF synchronization, SF offset estimation and correction, phase noise estimation and correction and finally channel estimation. Signal tracking consists of RF, SF, phase noise and channel tracking. Time synchronization, RF oscillator frequency offset, SF oscillator frequency offset, phase noise and channel estimation and tracking are all research topics by themselves. A large number of studies have addressed these issues, but usually individually and for single-input single-output (SISO) OFDM systems. In the proposed research we present a complete suite of signal acquisition and tracking algorithms for MIMO-OFDM systems along with Cramr-Rao bounds for the SISO-OFDM case. In addition, we also derive the Maximum Likelihood (ML) estimates of the parameters for the SISO-OFDM case. Our proposed research is unique from the existing literature in that it presents a complete receiver implementation for MIMO-OFDM systems and accounts for the cumulative effects of all possible acquisition and tracking errors on the bit error rate (BER) performance. The suggested algorithms and the pilot/training schemes may be applied to any MIMO OFDM system and are independent of the space-time coding techniques that are employed.
APA, Harvard, Vancouver, ISO, and other styles
13

Shibahara, Kohki. "Advanced Signal Processing for Fiber-Optic Communication Systems Scaling Capacity Beyond 100 Tb/s." Kyoto University, 2017. http://hdl.handle.net/2433/227663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Owojaiye, Gbenga Adetokunbo. "Design and performance analysis of distributed space time coding schemes for cooperative wireless networks." Thesis, University of Hertfordshire, 2012. http://hdl.handle.net/2299/8970.

Full text
Abstract:
In this thesis, space-time block codes originally developed for multiple antenna systems are extended to cooperative multi-hop networks. The designs are applicable to any wireless network setting especially cellular, adhoc and sensor networks where space limitations preclude the use of multiple antennas. The thesis first investigates the design of distributed orthogonal and quasi-orthogonal space time block codes in cooperative networks with single and multiple antennas at the destination. Numerical and simulation results show that by employing multiple receive antennas the diversity performance of the network is further improved at the expense of slight modification of the detection scheme. The thesis then focuses on designing distributed space time block codes for cooperative networks in which the source node participates in cooperation. Based on this, a source-assisting strategy is proposed for distributed orthogonal and quasi-orthogonal space time block codes. Numerical and simulation results show that the source-assisting strategy exhibits improved diversity performance compared to the conventional distributed orthogonal and quasi-orthogonal designs.Motivated by the problem of channel state information acquisition in practical wireless network environments, the design of differential distributed space time block codes is investigated. Specifically, a co-efficient vector-based differential encoding and decoding scheme is proposed for cooperative networks. The thesis then explores the concatenation of differential strategies with several distributed space time block coding schemes namely; the Alamouti code, square-real orthogonal codes, complex-orthogonal codes, and quasiorthogonal codes, using cooperative networks with different number of relay nodes. In order to cater for high data rate transmission in non-coherent cooperative networks, differential distributed quasi-orthogonal space-time block codes which are capable of achieving full code-rate and full diversity are proposed. Simulation results demonstrate that the differential distributed quasi-orthogonal space-time block codes outperform existing distributed space time block coding schemes in terms of code rate and bit-error-rate performance. A multidifferential distributed quasi-orthogonal space-time block coding scheme is also proposed to exploit the additional diversity path provided by the source-destination link.A major challenge is how to construct full rate codes for non-coherent cooperative broadband networks with more than two relay nodes while exploiting the achievable spatial and frequency diversity. In this thesis, full rate quasi-orthogonal codes are designed for noncoherent cooperative broadband networks where channel state information is unavailable. From this, a generalized differential distributed quasi-orthogonal space-frequency coding scheme is proposed for cooperative broadband networks. The proposed scheme is able to achieve full rate and full spatial and frequency diversity in cooperative networks with any number of relays. Through pairwise error probability analysis we show that the diversity gain of the proposed scheme can be improved by appropriate code construction and sub-carrier allocation. Based on this, sufficient conditions are derived for the proposed code structure at the source node and relay nodes to achieve full spatial and frequency diversity. In order to exploit the additional diversity paths provided by the source-destination link, a novel multidifferential distributed quasi-orthogonal space-frequency coding scheme is proposed. The overall objective of the new scheme is to improve the quality of the detected signal at the destination with negligible increase in the computational complexity of the detector.Finally, a differential distributed quasi-orthogonal space-time-frequency coding scheme is proposed to cater for high data rate transmission and improve the performance of noncoherent cooperative broadband networks operating in highly mobile environments. The approach is to integrate the concept of distributed space-time-frequency coding with differential modulation, and employ rotated constellation quasi-orthogonal codes. From this, we design a scheme which is able to address the problem of performance degradation in highly selective fading environments while guaranteeing non-coherent signal recovery and full code rate in cooperative broadband networks. The coding scheme employed in this thesis relaxes the assumption of constant channel variation in the temporal and frequency dimensions over long symbol periods, thus performance degradation is reduced in frequencyselective and time-selective fading environments. Simulation results illustrate the performance of the proposed differential distributed quasi-orthogonal space-time-frequency coding scheme under different channel conditions.
APA, Harvard, Vancouver, ISO, and other styles
15

Diameh, Yousef A. "The optimization of multiple antenna broadband wireless communications. A study of propagation, space-time coding and spatial envelope correlation in Multiple Input, Multiple Output radio systems." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/6361.

Full text
Abstract:
This work concentrates on the application of diversity techniques and space time block coding for future mobile wireless communications. The initial system analysis employs a space-time coded OFDM transmitter over a multipath Rayleigh channel, and a receiver which uses a selection combining diversity technique. The performance of this combined scenario is characterised in terms of the bit error rate and throughput. A novel four element QOSTBC scheme is introduced, it is created by reforming the detection matrix of the original QOSTBC scheme, for which an orthogonal channel matrix is derived. This results in a computationally less complex linear decoding scheme as compared with the original QOSTBC. Space time coding schemes for three, four and eight transmitters were also derived using a Hadamard matrix. The practical optimization of multi-antenna networks is studied for realistic indoor and mixed propagation scenarios. The starting point is a detailed analysis of the throughput and field strength distributions for a commercial dual band 802.11n MIMO radio operating indoors in a variety of line of sight and non-line of sight scenarios. The physical model of the space is based on architectural schematics, and realistic propagation data for the construction materials. The modelling is then extended and generalized to a multi-storey indoor environment, and a large mixed site for indoor and outdoor channels based on the Bradford University campus. The implications for the physical layer are also explored through the specification of antenna envelope correlation coefficients. Initially this is for an antenna module configuration with two independent antennas in close proximity. An operational method is proposed using the scattering parameters of the system and which incorporates the intrinsic power losses of the radiating elements. The method is extended to estimate the envelope correlation coefficient for any two elements in a general (N,N) MIMO antenna array. Three examples are presented to validate this technique, and very close agreement is shown to exist between this method and the full electromagnetic analysis using the far field antenna radiation patterns.
APA, Harvard, Vancouver, ISO, and other styles
16

Dia'meh, Yousef Ali. "The optimization of multiple antenna broadband wireless communications : a study of propagation, space-time coding and spatial envelope correlation in Multiple Input, Multiple Output radio systems." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/6361.

Full text
Abstract:
This work concentrates on the application of diversity techniques and space time block coding for future mobile wireless communications. The initial system analysis employs a space-time coded OFDM transmitter over a multipath Rayleigh channel, and a receiver which uses a selection combining diversity technique. The performance of this combined scenario is characterised in terms of the bit error rate and throughput. A novel four element QOSTBC scheme is introduced, it is created by reforming the detection matrix of the original QOSTBC scheme, for which an orthogonal channel matrix is derived. This results in a computationally less complex linear decoding scheme as compared with the original QOSTBC. Space time coding schemes for three, four and eight transmitters were also derived using a Hadamard matrix. The practical optimization of multi-antenna networks is studied for realistic indoor and mixed propagation scenarios. The starting point is a detailed analysis of the throughput and field strength distributions for a commercial dual band 802.11n MIMO radio operating indoors in a variety of line of sight and non-line of sight scenarios. The physical model of the space is based on architectural schematics, and realistic propagation data for the construction materials. The modelling is then extended and generalized to a multi-storey indoor environment, and a large mixed site for indoor and outdoor channels based on the Bradford University campus. The implications for the physical layer are also explored through the specification of antenna envelope correlation coefficients. Initially this is for an antenna module configuration with two independent antennas in close proximity. An operational method is proposed using the scattering parameters of the system and which incorporates the intrinsic power losses of the radiating elements. The method is extended to estimate the envelope correlation coefficient for any two elements in a general (N,N) MIMO antenna array. Three examples are presented to validate this technique, and very close agreement is shown to exist between this method and the full electromagnetic analysis using the far field antenna radiation patterns.
APA, Harvard, Vancouver, ISO, and other styles
17

Awwad, Elie. "Techniques émergentes de codage espace-temps pour les systèmes de communications optiques." Thesis, Paris, ENST, 2015. http://www.theses.fr/2015ENST0004/document.

Full text
Abstract:
La recherche dans le domaine des communications sur fibres optiques avance à un rythme rapide afin de satisfaire des demandes croissantes de communications à débits élevés. Les principaux moteurs de ces avancements sont la multitude de degrés de liberté offerts par la fibre permettant ainsi la transmission de plus de données: l'amplitude, la phase et l'état de polarisation du champ optique, ainsi que le temps et la longueur d'onde sont déjà utilisés dans les systèmes de transmission optique déployés. Pourtant, ces systèmes s'approchent de leur limite fondamentale de capacité et un degré supplémentaire: "la dimension spatiale" est étudié pour réaliser un saut qualitatif majeur en termes de capacité de transmission. Cependant, l'insertion de plusieurs flux de données dans le même canal de propagation induit également des pertes différentielles et de la diaphonie entre les flux, ce qui peut fortement réduire la qualité du système de transmission. Dans cette thèse, nous nous concentrons sur les systèmes de transmission optique de type MIMO basés sur un multiplexage en polarisation ou en modes de propagation. Dans les deux cas, nous évaluons la dégradation de la performance provoquée par une interférence inter-canaux non-unitaire et des disparités de gain entre les canaux engendrées par des imperfections dans les composants optiques utilisés (fibres, amplificateurs, multiplexeurs...), et proposons pour les combattre, de nouvelles techniques de codage pour les systèmes MIMO nommées "codes Spatio-Temporels" (ST), préalablement conçues pour les systèmes radios multi-antennaires
Research in the field of optical fiber communications is advancing at a rapid pace in order to meet the growing needs for higher data rates. The main driving forces behind these advancements are the availability of multiple degrees of freedom in the optical fiber allowing for multiplexing more data: amplitude, phase and polarization state of the optical field, along with time and wavelength are already used in the deployed optical transmission systems. Yet, these systems are approaching their theoretical capacity limits and an extra dimension "space" is investigated to achieve the next capacity leap. However, packing several data channels in the same medium brings with it differential impairments and crosstalk that can seriously deteriorate the performance of the system. In this thesis, we focus on recent optical MIMO schemes based on polarization division multiplexing (PDM) and space division multiplexing (SDM). In both, we assess the performance penalties induced by non-unitary crosstalk and loss disparities among the channels arising from imperfections in the used optical components (fibers, amplifiers, multiplexers...), and suggest novel MIMO coding techniques known as Space-Time (ST) codes, initially designed for wireless multi-antenna channels, to mitigate them
APA, Harvard, Vancouver, ISO, and other styles
18

De, la Gorce Aliénor. "Manipulation des propriétés de cohérence spatio-temporelle de la lumière par mélange à deux ondes opto-numérique." Thesis, université Paris-Saclay, 2020. https://pastel.archives-ouvertes.fr/tel-03179767.

