To see the other types of publications on this topic, follow the link: Space division multiplexing.

Journal articles on the topic 'Space division multiplexing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Space division multiplexing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

TSUCHIDA, Yukihiro, Koichi MAEDA, and Ryuichi SUGIZAKI. "Multicore EDFA for Space Division Multiplexing." IEICE Transactions on Communications E97.B, no. 7 (2014): 1265–71. http://dx.doi.org/10.1587/transcom.e97.b.1265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richardson, D. J., J. M. Fini, and L. E. Nelson. "Space-division multiplexing in optical fibres." Nature Photonics 7, no. 5 (April 29, 2013): 354–62. http://dx.doi.org/10.1038/nphoton.2013.94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pan, Z., K. K. Wong, and T. S. Ng. "Generalized Multiuser Orthogonal Space-Division Multiplexing." IEEE Transactions on Wireless Communications 3, no. 6 (November 2004): 1969–73. http://dx.doi.org/10.1109/twc.2004