Full text
Abstract:
La propagation de signaux optiques à travers des milieux diffusants ou multimodes est un problème largement étudié dans la communauté scientifique. De nombreuses études ont été conduites dans le but de développer des méthodes efficaces pour la reconstruction d'information après une propagation ayant modifié le contenu envoyé. De telles études font échos à de nombreux domaines d'applications, comme les télécommunications optiques ou l'endoscopie en biologie. Dans ce but, de nombreuses approches ont été envisagées dans les dernières années. Certaines s'appuient sur l'utilisation de cristaux photoréfractifs, de valves optiques, et de plus en plus largement sur des techniques d'holographie numérique basées sur l'utilisation de modulateurs spatiaux de lumière.Pendant ma thèse, j'ai développé une nouvelle approche sur l'étude et la manipulation des propriétés de cohérence spatio-temporelle d'un faisceau après propagation à travers un fibre multimode. Cette méthode s'appuie sur une interaction de mélange à deux onde opto-numérique, reposant sur l'utilisation combinée d'une caméra et d'un modulateur spatial de lumière. Cette étude découle d'expériences de mélange à deux ondes initialement réalisées dans des milieux photoréfractifs. Mais contrairement à ces expériences, les paramètres intervenant dans cette expérience ne sont pas soumis aux propriétés intrinsèques du matériau et permet ainsi une plus grande flexibilité quant à la manipulation des propriétés de cohérence spatio-temporelle du signal
Propagation of optical signals through multimode scattering media is a very fundamental problem in physics. Many studies have been conducted in order to find efficient methods for the reconstruction of information from a scrambled content. Applications range from telecommunication information retrievement to biological endoscopy. In these goals, various approaches have been developed in the past few years. Some are based on two-wave mixing interaction in photorefractive crystals, others use light valves or numerical holography based on a spatial light modulator.During my PhD, I designed a new method for the study of spatio-temporal properties of optical information that has been scrambled through a multimode medium. This method relies on a digitally assisted two-wave mixing interaction based on a camera - Spatial light modulator combination. This study ensues from signal manipulation with a photorefractive crystal experiment. Besides, experimental parameters are not limited by the intrinsic properties of a crystal and allows much more flexibility on the light manipulation
APA, Harvard, Vancouver, ISO, and other styles
19

Shahpari, Ali. "Next generation optical access networks : technologies and economics." Doctoral thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/14857.

Full text
Abstract:
Doutoramento em Engenharia Eletrotécnica - Telecomunicações
The work presented herein, studies Next Generation Optical Access Networks (NG-OAN) economically (e.g. energy consumption) and technologically (e.g. rate, reach and dedicated/shared bandwidth). The work is divided into four main topics: energy efficiency in optical access architectures, novel spectrally efficient Long-Reach Passive Optical Networks (LR-PON), crosstalk impacts in heterogeneous and homogenous access networks and hybrid optical wireless transmissions. We investigate the impact of user profiles, optical distribution network topologies and equipment characteristics on resource sharing and power consumption in LR-PON. To have a clear vision on the energy consumption evolution of each part of NG-OAN, a model is proposed to evaluate the energy efficiency of optical access technologies. A spectrally efficient bidirectional Ultra-Dense Wavelength Division Multiplexing (UDWDM) PON architecture is developed using Nyquist shaped 16-ary quadrature amplitude modulation, offering up to 10 Gb/s service capabilities per user or wavelength. Performance of this system in terms of receiver sensitivity and nonlinear tolerance under different network transmission capacity conditions are experimentally optimized. In bi-directional transmis-sion, using frequency up/down-shifting of Nyquist pulse shaped signal from optical carrier, a full bandwidth allocation and easy maintenance of UDWDM networks as well as reduction of Rayleigh back-scattering are achieved. Moreover, self-homodyne detection is used to relax the laser linewidth requirement and digital signal processing complexity at the optical network unit. Simplified numerical model to estimate the impact of Raman crosstalk of multi-system next generation PONs in video overlay is proposed. Coexistence of considered G.98X ITU-T series and coherent multi-wavelength systems is considered and assessed. Additionally, the performances of bidirectional hybrid optical wireless coherent PONs over different optical distribution network power budgets and hybrid splitting ratios are evaluated.
O trabalho aqui apresentado estuda redes óticas de acesso de próxima geração (NG-OAN) nas vertentes económica (consumo de energia) e tecnológica (taxa, alcance e largura de banda dedicada/partilhada). O trabalho está dividido em quatro grandes temas de investigação: a eficiência energética em arquiteturas de acesso ótico, as redes óticas passivas de longo alcance (LR-PON) com nova eficiência espetral, o impacto da diafonia em redes de acesso heterogéneas e homogéneas e as transmissões ópticas híbridas com tecnologias sem fio. Investiga-se o impacto dos perfis dos utilizadores, as tipologias da rede de distribuição ótica, as características do equipamento de partilha de recursos e o consumo de energia em LR-PON. Para se ter uma visão clara sobre o consumo de energia de cada parte das NG-OAN, é proposto um modelo para avaliar a eficiência energética das tecnologias de acesso óticas. Desenvolve-se uma arquitetura PON bi-direcional com elevada eficiência espetral, recorrendo a multiplexagem por divisão de comprimento de onda ultra-densa (UDWDM), modulação de amplitude em quadratura com formato de impulso de Nyquist, oferecendo até 10 Gb/s por utilizador/comprimento de onda. O desempenho deste sistema em termos de sensibilidade do recetor e da tolerância à resposta não linear do canal de comunicação, sob diferentes condições de transmissão, é avaliado experimentalm-ente. Em transmissão bi-direcional, utilizando desvio de frequência (cima/baixo) do impulso com formato de Nyquist relativo à portadora ótica conseguiu-se uma alocação de largura de banda completa e uma manutenção mais simplificada de redes UDWDM, bem como a redução do espalhamento de Rayleigh. Além disso, a deteção auto-homodina é usada para relaxar o requisito de largura de linha do laser e a complexidade do processamento digital de sinal nas unidades da rede ótica. Propõe-se um modelo numérico simplificado para estimar o impacto da diafonia de Raman em sistemas PON de próxima geração, com sobreposição do sinal de vídeo. É analisada a coexistência da série G.98X ITU-T e são considerados e avaliados sistemas coerentes multi-comprimento de onda. Adicionalmente avaliam-se os desempenhos de PONs bi-direcionais híbridas, considerando tecnologia coerente e propagação por espaço livre, para diferentes balanços de potência e taxas de repartição na rede ótica de distribuição.
APA, Harvard, Vancouver, ISO, and other styles
20

Anoh, Kelvin Ogbonnaya Okorie. "Advanced MIMO-OFDM technique for future high speed braodband wireless communications : a study of OFDM design, using wavelet transform, fractional fourier transform, fast fourier transform, doppler effect, space-time coding for multiple input, multiple output wireless communications systems." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14400.

Full text
Abstract:
This work concentrates on the application of diversity techniques and space time block coding for future high speed mobile wireless communications on multicarrier systems. At first, alternative multicarrier kernels robust for high speed doubly-selective fading channel are sought. They include the comparisons of discrete Fourier transform (DFT), fractional Fourier transform (FrFT) and wavelet transform (WT) multicarrier kernels. Different wavelet types, including the raised-cosine spectrum wavelets are implemented, evaluated and compared. From different wavelet families, orthogonal wavelets are isolated from detailed evaluations and comparisons as suitable for multicarrier applications. The three transforms are compared over a doubly-selective channel with the WT significantly outperforming all for high speed conditions up to 300 km/hr. Then, a new wavelet is constructed from an ideal filter approximation using established wavelet design algorithms to match any signal of interest; in this case under bandlimited criteria. The new wavelet showed better performance than other traditional orthogonal wavelets. To achieve MIMO communication, orthogonal space-time block coding, OSTBC, is evaluated next. First, the OSTBC is extended to assess the performance of the scheme over extended receiver diversity order. Again, with the extended diversity conditions, the OSTBC is implemented for a multicarrier system over a doubly-selective fading channel. The MIMO-OFDM systems (implemented using DFT and WT kernels) are evaluated for different operating frequencies, typical of LTE standard, with Doppler effects. It was found that, during high mobile speed, it is better to transmit OFDM signals using lower operating frequencies. The information theory for the 2-transmit antenna OSTBC does not support higher order implementation of multi-antenna systems, which is required for the future generation wireless communications systems. Instead of the OSTBC, the QO-STBC is usually deployed to support the design of higher order multi-antenna systems other than the 2-transmit antenna scheme. The performances of traditional QO-STBC methods are diminished by some off-diagonal (interference) terms such that the resulting system does not attain full diversity. Some methods for eliminating the interference terms have earlier been discussed. This work follows the construction of cyclic matrices with Hadamard matrix to derive QO-STBC codes construction which are N-times better than interference free QO-STBC, where N is the number of transmit antenna branches.
APA, Harvard, Vancouver, ISO, and other styles
21

Anoh, Kelvin O. O. "Advanced MIMO-OFDM technique for future high speed braodband wireless communications. A study of OFDM design, using wavelet transform, fractional fourier transform, fast fourier transform, doppler effect, space-time coding for multiple input, multiple output wireless communications systems." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14400.

Full text
Abstract:
This work concentrates on the application of diversity techniques and space time block coding for future high speed mobile wireless communications on multicarrier systems. At first, alternative multicarrier kernels robust for high speed doubly-selective fading channel are sought. They include the comparisons of discrete Fourier transform (DFT), fractional Fourier transform (FrFT) and wavelet transform (WT) multicarrier kernels. Different wavelet types, including the raised-cosine spectrum wavelets are implemented, evaluated and compared. From different wavelet families, orthogonal wavelets are isolated from detailed evaluations and comparisons as suitable for multicarrier applications. The three transforms are compared over a doubly-selective channel with the WT significantly outperforming all for high speed conditions up to 300 km/hr. Then, a new wavelet is constructed from an ideal filter approximation using established wavelet design algorithms to match any signal of interest; in this case under bandlimited criteria. The new wavelet showed better performance than other traditional orthogonal wavelets. To achieve MIMO communication, orthogonal space-time block coding, OSTBC, is evaluated next. First, the OSTBC is extended to assess the performance of the scheme over extended receiver diversity order. Again, with the extended diversity conditions, the OSTBC is implemented for a multicarrier system over a doubly-selective fading channel. The MIMO-OFDM systems (implemented using DFT and WT kernels) are evaluated for different operating frequencies, typical of LTE standard, with Doppler effects. It was found that, during high mobile speed, it is better to transmit OFDM signals using lower operating frequencies. The information theory for the 2-transmit antenna OSTBC does not support higher order implementation of multi-antenna systems, which is required for the future generation wireless communications systems. Instead of the OSTBC, the QO-STBC is usually deployed to support the design of higher order multi-antenna systems other than the 2-transmit antenna scheme. The performances of traditional QO-STBC methods are diminished by some off-diagonal (interference) terms such that the resulting system does not attain full diversity. Some methods for eliminating the interference terms have earlier been discussed. This work follows the construction of cyclic matrices with Hadamard matrix to derive QO-STBC codes construction which are N-times better than interference free QO-STBC, where N is the number of transmit antenna branches.
APA, Harvard, Vancouver, ISO, and other styles
22

Shang, Lei, and lei shang@ieee org. "Modelling of Mobile Fading Channels with Fading Mitigation Techniques." RMIT University. Electrical and Computer Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20061222.113303.

Full text
Abstract:
This thesis aims to contribute to the developments of wireless communication systems. The work generally consists of three parts: the first part is a discussion on general digital communication systems, the second part focuses on wireless channel modelling and fading mitigation techniques, and in the third part we discuss the possible application of advanced digital signal processing, especially time-frequency representation and blind source separation, to wireless communication systems. The first part considers general digital communication systems which will be incorporated in later parts. Today's wireless communication system is a subbranch of a general digital communication system that employs various techniques of A/D (Analog to Digital) conversion, source coding, error correction, coding, modulation, and synchronization, signal detection in noise, channel estimation, and equalization. We study and develop the digital communication algorithms to enhance the performance of wireless communication systems. In the Second Part we focus on wireless channel modelling and fading mitigation techniques. A modified Jakes' method is developed for Rayleigh fading channels. We investigate the level-crossing rate (LCR), the average duration of fades (ADF), the probability density function (PDF), the cumulative distribution function (CDF) and the autocorrelation functions (ACF) of this model. The simulated results are verified against the analytical Clarke's channel model. We also construct frequency-selective geometrical-based hyperbolically distributed scatterers (GBHDS) for a macro-cell mobile environment with the proper statistical characteristics. The modified Clarke's model and the GBHDS model may be readily expanded to a MIMO channel model thus we study the MIMO fading channel, specifically we model the MIMO channel in the angular domain. A detailed analysis of Gauss-Markov approximation of the fading channel is also given. Two fading mitigation techniques are investigated: Orthogonal Frequency Division Multiplexing (OFDM) and spatial diversity. In the Third Part, we devote ourselves to the exciting fields of Time-Frequency Analysis and Blind Source Separation and investigate the application of these powerful Digital Signal Processing (DSP) tools to improve the performance of wireless communication systems.
APA, Harvard, Vancouver, ISO, and other styles
23

Ben, Salem Aymen. "The Application of Multiuser Detection to Spectrally Efficient MIMO or Virtual MIMO SC-FDMA Uplinks in LTE Systems." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/30351.

Full text
Abstract:
Single Carrier Frequency Division Multiple Access (SC-FDMA) is a multiple access transmission scheme that has been adopted in the 4th generation 3GPP Long Term Evolution (LTE) of cellular systems. In fact, its relatively low peak-to-average power ratio (PAPR) makes it ideal for the uplink transmission where the transmit power efficiency is of paramount importance. Multiple access among users is made possible by assigning different users to different sets of non-overlapping subcarriers. With the current LTE specifications, if an SC-FDMA system is operating at its full capacity and a new user requests channel access, the system redistributes the subcarriers in such a way that it can accommodate all of the users. Having less subcarriers for transmission, every user has to increase its modulation order (for example from QPSK to 16QAM) in order to keep the same transmission rate. However, increasing the modulation order is not always possible in practice and may introduce considerable complexity to the system. The technique presented in this thesis report describes a new way of adding more users to an SC-FDMA system by assigning the same sets of subcarriers to different users. The main advantage of this technique is that it allows the system to accommodate more users than conventional SC-FDMA and this corresponds to increasing the spectral efficiency without requiring a higher modulation order or using more bandwidth. During this work, special attentions wee paid to the cases where two and three source signals are being transmitted on the same set of subcarriers, which leads respectively to doubling and tripling the spectral efficiency. Simulation results show that by using the proposed technique, it is possible to add more users to any SC-FDMA system without increasing the bandwidth or the modulation order while keeping the same performance in terms of bit error rate (BER) as the conventional SC-FDMA. This is realized by slightly increasing the energy per bit to noise power spectral density ratio (Eb/N0) at the transmitters.
APA, Harvard, Vancouver, ISO, and other styles
24

Fang, Ching-Geng, and 方清庚. "Space-Time Block Coding in Orthogonal Frequency Division Multiplexing System." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/48557163031437112666.

Full text
Abstract:
碩士
國立臺灣科技大學
電子工程系
91
A transmitter diversity scheme for wireless communications over frequency selective fading channels is presented. Space-time block coding has emerged as a mean of attaining a significant MRC (maximal ratio combining) diversity gain. Using two transmit antennas and one receive antenna, the proposed scheme provides the same diversity order as MRC with one transmit antenna and two receiving antennas. Existing implementations of Space-time block coding are limited to flat fading environments due to the high sensitivity to delay spreads. OFDM (Orthogonal frequency division multiplexing) with a sufficiently long cyclic prefix can convert frequcncy-selective fading channels into multiple flat fading subchannels. The proposed technique utilizes OFDM to transform frequency selective fading channels into multiple flat fading subchannels on which space-time block coding and space-frequency block coding is applied. A two-branch transmitter diversity system is implemented without bandwidth expansion and with a small increase in complexity beyond that of a conventional OFDM system. Simulation results verify that in slow fading environments, the proposed space-frequency OFDM transmitter diversity technique has the same performance as a space-time OFDM transmitter diversity system. However, its shows that better performance in the fast fading environments is attained by the former schemes.
APA, Harvard, Vancouver, ISO, and other styles
25

Fernandes, Gil Gonçalo Martins. "Optical and digital signal processing in space-division multiplexing transmission systems." Doctoral thesis, 2018. http://hdl.handle.net/10773/28329.

Full text
Abstract:
The present thesis focuses on the development of optical and digital signal processing techniques for coherent optical transmission systems with spacedivision multiplexing (SDM). According to the levels of spatial crosstalk, these systems can be grouped in the ones with and the ones without spatial selectivity; drastically changing its operation principle. In systems with spatial selectivity, the mode coupling is negligible and therefore, an arbitrary spacial channel can be independently routed through the optical network and post-processed at the optical coherent receiver. In systems without spatial selectivity, mode coupling plays a key role in a way that spatial channels are jointly transmitted and post-processed at the optical coherent receiver. With this in mind, optical switching techniques for SDM transmission systems with spatial selectivity are developed, whereas digital techniques for space-demultiplexing are developed for SDM systems without spatial selectivity. With the purpose of developing switching techniques, the acoustic-optic effect is analyzed in few-mode fibers (FMF)s and in multicore fibers (MCF)s. In FMF, the signal switching between two arbitrary modes using flexural or longitudinal acoustic waves is numerically and experimentally demonstrated. While, in MCF, it is shown that a double resonant coupling, induced by flexural acoustic waves, allows for the signal switching between two arbitrary cores. Still in the context of signal switching, the signal propagation in the multimodal nonlinear regime is analyzed. The nonlinear Schrödinger equation is deduced in the presence of mode coupling, allowing the meticulous analysis of the multimodal process of four-wave mixing. Under the right conditions, it is shown that such process allows for the signal switching between distinguishable optical modes. The signal representation in higher-order Poincaré spheres is introduced and analyzed in order to develop digital signal processing techniques. In this representation, an arbitrary pair of tributary signals is represented in a Poincaré sphere, where the samples appear symmetrically distributed around a symmetry plane. Based on this property, spatial-demultiplexing and mode dependent loss compensation techniques are developed, which are independent of the modulation format, are free of training sequences and tend to be robust to frequency offsets and phase fluctuations. The aforementioned techniques are numerically validated, and its performance is assessed through the calculation of the remaining penalty in the signal-to-noise ratio of the post-processed signal. Finally, the complexity of such techniques is analytically described in terms of real multiplications per sample.
A presente tese tem por objectivo o desenvolvimento de técnicas de processamento ótico e digital de sinal para sistemas coerentes de transmissão ótica com multiplexagem por diversidade espacial. De acordo com a magnitude de diafonia espacial, estes sistemas podem ser agrupados em sistemas com e sem seletividade espacial, alterando drasticamente o seu princípio de funcionamento. Em sistemas com seletividade espacial, o acoplamento modal é negligenciável e, portanto, um canal espacial arbitrário pode ser encaminhado de forma independente através da rede ótica e pós-processado no recetor ótico coerente. Em sistemas sem seletividade espacial, o acoplamento modal tem um papel fulcral pelo que os canais espaciais são transmitidos e pós-processados conjuntamente. Perante este cenário, foram desenvolvidas técnicas de comutação entre canais espaciais para sistemas com seletividade espacial, ao passo que para sistemas sem seletividade espacial, foram desenvolvidas técnicas digitais de desmultiplexagem espacial. O efeito acústico-ótico foi analisado em fibras com alguns modos (FMF) e em fibras com múltiplos núcleos (MCF) com o intuito de desenvolver técnicas de comutação de sinal no domínio ótico. Em FMF, demonstrou-se numérica e experimentalmente a comutação do sinal entre dois modos de propagação arbitrários através de ondas acústicas transversais ou longitudinais, enquanto, em MCF, a comutação entre dois núcleos arbitrários é mediada por um processo de acoplamento duplamente ressonante induzido por ondas acústicas transversais. Ainda neste contexto, analisou-se a propagação do sinal no regime multimodal não linear. Foi deduzida a equação não linear de Schrödinger na presença de acoplamento modal, posteriormente usada na análise do processo multimodal de mistura de quatro ondas. Nas condições adequadas, é demonstrado que este processo permite a comutação ótica de sinal entre dois modos de propagação distintos. A representação de sinal em esferas de Poincaré de ordem superior é introduzida e analisada com o objetivo de desenvolver técnicas de processamento digital de sinal. Nesta representação, um par arbitrário de sinais tributários é representado numa esfera de Poincaré onde as amostras surgem simetricamente distribuídas em torno de um plano de simetria. Com base nesta propriedade, foram desenvolvidas técnicas de desmultiplexagem espacial e de compensação das perdas dependentes do modo de propagação, as quais são independentes do formato de modulação, não necessitam de sequências de treino e tendem a ser robustas aos desvios de frequência e às flutuações de fase. As técnicas referidas foram validadas numericamente, e o seu desempenho é avaliado mediante a penalidade remanescente na relação sinal-ruído do sinal pós-processado. Por fim, a complexidade destas é analiticamente descrita em termos de multiplicações reais por amostra.
Programa Doutoral em Engenharia Eletrotécnica
APA, Harvard, Vancouver, ISO, and other styles
26

Ciou, Yi-Min, and 邱一民. "Anycast Routing and Allocation Problem in Space Division Multiplexing Elastic Optical Networks." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/2b8344.

Full text
Abstract:
碩士
國立彰化師範大學
資訊工程學系
107
In recent years, because of cloud computing, and a large number of streaming media make network traffic growing exponentially. With the development of 5G in the future, the backbone network will have to support larger traffic. Because the capacity of single-core fibers (SCFs) may be not enough in the foreseeable future, space division multiplexing (SDM) may be one of the solutions. Currently, multi-core fibers (MCFs) mostly have been used to enhance the capacity of transmission in SDM. However, the effect of inter-core crosstalk (IC-XT) would reduce transmission efficiency in the MCFs. In this article, the routing, modulation level, spectrum assignment (RMLSA) problems with anycast traffic in SDM-EON are studied. Multipath routing scheme is used to reduce the blocking ratio of anycast traffic in SDM-EON with the limit of inter-core crosstalk. In addition, the dedicated path protection (DPP) problem for anycast traffic with single-link failure is studied. Two heuristic algorithms for these two problems are proposed. Two core-assignment methods: First-Fit (FF) and Random-Fit (RF) are used and their performance is evaluated through simulations. The simulation results show that multipath routing method has better than single-path routing method in terms of blocking ratio and spectrum utilization ratio. Moreover, the FF has better than the RF in low traffic load in terms of blocking ratio (BR), and opposite in high traffic load. The FF has better than the RF in terms of spectrum utilization ratio. In anycast protection problem, the proposed algorithm has lower BR than previous works.
APA, Harvard, Vancouver, ISO, and other styles
27

Ying, Te-Chen, and 應德臻. "Space-Time Coding with a Delay Processor in Orthogonal Frequency Division Multiplexing System." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/51671312632174472182.

Full text
Abstract:
碩士
國立中央大學
通訊工程研究所
92
The diversity gain and coding gain are two important factors in wireless communications. We review the structures of trellis codes with a delay processor and space-time coding in chapter 2. The orthogonal frequency division multiplexing (OFDM) system can provide high spectral efficiency, and combat the interference between each OFDM symbol and the interference between each subcarrier in one OFDM symbol effectively. In chapter 3, we review two coded OFDM systems and compare their performance. In chapter 4, we concatenate space-time block coding with a delay processor and a signal mapper in OFDM system. We can get more diversity gains in frequency domain and enhance the abilities to resist fading in an OFDM symbol. The decoding complexities are decreased by the code design. We use iterative decoding, super trellis decoding and interleaving to improve the error performance for different number of resolvable paths and delay spreads.
APA, Harvard, Vancouver, ISO, and other styles
28

Tsung-Yen, Tsai, and 蔡宗延. "Channel Estimation Technique for Space-Time Block Coded Orthogonal Frequency Division Multiplexing System." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/35634526574522357090.

Full text
Abstract:
碩士
國立交通大學
電子工程系
91
Bandwidth is a very important resource in the wireless communication system. Improving the reliability of the wireless communication system without bandwidth expansion is always an interesting research topic. In 1998, space-time block code (STBC) is proposed to solve this problem. The basic concept of STBC is equipping multiple transmit antennas and/or receive antennas in the system to improve the performance. For simplicity, we only consider the system equipped with one receive antenna and two transmit antennas in this thesis. The performance of STBC employed in conventional single-carrier system is usually poor in the frequency-selective fading channel. Therefore, we apply STBC to the orthogonal frequency division multiplexing (OFDM) system to form the space-time block coded orthogonal frequency division multiplexing (STBC-OFDM) system. OFDM can transform frequency-selective fading channel to multiple flat fading subchannels. Aided by OFDM, STBC-OFDM system can work quite well over the frequency-selective fading channel. Multi-channel estimation plays an important role in the STBC-OFDM system. In this thesis, we present two simple channel estimation methods by using pilot signals. The first method (method Ⅰ) is the comb-type pilot subcarrier arrangement, and the second method (method Ⅱ) is the block-type pilot subcarrier arrangement. We also show the simulation results of comparison between method Ⅰ and method Ⅱ. Finally, we consider the IEEE standard 802.16 WirelessMAN with STBC. Equipping one receive antenna and two transmit antennas to the IEEE 802.16 system without channel coding, we apply our two channel estimation methods to improve the performance. Simulations show that the performance of our channel estimation methods is 2~3 dB loss compared with the ideal channel estimation in the IEEE 802.16 environment.
APA, Harvard, Vancouver, ISO, and other styles
29

黃證潔. "Crosstalk-aware Routing, Code, Modulation Level, Spectrum Assignment in Space Division Multiplexing Elastic Optical Networks." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/yf4vx6.

Full text
Abstract:
碩士
國立彰化師範大學
資訊工程學系
106
In recent years, emerging applications such as social media and the Internet of Things have been extremely crucial issues how to provide bandwidth for huge traffic demands. Because of the limited capacity of single-core fibers (SCFs), space division multiplexing (SDM) can resolve the internet traffic rapidly. Currently, multi-core fibers (MCFs) mostly have been used to enhance the capacity of transmission in SDM. However, It has worth researching how to avoid the effect of inter-core crosstalk in the MCFs. In this article, the crosstalk-aware routing, code, modulation level, spectrum assignment (CA-RCMLSA) and the crosstalk-aware routing, baud, code, modulation level, spectrum assignment (CA-RBCMLSA) problems are studied. Two heuristic algorithms for these two problems are proposed and two core-assignment methods : First-Fit (FF) and Random-Fit (RF) are proposed and their performance are evaluated simulations. Simulation results show the CA-RCMLSA-FF has better than CA-RCMLSA-RF in terms of blocking ratio and spectrum utilization ratio. Moreover, the CA-RBCMLSA-FF has better than the CA-RBCMLSA-RF through simulation experiments.
APA, Harvard, Vancouver, ISO, and other styles
30

Chiang, Ping-Yu, and 江秉豫. "Research on 2×2 Time Reversal Space Time Block Code Generalized Frequency Division Multiplexing Systems." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/x98nvd.

Full text
Abstract:
碩士
國立臺灣科技大學
電機工程系
107
In the 4th Generation of mobile communication system (4G), the communication standard is dominated by orthogonal frequency division multiplexing technology, although it relies on effective frequency selective attenuation channels, strong resistance to inter-code interference, achieve simplicity and many other advantages.However, the disadvantage is the high-frequency external overflow and the peak-to-average power ratio. These shortcomings are inconsistent with the conditions set by the 5th Generation of mobile communication system (5G). With the rise of the Internet of Things, next-generation mobile communication systems will face new challenges, not only to increase throughput, but also to require low latency for the Internet, and to handle robustness in handling large coverage areas. In addition, any waveform of the next generation communication system needs to be compatible with Multi-Input Multi-Ouput (MIMO). Generalized Frequency Division Multiplexing (GFDM) is a candidate that can flexibly respond to the upcoming needs of future networks. It has low-frequency out-of-band and low-to-peak power ratio (PAPR). Features, and can effectively use the TV white space, so that today's scattered frequency bands can be effectively utilized. In this paper, we use a variety of decoding methods for performance analysis in time-reversed space-time block codes (TR-STBC). At the same time, a variety of Transforms are used to discuss the PAPR and Bit error rate (BER) of GFDM and also discuss the complexity of each decoding method. The BER performance simulation will be performed in different filter, channel model, and modulation method environments of the GFDM system to analyze the impact of each method in different situations. Keyword:GFDM、STBC、Linear Transform、Complexity、PAPR、Decoder
APA, Harvard, Vancouver, ISO, and other styles
31

Oluwafemi, Ilesanmi Banjo. "Super-orthogonal space-time turbo coded OFDM systems." Thesis, 2012. http://hdl.handle.net/10413/8505.

Full text
Abstract:
The ever increasing demand for fast and efficient broadband wireless communication services requires future broadband communication systems to provide a high data rate, robust performance and low complexity within the limited available electromagnetic spectrum. One of the identified, most-promising techniques to support high performance and high data rate communication for future wireless broadband services is the deployment of multi-input multi-output (MIMO) antenna systems with orthogonal frequency division multiplexing (OFDM). The combination of MIMO and OFDM techniques guarantees a much more reliable and robust transmission over a hostile wireless channel through coding over the space, time and frequency domains. In this thesis, two full-rate space-time coded OFDM systems are proposed. The first one, designed for two transmit antennas, is called extended super-orthogonal space-time trellis coded OFDM (ESOSTTC-OFDM), and is based on constellation rotation. The second one, called super-quasi-orthogonal space-time trellis coded OFDM (SQOSTTCOFDM), combines a quasi-orthogonal space-time block code with a trellis code to provide a full-rate code for four transmit antennas. The designed space-time coded MIMO-OFDM systems achieve a high diversity order with high coding gain by exploiting the diversity advantage of frequency-selective fading channels. Concatenated codes have been shown to be an effective technique of achieving reliable communication close to the Shannon limit, provided that there is sufficient available diversity. In a bid to improve the performance of the super orthogonal space-time trellis code (SOSTTC) in frequency selective fading channels, five distinct concatenated codes are proposed for MIMO-OFDM over frequency-selective fading channels in the second part of this thesis. Four of the coding schemes are based on the concatenation of convolutional coding, interleaving, and space-time coding, along multiple-transmitter diversity systems, while the fifth coding scheme is based on the concatenation of two space-time codes and interleaving. The proposed concatenated Super-Orthogonal Space-Time Turbo-Coded OFDM System I. B. Oluwafemi 2012 vii coding schemes in MIMO-OFDM systems achieve high diversity gain by exploiting available diversity resources of frequency-selective fading channels and achieve a high coding gain through concatenations by employing the turbo principle. Using computer software simulations, the performance of the concatenated SOSTTC-OFDM schemes is compared with those of concatenated space-time trellis codes and those of conventional SOSTTC-OFDM schemes in frequency-selective fading channels. Simulation results show that the concatenated SOSTTC-OFDM system outperformed the concatenated space-time trellis codes and the conventional SOSTTC-OFDM system under the various channel scenarios in terms of both diversity order and coding gain.
Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2012.
APA, Harvard, Vancouver, ISO, and other styles
32

Peng, Jeng-Gang, and 彭政綱. "The Semi-blind Zero Forcing Equalization in the Space-Time BlockCoded Orthogonal Frequency Division Multiplexing Systems." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/53033044986837229903.

Full text
Abstract:
碩士
中原大學
電子工程研究所
98
In the case of unknown transmission channel, space-time block code combined with orthogonal frequency division multiplexing system is decoded by the semi-blind zero forcing equalization, it can remove the cyclic prefix automatically and estimate the original transmitted symbols.
APA, Harvard, Vancouver, ISO, and other styles
33

Chi, Kung-Hong, and 紀坤宏. "Semi-Blind Channel Estimation of Space Time Block Code Orthogonal frequency-division multiplexing System by Using Subspace Algorithm." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/98482072879547258119.

Full text
Abstract:
碩士
中原大學
電子工程研究所
96
In this paper,a space time block code OFDM system was proposed that can increased the channel capacity。we analyzed a complex Alamouti code in OFDM,Multiple input multiple output system, base on this derivative, ,the Alamouti code can be encoded in real or complex form in OFDM system。The semi-blind channel estimation can improve the accuracy of the channel coefficients。
APA, Harvard, Vancouver, ISO, and other styles
34

Fazeli, Dehkordy Siavash. "Distributed Beamforming in Wireless Relay Networks." Thesis, 2008. http://hdl.handle.net/1974/1442.

Full text
Abstract:
In this thesis, we consider a wireless network consisting of d source-destination pairs and R relaying nodes. Each source wishes to communicate to its corresponding destination. By exploiting the spatial multiplexing capability of the wireless medium, we develop two cooperative beamforming schemes in order to establish wireless connections between multiple source-destination pairs through a collaborative relay network. Our first communication scheme consists of two steps. In the first step, all sources transmit their signals simultaneously to the relay network. As a result, each relay receives a noisy faded mixture of all source signals. In the second step, each relay transmits an amplitude- and phase-adjusted version of its received signal, i.e., the relay received signals are multiplied by a set of complex coefficients and are retransmitted. Our goal is to obtain these complex coefficients (beamforming weights) through minimization of the total relay transmit power while the signal-to-interference-plus-noise ratio at the destinations are guaranteed to be above certain pre-defined thresholds. Our second scheme is a distributed downlink beamforming technique which is performed in d + 1 successive time slots. In the first d time slots, the d sources transmit their data to the relay network successively. The relay nodes receive and store the noisy faded versions of the source signals. In the (d + 1)th time slot, the relays aim to collectively provide downlink connections to all d destinations. To do so, each relay transmits a linear combination of the stored signals received during the first d time slots. Again, our goal is to determine the complex weights (used at the relaying nodes to linearly combine the source signals) by minimizing the total relay transmit power while satisfying certain quality of services at the destinations. We use semi-definite relaxation to turn both problems into semi-definite programming (SDP) problems. Therefore, they can be efficiently solved using interior point methods. We showed that our proposed schemes significantly outperform orthogonal multiplexing schemes, such as time-division multiple access schemes, in a large range of network data rates.
Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2008-09-17 13:07:21.505
APA, Harvard, Vancouver, ISO, and other styles
35

"Issues on broadband wireless communication systems: channel estimation, frequency synchronization and space-time-frequency coding." Thesis, 2005. http://library.cuhk.edu.hk/record=b6073967.

Full text
Abstract:
"Faster, higher, stronger"---the Olympic motto is being pursued and practised in the design of broadband wireless communication systems. Motivated by the huge demands for fast and reliable communications over wireless channels, broadband communication systems are required to provide faster (low-complexity) data processing, higher data throughput and stronger (lower error rate) performance. In practice, however, broadband communication systems must cope with critical performance-limiting challenges that include time- and frequency-selective fading channels, noise, inter-symbol interference (ISI), intercarrier interference (ICI) as well as power and bandwidth constraints. To address these challenges, this thesis investigates several physical layer aspects of broadband wireless communication systems.
Incorporating OFDM into multiple-input multiple-output (MIMO) system, MIMO-OFDM has been shown to provide larger channel capacity and greater diversity gain. However, current coding schemes for MIMO-OFDM are either space-time coded (STC) OFDM without the guarantee of full diversity gains or space-frequency coding (SFC) with a greater loss of data rate. Furthermore, most existing STC and SFC have focused on quasi-static fading which is not practical for broadband wireless communications. When multi-band OFDM (MB-OFDM) is applied to ultra-wide band (UWB) communications, a high diversity can be obtained, but in the expense of a much lower (close to half) data rate. To address the limitations of existing coding schemes for broadband wireless communication systems, this thesis: (i) proposes a space-time-frequency coding (STFC) that can achieve maximum diversity and maximum symbol rate transmission over MIMO block-fading channels; (ii) derives a high-rate full-diversity SFC from STFC tailored for frequency-selective fading channels; and (iii) proposes a high-rate high-diversity algebraic time-frequency coding (ATFC) for MB-OFDM system.
Orthogonal frequency division multiplexing (OFDM) is an effective technique to eliminate ISI in broadband wireless communications. This thesis studies the problem of training-based OFDM channel estimation and proposes a training method that minimizes the number of pilots employed to achieve a desired bit error rate (BER) performance. A clustered pilot pattern is further proposed to enhance the BER performance. Focusing on OFDM frequency synchronization, this thesis also proposes a clustered pilot tones placement and a novel pilot sequence design for carrier frequency offset (CFO) compensation. The analytical and simulation results show that the root mean square error (RMSE) of the CFO estimate can be greatly reduced.
Zhang Wei.
"July 2005."
Adviser: Pak-Chung Ching.
Source: Dissertation Abstracts International, Volume: 67-01, Section: B, page: 0461.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (p. 126-143).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.
APA, Harvard, Vancouver, ISO, and other styles
36

Sousa, Artur Neves e. "Transmission techniques for high rates in optical fiber and alternative media." Doctoral thesis, 2020. http://hdl.handle.net/10773/31994.

Full text
Abstract:
The increase in services provided by mobile network operators, as well as traffic over wireless networks (WiFi), has intensely exploited the available radio frequency (RF) spectrum. The fixed telecommunications network that connects radio antennas, Wi-Fi access points, or other technologies (eg, Wimax) supports new services that require higher transmission rates and connections, such as cloud computing, HDTV, Internet of Things (IoT) or Machine-to- Machine (M2M) communication. Silicon single-mode fiber optic (SMF) has been chosen as a means of transporting data on the fixed network as it offers higher bandwidths and transmission rates. In a desirable ubiquitous and transparent optical network context, there are still several bottlenecks in the network structure, whether due to the characteristics of SMF or economical from a cost/return perspective. Besides, current access networks based on SMF cable or RF connections are subject to interruptions and should therefore be able to provide alternative transmission paths. On the other hand, the expected increase in information traffic in the near future leads to the establishment of new spectral allocation protocols for SMF. The ITU-T G.989 standard thus emerges to promote next-generation (NGPON2) networks that seek to exploit the spectrum available in SMFs through point-to-multipoint Wavelength Division Multiplexing (WDM) networks as well as in UDWDM (Ultra-Dense WDM) in a point to point configuration, addressed to the end-user. In this context, plastic optical fiber (POF) appears as an alternative transmission medium to the SMF and promising in the short-range network. The implementation of the POF extends to the telecommunications operators' access network, the residential / building telecommunications network, transport vehicles or the rapid re-establishment of communications in accidentprone optical networks. Free Space Optical Transmission (FSO) is also a promising means of communication and alternative for short-range RF or SMF connections. FSO connections can be applied to the telecom operator's access network, standby connections between GSM antennas, the connection between an institution's buildings, point-to-multipoint wireless communications, or the quick re-establishment of a cable optical device accidentally interrupted. Thus, the POF and FSO transmission media will be studied here, exploring new spectral limits and transmission capabilities involving GPON and NGPON2 network protocols. Coherent reception and data retrieval through software-defined receivers for real-time digital signal processing will be explored.
O aumento dos serviços prestados pelas operadoras de rede móvel, assim como do tráfego nas redes-sem-fios (WiFi) têm explorado intensamente o espectro de radiofrequência (RF) disponível. A rede fixa de telecomunicações que conecta as antenas rádio, pontos de acesso WiFi ou outras tecnologias (ex. Wimax), suporta novos serviços que exigem maiores taxas de transmissão e conexões, como por exemplo a computação na nuvem, HDTV, Internet das Coisas (IoT) ou a comunicações de Máquina-a-Máquina (M2M). A fibra óptica monomodo em silício (SMF) tem sido a escolhida como o meio de transporte de dados na rede fixa, uma vez que disponibiliza maiores larguras de banda e taxas de transmissão. Num contexto desejável de rede óptica ubíqua e transparente, subsistem variados estrangulamentos na estrutura da rede, sejam devido às características da SMF, sejam económicos numa perspectiva de custo/retorno. Além disso, as actuais redes de acesso, baseadas em cabos de SMF ou em ligações RF, estão sujeitas a interrupções e, portanto, devem poder contemplar caminhos de transmissão alternativos. Por outro lado, o aumento esperado no tráfego de informações no futuro próximo leva ao estabelecimento de novos protocolos de alocação espectral para a SMF. O padrão ITU-T G.989 surge, assim, para promover as redes de próxima geração (NG-PON2) que procuram explorar o espectro disponível em SMFs através de redes WDM (Wavelength Division Multiplexing) pontomultiponto, bem como através de redes em UDWDM (Ultra-Dense WDM) numa configuração ponto a ponto, endereçado ao utilizador final. Neste contexto, a fibra óptica plástica (POF) surge como um meio de transmissão alternativo à SMF e promissor na rede de curto alcance. A implementação da POF estende-se à rede de acesso das operadoras de telecomunicações, à rede de telecomunicações residencial/predial, aos veículos de transporte ou no rápido restabelecimento das comunicações em redes ópticas propensas a acidentes. A transmissão óptica de espaço livre (FSO) também é um meio promissor de comunicação e uma alternativa nas conexões em RF ou SMF de curto alcance. As conexões FSO podem ser aplicadas à rede de acesso do operador de telecomunicações, às conexões em reserva entre as antenas dos operadores móveis, à conexão entre os edifícios de uma instituição, às comunicações sem fio ponto-multiponto ou no rápido restabelecimento de um cabo óptico interrompido acidentalmente. Assim, os meios de transmissão POF e FSO serão aqui estudados, explorando-se novos limites espectrais e capacidades de transmissão envolvendo os protocolos de redes GPON e NG-PON2. Serão exploradas a recepção coerente e a recuperação de dados através de receptores definidos por software, para o processamento de sinais digitais em tempo real.
Programa Doutoral em Engenharia Eletrotécnica
APA, Harvard, Vancouver, ISO, and other styles
37

Ghonaim, Fahad A. "Adaptive router bypass techniques to enhance core network efficiency." Thesis, 2018. https://dspace.library.uvic.ca//handle/1828/9283.

Full text
Abstract:
Internet traffic is increasing exponentially, driven by new technologies such as Internet of Things (IoT) and rich streaming media. The traditional IP router becomes a bottleneck for further Internet expansion due to its high power consumption and inefficiency in processing the growing traffic. Router bypass has been introduced to overcome capacity limitations and the processing costs of IP routers. With router bypass, a portion of traffic is provisioned to bypass the router and is switched by the transport layer. Router bypass has shown to provide significant savings in network costs. These advantages are limited by a reduction in the statistical multiplexing associated with the subdivision of the available bandwidth typically into bypass and traditional portions thus limiting the interest in bypass techniques. This thesis will explore multiple techniques to enhance the efficiency of router bypass. The main goals are to address the issue of the reduction in statistical multiplexing and to add a dynamic approach to the router bypass mechanism. The recent advancements in the Optical Transport Network (OTN) play a major role in the transport network. This proposal takes full advantage of OTN in the router-bypassing context by applying recent developments such as Hitless Adjustments ODUflex (HAO), which allow the provisioned channels to be adjusted without re-establishing the connections. In addition, it will allow the bypassing mechanism to be flexible enough to meet the traffic behaviour needs of the future. This thesis will study multiple approaches to enhance the router bypass mechanism including: an adaptive provisioning style using various degrees of provisioning granularities and controlling the provisioning based on traffic behaviour. In addition, this thesis will explore the impact of automation in Software-Defined Networking (SDN) on router bypass. The application-driven infrastructure in SDN is moving the network to be more adaptive, which paves the way for an enhanced implementation of router bypass. Many challenges still face the industry to fully integrate the three layers (3, 2, and 1) to transform the current infrastructure into an adaptive application driven network. The IP router (layer 3) provisions and restores the connection regardless of the underlying layers (layer 2 and 1) and the transport layer does the same regardless of the IP layer. Although allowing every layer to develop without being constrained by other layers offers a huge advantage, it renders the transport layer static and not fully aware of the traffic behaviour. It is my hope that this thesis is a step forward in transforming the current network into a dynamic, efficient and responsive network. A simulation has been built to imitate the router bypassing concept and then many measurements have been recorded.
Graduate
APA, Harvard, Vancouver, ISO, and other styles
38

Das, Smarajit. "Low-PAPR, Low-delay, High-Rate Space-Time Block Codes From Orthogonal Designs." Thesis, 2009. http://hdl.handle.net/2005/1046.

Full text
Abstract:
It is well known that communication systems employing multiple transmit and multiple receive antennas provide high data rates along with increased reliability. Some of the design criteria of the space-time block codes (STBCs) for multiple input multiple output (MIMO)communication system are that these codes should attain large transmit diversity, high data-rate, low decoding-complexity, low decoding –delay and low peak-to-average power ratio (PAPR). STBCs based on real orthogonal designs (RODs) and complex orthogonal designs (CODs) achieve full transmit diversity and in addition, these codes are single-symbol maximum-likelihood (ML) decodable. It has been observed that the data-rate (in number of information symbols per channel use) of the square CODs falls exponentially with increase in number of antennas and it has led to the construction of rectangular CODs with high rate. We have constructed a class of maximal-rate CODs for n transmit antennas with rate if n is even and if n is odd. The novelty of the above construction is that they 2n+1 are constructed from square CODs. Though these codes have a high rate, this is achieved at the expense of large decoding delay especially when the number of antennas is 5or more. Moreover the rate also converges to half as the number of transmit antennas increases. We give a construction of rate-1/2 CODs with a substantial reduction in decoding delay when compared with the maximal- rate codes. Though there is a significant improvement in the rate of the codes mentioned above when compared with square CODs for the same number of antennas, the decoding delay of these codes is still considerably high. For certain applications, it is desirable to construct codes which are balanced with respect to both rate and decoding delay. To this end, we have constructed high rate and low decoding-delay RODs and CODs from Cayley-Dickson Algebra. Apart from the rate and decoding delay of orthogonal designs, peak-to-average power ratio (PAPR) of STBC is very important from implementation point of view. The standard constructions of square complex orthogonal designs contain a large number of zeros in the matrix result in gin high PAPR. We have given a construction for square complex orthogonal designs with lesser number of zero entries than the known constructions. When a + 1 is a power of 2, we get codes with no zero entries. Further more, we get complex orthogonal designs with no zero entry for any power of 2 antennas by introducing co- ordinate interleaved variables in the design matrix. These codes have significant advantage over the existing codes in term of PAPR. The only sacrifice that is made in the construction of these codes is that the signaling complexity (of these codes) is marginally greater than the existing codes (with zero entries) for some of the entries in the matrix consist of co-ordinate interleaved variables. Also a class of maximal-rate CODs (For mathematical equations pl see the pdf file)
APA, Harvard, Vancouver, ISO, and other styles
39

Sreedhar, Dheeraj. "Interference Cancelling Detectors In OFDMA/MIMO/Cooperative Communications." Thesis, 2007. http://hdl.handle.net/2005/604.

Full text
Abstract:
In this thesis, we focus on interference cancelling (IC) detectors for advanced communication systems. The contents of this thesis is divided into the following four parts: 1. Multiuser interference (MUI) cancellation in uplink orthogonal frequency division multiple access (OFDMA). 2. Inter-carrier interference (ICI) and inter-symbol interference (ISI) cancellation in space-frequency block coded OFDM (SFBC-OFDM). 3. Single-symbol decodability (SSD) of distributed space-time block codes (DSTBC) in partially-coherent cooperative networks with amplify-and-forward protocol at the relays 4. Interference cancellation in cooperative SFBC-OFDM networks with amplify-and-forward (AF) and decode-and-forward (DF) protocols at the relays. In uplink OFDMA systems, MUI occurs due to different carrier frequency offsets of different users at the receiver. In the first part of the thesis, we present a weighted multistage linear parallel interference cancellation approach to mitigate the effect of this MUI in uplink OFDMA. We also present a minimum mean square error (MMSE) based approach to MUI cancellation in uplink OFDMA. We present a recursion to approach the MMSE solution and show structure-wise and performance-wise comparison with other detectors in the literature. Use of SFBC-OFDM signals is advantageous in high-mobility broadband wireless access, where the channel is highly time- as well as frequency-selective because of which the receiver experiences both ISI as well as ICI. In the second part of the thesis, we are concerned with the detection of SFBC-OFDM signals on time- and frequency-selective MIMO channels. Specifically, we propose and evaluate the performance of an interference cancelling receiver for SFBC-OFDM, which alleviates the effects of ISI and ICI in highly time- and frequency-selective channels The benefits of MIMO techniques can be made possible to user nodes having a single transmit antenna through cooperation among different nodes. In the third part of the thesis, we derive a new set of conditions for a distributed DSTBC to be SSD for a partially-coherent relay channel (PCRC), where the relays have only the phase information of the source-to-relay channels. We also establish several properties of SSD codes for PCRC. In the last part of the thesis, we consider cooperative SFBC-OFDM networks with AF and DF protocols at the relays. In cooperative SFBC-OFDM networks that employ DF protocol, i) ISI occurs at the destination due to violation of the `quasi-static' assumption because of the frequency selectivity of the relay-to-destination channels, and ii) ICI occurs due to imperfect carrier synchronization between the relay nodes and the destination, both of which result in error-floors in the bit error performance at the destination. We propose an interference cancellation algorithm for this system at the destination node, and show that the proposed algorithm effectively mitigates the ISI and ICI effects.
APA, Harvard, Vancouver, ISO, and other styles
40

Tasi, Chang-Ting, and 蔡昌廷. "A GA-based Spare Capacity Optimization for Dynamic Wavelength Division Multiplexing Networks." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/04697085014071536987.

Full text
Abstract:
碩士
中原大學
資訊管理研究所
97
In recent years, optical networks have been well developed by using WDM (Wavelength Division Multiplexing) technology to provide many hundreds of wavelength in the fibers for backbone infrastructure. Because of the existence of fiber-cut, the internet services providers (ISPs) may have many data loss and damage that network connection. So the internet services provider need to construct the survivable networking in the resource of limited to restore the networks very quickly. In related literature, p-cycles are constructed for survivability of WDM networks. This topic of protection needs to find backup path but the method needs to receive OD-pairs information. The integer linear programming (ILP) based p-cycle network requires enumerating all simple cycles or a set of simple cycles. However, p-cycles do not need any connect information so this method can be applied quickly for internet services providers. The objective of this thesis is to design a novel genetic algorithm, which provides a rule for placing subset of cycles to construct p-cycle for WDM networks. This study used a Mutual Therapeutic Genetic Algorithm (MTGA) to solve the survivability problem and used Taguchi orthogonal analysis to analyze the influence of variables in experimental. Finally, experimental results show that our approach can effectively construct p-cycles for WDM networks.
APA, Harvard, Vancouver, ISO, and other styles
41

Vijaya, Krishna A. "A Filterbank Precoding Framework For MIMO Frequency Selective Channels." Thesis, 2006. http://hdl.handle.net/2005/1084.

Full text
Abstract:
Wireless systems with multiple antennas at both the transmitter and receiver (MIMO systems) have been the focus of research in the recent past due to their ability to provide higher data rates and better reliability than their single antenna counterparts. Designing a communication system for MIMO frequency selective channels provides many signal processing challenges. Popular methods like MIMOOFDM and space-time precoding linearly process blocks of data at both the transmitter and the receiver. Independence between the blocks is ensured by introducing sufficient redundancy between successive blocks. This approach has many pitfalls, including the limit on achievable data rate due to redundancy requirements and the need for additional coding/processing. In this thesis, we provide a filterbank precoding framework (FBP) for communication over MIMO frequency selective channels. By viewing the channel as a polynomial matrix, we derive the minimum redundancy required for achieving FIR equalization of the precoded channel. It is shown that, for most practical channels, a nominal redundancy is enough. The results are general, and hold for channels of any dimension and order. We derive the zero-forcing and MMSE equalizers for the precoded channel. The role of equalizer delay in system performance is analyzed. We extend the minimum redundancy result to the case of space-time filterbank precoding (STFP). Introducing the time dimension allows the channel to be represented by a block pseudocirculant matrix. By using the Smith form of block pseudocirculant matrices, we show that very high data rates can be achieved with STFP. When channel information is available at the transmitter, we derive an iterative algorithm for obtaining the MMSE optimal precoder-equalizer pair. We then provide a comparison of FBP with the block processing methods. It is shown that FBP provides better BER performance than the block processing methods at a lower computational cost. The reasons for the better performance of FBP are discussed.
APA, Harvard, Vancouver, ISO, and other styles
42

Domingues, Ana Margarida Filipe. "Capacity limits of crosstalk-limited multi-core fiber systems." Master's thesis, 2020. http://hdl.handle.net/10071/21973.

Full text
Abstract:
Space division multiplexing (SDM) is mainly seen as a way to increase data throughput and handle the fact that the data capacity of single mode single core fiber (SMSCF) is reaching its limit. Transmissions with capacities in the order of petabit per second have already been demonstrated using multi-core fibers (MCFs) with single mode transmission in each core. The performance of these systems is limited by the intercore crosstalk (ICXT). This dissertation analyzes the impact of the ICXT as a constraining element of the capacity of coherent detection optical communication networks that use the flexible grid over the C-band. The total capacity of the link, which is given by the number of cores allowed of a weakly-coupled (WC) MCF for each modulation format, is imposed by the maximum mean ICXT power acceptable for the connection. Link impairments such as the wavelength dependence of ICXT power over the transmission band and the nonlinear interference (NLI) noise due to MCF non-linear effects are also considered in the analysis. The total data capacities for metro networks, regional networks and long-distance networks are assessed for a W-profile MCF supported communication links. Considering the impairments of the link as the wavelength dependence of ICXT power over the transmission band and the NLI effects, the total capacities of 483.84 Tb/s by 32-QAM, 430 Tb/s by 32-QAM and 206.08 Tb/s by 4-QAM are achieved for the metro (represented with a link distance of 50 km), regional (represented with a link distance of 500 km) and long-distance networks (represented with a link distance of 5000 km), respectively.
A multiplexagem por divisão no espaço usando fibras ópticas multi-núcleo tem sido extensivamente proposta para conseguir transmissão de capacidade ultra-elevada e lidar com o facto de que fibra composta por um núcleo estar perto de atingir o seu limite. Já foram demonstradas transmissões com capacidades na ordem dos petabit por segundo usando fibras multi-núcleo. O desempenho destes sistemas, é, no limite, imposto pela diafonia entre núcleos e por isso é feita uma análise da diafonia em sistemas coerentes que utilizam a grelha flexível na banda C. A capacidade do sistema é dada pelo número de núcleos permitidos nas fibras multi-núcleo fracamente acopladas para cada formato de modulação que é imposta pela potência média máxima da diafonia entre núcleos para uma dada distância. Os constrangimentos da ligação, como a dependência do comprimento de onda da potência da diafonia entre núcleos na banda de transmissão e o efeito da interferência não linear, são considerados. A capacidade de redes metropolitanas, regionais e de longa distância são avaliadas para as fibras multi-núcleo de perfil fracamente acopladas. Considerando os constrangimentos da ligação como a dependência do comprimento de onda da potência da diafonia entre núcleos na banda de transmissão e os efeitos não lineares, a capacidade total de 483.84 Tb/s usando o formato de modulação 32-QAM , 430 Tb/s usando o formato de modulação 32-QAM e 206.08 Tbs/s e usando o formato de modulação 4-QAM é alcançada para as redes metropolitanas (50 km), regionais (500 km) e de longa distância (5000 km), respectivamente.
APA, Harvard, Vancouver, ISO, and other styles
43

Rajan, G. Susinder. "Low Decoding Complexity Space-Time Block Codes For Point To Point MIMO Systems And Relay Networks." Thesis, 2008. http://hdl.handle.net/2005/742.

Full text
Abstract:
It is well known that communication using multiple antennas provides high data rate and reliability. Coding across space and time is necessary to fully exploit the gains offered by multiple input multiple output (MIMO) systems. One such popular method of coding for MIMO systems is space-time block coding. In applications where the terminals do not have enough physical space to mount multiple antennas, relaying or cooperation between multiple single antenna terminals can help achieve spatial diversity in such scenarios as well. Relaying techniques can also help improve the range and reliability of communication. Recently it has been shown that certain space-time block codes (STBCs) can be employed in a distributed fashion in single antenna relay networks to extract the same benefits as in point to point MIMO systems. Such STBCs are called distributed STBCs. However an important practical issue with STBCs and DSTBCs is its associated high maximum likelihood (ML) decoding complexity. The central theme of this thesis is to systematically construct STBCs and DSTBCs applicable for various scenarios such that are amenable for low decoding complexity. The first part of this thesis provides constructions of high rate STBCs from crossed product algebras that are minimum mean squared error (MMSE) optimal, i.e., achieves the least symbol error rate under MMSE reception. Moreover several previous constructions of MMSE optimal STBCs are found to be special cases of the constructions in this thesis. It is well known that STBCs from orthogonal designs offer single symbol ML decoding along with full diversity but the rate of orthogonal designs fall exponentially with the number of transmit antennas. Thus it is evident that there exists a tradeoff between rate and ML decoding complexity of full diversity STBCs. In the second part of the thesis, a definition of rate of a STBC is proposed and the problem of optimal tradeoff between rate and ML decoding complexity is posed. An algebraic framework based on extended Clifford algebras is introduced to study the optimal tradeoff for a class of multi-symbol ML decodable STBCs called ‘Clifford unitary weight (CUW) STBCs’ which include orthogonal designs as a special case. Code constructions optimally meeting this tradeoff are also obtained using extended Clifford algebras. All CUW-STBCs achieve full diversity as well. The third part of this thesis focusses on constructing DSTBCs with low ML decoding complexity for two hop, amplify and forward based relay networks under various scenarios. The symbol synchronous, coherent case is first considered and conditions for a DSTBC to be multi-group ML decodable are first obtained. Then three new classes of four-group ML decodable full diversity DSTBCs are systematically constructed for arbitrary number of relays. Next the symbol synchronous non-coherent case is considered and full diversity, four group decodable distributed differential STBCs (DDSTBCs) are constructed for power of two number of relays. These DDSTBCs have the best error performance compared to all previous works along with low ML decoding complexity. For the symbol asynchronous, coherent case, a transmission scheme based on orthogonal frequency division multiplexing (OFDM) is proposed to mitigate the effects of timing errors at the relay nodes and sufficient conditions for a DSTBC to be applicable in this new transmission scheme are given. Many of the existing DSTBCs including the ones in this thesis are found to satisfy these sufficient conditions. As a further extension, differential encoding is combined with the proposed transmission scheme to arrive at a new transmission scheme that can achieve full diversity in symbol asynchronous, non-coherent relay networks with no knowledge of the timing errors at the relay nodes. The DDSTBCs in this thesis are proposed for application in the proposed transmission scheme for symbol asynchronous, non-coherent relay networks. As a parallel to the non-coherent schemes based on differential encoding, we also propose non-coherent schemes for symbol synchronous and symbol asynchronous relay networks that are based on training. This training based transmission scheme leverages existing coherent DSTBCs for non-coherent communication in relay networks. Simulations show that this training scheme when used along with the coherent DSTBCs in this thesis outperform the best known DDSTBCs in the literature. Finally, in the last part of the thesis, connections between multi-group ML decodable unitary weight (UW) STBCs and groups with real elements are established for the first time. Using this connection, we translate the necessary and sufficient conditions for multi-group ML decoding of UW-STBCs entirely in group theoretic terms. We discuss various examples of multi-group decodable UW-STBCs together with their associated groups and list the real elements involved. These examples include orthogonal designs, quasi-orthogonal designs among many others.
APA, Harvard, Vancouver, ISO, and other styles
44

Παπουτσής, Βασίλειος. "Τεχνικές διαχείρισης ραδιοπόρων στα ασύρματα ραδιοδίκτυα νέας γενιάς με κριτήρια αξιοπιστίας και δικαιοσύνης." Thesis, 2011. http://nemertes.lis.upatras.gr/jspui/handle/10889/4598.

Full text
Abstract:
Τα μελλοντικά ασύρματα δίκτυα και συστήματα επικοινωνιών αναμένεται να παρέχουν αξιόπιστα υπηρεσίες δεδομένων με απαιτήσεις ρυθμού μετάδοσης δεδομένων οι οποίες κυμαίνονται από λίγα kbps μέχρι μερικά Mbps και εξαιτίας του υψηλού κόστους του φάσματος συχνοτήτων, αυτά τα συστήματα χρειάζεται να είναι εξαιρετικά αποτελεσματικά όσον αφορά στη χρησιμοποίηση του φάσματος. Συγκεκριμένα, η εφαρμογή τεχνικών μετάδοσης δεδομένων οι οποίες βασίζονται σε MIMO και OFDMA θεωρείται ως μια πολλά υποσχόμενη λύση για να ικανοποιήσει αυτές τις απαιτήσεις. Από την άλλη μεριά, τα συστήματα MIMO-OFDMA είναι εύκαμπτα και φασματικά αποτελεσματικά αλλά ο αξιοσημείωτα μεγάλος αριθμός υποφορέων και ο συνυπολογισμός της διάστασης χώρου καθιστούν την κατανομή ραδιοπόρων πολύ πολύπλοκη. Στην πραγματικότητα, η βέλτιστη κατανομή ραδιοπόρων η οποία μεγιστοποιεί το συνολικό ρυθμό μετάδοσης δεδομένων των χρηστών είναι συχνά πάρα πολύ πολύπλοκη για πρακτικές εφαρμογές. Συνεπώς, απαιτούνται υποβέλτιστες σχετικά αποτελεσματικές και χαμηλής πολυπλοκότητας στρατηγικές κατανομής ραδιοπόρων ώστε να κατανείμουν τους ραδιοπόρους συχνότητας, ισχύος και χώρου του συστήματος στους χρήστες του συστήματος. Η παρούσα ΔΔ διαπραγματεύεται στρατηγικές κατανομής ραδιοπόρων στην κατερχόμενη και στην ανερχόμενη ζεύξη συστημάτων OFDMA, στην κατερχόμενη ζεύξη συστημάτων MISO-OFDMA και στην κατερχόμενη ζεύξη συστημάτων MIMO-OFDMA στοχεύοντας στη μεγιστοποίηση του συνολικού ρυθμού μετάδοσης δεδομένων των χρηστών εγγυώντας οι ρυθμοί μετάδοσης δεδομένων των χρηστών να τηρούν μια προκαθορισμένη αναλογία μεταξύ τους ή να ξεπερνούν προκαθορισμένους ελάχιστους ρυθμούς μετάδοσης δεδομένων. Στο πλαίσιο της επίλυσης του προβλήματος της μεγιστοποίησης του συνολικού ρυθμού μετάδοσης δεδομένων των χρηστών με ανεκτή πολυπλοκότητα για κάθε μία από τις προαναφερθείσες περιπτώσεις, προτείνονται νέοι υποβέλτιστοι αλγόριθμοι. Στην κατερχόμενη ζεύξη των συστημάτων SISO, στόχος είναι η μεγιστοποίση του συνολικού ρυθμού μετάδοσης δεδομένων των χρηστών με περιορισμό στη συνολική διαθέσιμη ισχύ και με αναλογικούς ρυθμούς μετάδοσης δεδομένων μεταξύ των χρηστών. Η προτεινόμενη μέθοδος, η οποία είναι αποτελεσματική όσον αφορά στην πολυπλοκότητα, αποτελείται από τρεις αλγόριθμους: έναν αλγόριθμο ο οποίος προσδιορίζει τον αριθμό των υποφορέων για κάθε χρήστη, έναν αλγόριθμο κατανομής υποφορέων διαιρώντας τους χρήστες σε δύο ομάδες και τον αλγόριθμο water-filling. Οι πρώτοι δύο αλγόριθμοι αναθέτουν τους διαθέσιμους υποφορείς στους χρήστες του συστήματος και ο τρίτος αλγόριθμος κατανέμει τη διαθέσιμη ισχύ με βέλτιστο τρόπο για μεγιστοποίηση του συνολικού ρυθμού μετάδοσης δεδομένων. Στην ανερχόμενη ζεύξη των συστημάτων SISO, στόχος είναι η μεγιστοποίηση του συνολικού ρυθμού μετάδοσης δεδομένων των χρηστών με περιορισμό στην ισχύ κάθε χρήστη και σε ελάχιστους ρυθμούς μετάδοσης δεδομένων μεταξύ των χρηστών. Η προτεινόμενη τεχνική, η οποία είναι αποτελεσματική όσον αφορά στην πολυπλοκότητα, αποτελείται από τρεις αλγόριθμους: έναν αλγόριθμο ο οποίος προσδιορίζει τον αριθμό των υποφορέων για κάθε χρήστη, έναν αλγόριθμο κατανομής υποφορέων διαιρώντας τους χρήστες σε δύο ομάδες και τον αλγόριθμο water-filling. Οι πρώτοι δύο αλγόριθμοι αναθέτουν τους διαθέσιμους υποφορείς στους χρήστες του συστήματος και ο τρίτος αλγόριθμος κατανέμει τη διαθέσιμη ισχύ. Στην κατερχόμενη ζεύξη των συστημάτων MISO αναπτύσσονται τρεις αλγόριθμοι επιλογής χρηστών και κατανομής πόρων για πολυχρηστικά συστήματα κατερχόμενης ζεύξης οι οποίοι είναι λιγότερο πολύπλοκοι από άλλες προσεγγίσεις και ενσωματώνουν τη δικαιοσύνη. Στους πρώτους δύο αλγόριθμους επιβάλλονται αναλογικοί περιορισμοί μεταξύ των ρυθμών μετάδοσης δεδομένων των χρηστών και στον τρίτο αλγόριθμο περιορισμοί στους ελάχιστους ρυθμούς μετάδοσης δεδομένων λαμβάνονται υπόψη. Επίσης, πραγματοποιείται επέκταση του αλγόριθμου μεγιστοποίησης του συνολικού ρυθμού μετάδοσης δεδομένων με αναλογικούς περιορισμούς δικαιοσύνης σε ΣΚΚ και για μείωση της πολυπλοκότητας οι υποφορείς ομαδοποιούνται σε τεμάχια. Τα αποτελέσματα της προσομοίωσης επιβεβαιώνουν την αποτελεσματικότητα τους στη διανομή του συνολικού ρυθμού μετάδοσης δεδομένων δίκαια μεταξύ των χρηστών αλλά και ότι σε ΣΚΚ επιτυγχάνονται μεγαλύτεροι συνολικοί ρυθμοί μετάδοσης δεδομένων. Τέλος, στην κατερχόμενη ζεύξη των συστημάτων MIMO, το πρόβλημα διατυπώνεται με στόχο τη μεγιστοποίηση του συνολικού ρυθμού μετάδοσης δεδομένων των χρηστών με περιορισμό στη συνολική διαθέσιμη ισχύ και ελέγξιμο εύρος ζώνης στο σύστημα εισάγοντας την παράμετρο α. Αφού αυτό το πρόβλημα βελτιστοποίησης πρέπει να εκτελεστεί σε πραγματικό χρόνο, προτείνεται ένας αλγόριθμος αποδοτικός, υποβέλτιστος και αποτελεματικός όσον αφορά στην πολυπλοκότητα ο οποίος παρουσιάζει λογική απώλεια όσον αφορά στην περίπτωση χωρίς περιορισμούς όπου ο μόνος στόχος είναι η μεγιστοποίηση του συνολικού ρυθμού μετάδοσης δεδομένων και εντυπωσιακό όφελος συγκρινόμενος με τη στατική τεχνική TDMA. Πέραν της θεωρητικής ανάλυσης των παραπάνω αλγόριθμων, ο προσομοιωτικός κώδικας που δημιουργήθηκε βασισμένος σε ρεαλιστικές υποθέσεις και απλουστεύσεις, μάς έδωσε τα αποτελέσματα εκείνα τα οποία μετρούν το συνολικό ρυθμό μετάδοσης δεδομένων των χρηστών ο οποίος παρέχεται από κάθε έναν από τους προαναφερθέντες αλγόριθμους και εξετάζουν την πιθανή καταλληλότητα για χρήση τους σε συγκεκριμένα περιβάλλοντα. Τα τελικά συμπεράσματα είναι ότι τα συστήματα MIMO-OFDMA είναι ικανά να προσφέρουν πραγματικές ευρυζωνικές υπηρεσίες πάνω από το ασύρματο κανάλι επικοινωνίας.
Future wireless communication networks and systems are expected to reliably provide data services with data rate requirements ranging from a few kbps up to some Mbps and, due to the high costs of frequency spectrum, these systems also need to be extremely efficient in terms of the spectrum usage. In particular, the application of transmission schemes based on OFDMA and on MIMO is considered as a promising solution to meet these requirements. On the one hand, MIMO-OFDMA systems are flexible and spectrally efficient but the considerably large number of subcarriers and the inclusion of the space dimension make the RRA in such systems very complex. In fact, the optimum RRA that maximizes the sum of the users' data rates is often too complex for practical application. Consequently, suboptimal rather efficient and low-complexity RRA strategies are required in order to allocate the frequency, power, and space radio resources of the system to the users of the system. This doctoral thesis deals with RRA strategies in the downlink and uplink of OFDMA systems, the downlink of MISO-OFDMA systems, and the downlink of MIMO-OFDMA systems aiming at the maximization of the sum of the users' data rates guaranteeing proportional data rates or minimum data rates among users. In order to solve the problem of maximizing the sum of the users' data rates with affordable complexity in each one of the aforementioned cases, new suboptimal algorithms are proposed. In the SISO downlink the objective is to maximize the sum of the users' data rates subject to constraints on the total available power and proportional data rates among users. The proposed method, which is also complexity effective, consists of three algorithms; an algorithm that determines the number of subcarriers for each user, a subcarrier allocation algorithm by dividing the users in two groups and the water-filling algorithm. The first two algorithms assign the available subcarriers to the users of the system and the third one allocates the available power optimally in order to maximize the sum of the users' data rates. In the SISO uplink the objective is to maximize the sum of the users' data rates subject to constraints on per user power and minimum data rates among users. The proposed scheme, which is also complexity effective, consists of three algorithms; an algorithm that determines the number of subcarriers for each user, a subcarrier allocation algorithm by dividing the users in two groups and the water-filling algorithm. The first two algorithms assign the available subcarriers to the users of the system and the third one allocates the available power. In the MISO downlink three user selection and resource allocation algorithms for multiuser downlink systems are developed that are less complex than other approaches and incorporate fairness. In the first two algorithms proportional constraints among the users' data rates are imposed and in the third algorithm minimum data rate constraints are taken into account. The proposed algorithm that maximizes the sum of the users' data rates with proportional data rate constraints is also applied to DAS and subcarriers are grouped to chunks. Simulation results sustain their effectiveness in distributing the sum data rate fairly and flexibly among users and that in DAS higher sum of the users' data rates are obtained. Finally, in the MIMO downlink the problem is formulated in order to maximize the sum of the users' data rates subject to total available power constraint with controllable bandwidth introducing system parameter α. Since this optimization should be performed in real time, an efficient, suboptimal and complexity effective algorithm is proposed which shows reasonable loss with respect to the unconstrained case where the only target is the maximization of the sum data rate and impressive profit compared to static TDMA scheme. Apart from the theoretical analysis of the above algorithms, simulation code, which was created based on realistic assumptions and simplifications, gave us results which measure the sum of the users' data rates that provide each one of the aforementioned algorithms and examine the possible appropriateness for use in specific environments. The final concluding results are that MIMO-OFDMA systems are able to offer real broadband services over the wireless communication channel.
APA, Harvard, Vancouver, ISO, and other styles
45

Bhavani, Shankar M. R. "Design Of Linear Precoded MIMO Communication Systems." Thesis, 2007. http://hdl.handle.net/2005/558.

Full text
Abstract:
This work deals with the design of MT transmit, MR receive antenna MIMO (Multiple Input Multiple Output) communication system where the transmitter performs a linear operation on data. This linear precoding model includes systems which involve signal shaping for achieving higher data rates, uncoded MIMO Multicarrier and Single-Carrier systems and, the more recent, MIMO-OFDM (Orthogonal Frequency Division Multiplexing) systems employing full diversity Space-Frequency codes. The objective of this work is to design diversity centric and rate centric linear precoded MIMO systems whose performance is better than the existing designs. In particular, we consider MIMO-OFDM systems, Zero Padded MIMO systems and MIMO systems with limited rate feedback. Design of full diversity MIMO-OFDM systems of rate symbol per channel use (1 s/ pcu) : In literature, MIMO-OFDM systems exploiting full diversity at a rate of 1 s/ pcu are based on a few specific Space-Frequency (SF)/ Space-Time-Frequency (STF) codes. In this work, we devise a general parameterized framework for the design of MIMO-OFDM systems employing full diversity STF codes of rate 1 s/ pcu. This framework unifies all existing designs and provides tools for the design of new systems with interesting properties and superior performance. Apart from rate and diversity, the parameters of the framework are designed for a low complexity receiver. The parameters of the framework usually depend on the channel characteristics (number of multipath, Delay Profile (DP)). When channel characteristics are available at the transmitter, a procedure to optimize the performance of STF codes is provided. The resulting codes are termed as DP optimized codes. Designs obtained using the optimization are illustrated and their performance is shown to be better than the existing ones. To cater to the scenarios where channel characteristics are not available at the transmitter, a complete characterization of a class of full diversity DP Independent (DPI) STF codes is provided. These codes exploit full diversity on channels with a given number of multipath irrespective of their characteristics. Design of DP optimized STF codes and DPI codes from the same framework highlights the flexibility of the framework. Design of Zero Padded (ZP) MIMO systems : While the MIMO-OFDM transmitter needs to precode data for exploiting channel induced multipath diversity, ZP MIMO systems with ML receivers are shown to exploit multipath diversity without any precoding. However, the receiver complexity of such systems is enormous and hence a study ZP MIMO system with linear receivers is undertaken. Central to this study involves devising low complexity receivers and deriving the diversity gain of linear receivers. Reduced complexity receiver implementations are presented for two classes of precoding schemes. An upper bound on the diversity gain of linear receivers is evaluated for certain precoding schemes. For uncoded systems operating on a channel of length L, this bound is shown to be MRL_MT +1 for uncoded transmissions, i.e, such systems tend to exploit receiver and multipath diversities. On the other hand, MIMO-OFDM systems designed earlier have to trade diversity with receiver complexity. These observations motivate us to use ZP MIMO systems with linear receivers for channels with large delay spread when receiver complexity is at a premium. Design examples highlighting the attractiveness of ZP systems when employed on channels with large delay spread are also presented. Efficient design of MIMO systems with limited feedback : Literature presents a number of works that consider the design of MIMO systems with partial feedback. The works that consider feedback of complete CSI, however, do not provide for an efficient system design. In this work, we consider two schemes, Correlation matrix feedback and Channel information feedback that convey complete CSI to the transmitter. This CSI is perturbed due to various impairments. A perturbation analysis is carried out to study the variations in mutual information for each of the proposed schemes. For ergodic channels, this analysis is used to design a MIMO system with a limited rate feedback. Using a codebook based approach, vector quantizers are designed to minimize the loss in ergodic capacity for each of the proposed schemes. The efficiency of the design stems from the ability to obtain closed-form expression for centroids during the iterative vector quantizer design. The performance of designed vector quantizers compare favorably with the existing designs. The vector quantizer design for channel information feedback is robust in the sense that the same codebook can be used across all operating SNR. Use of vector quantizers for improving the outage performance is also presented.
APA, Harvard, Vancouver, ISO, and other styles
46

Paul, Prabal. "On The Peak-To-Average-Power-Ratio Of Affine Linear Codes." Thesis, 2006. http://hdl.handle.net/2005/350.

Full text
Abstract:
Employing an error control code is one of the techniques to reduce the Peak-to-Average Power Ratio (PAPR) in an Orthogonal Frequency Division Multiplexing system; a well known class of such codes being the cosets of Reed-Muller codes. In this thesis, classes of such coset-codes of arbitrary linear codes are considered. It has been proved that the size of such a code can be doubled with marginal/no increase in the PAPR. Conditions for employing this method iteratively have been enunciated. In fact this method has enabled to get the optimal coset-codes. The PAPR of the coset-codes of the extended codes is obtained from the PAPR of the corresponding coset-codes of the parent code. Utility of a special type of lengthening is established in PAPR studies
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography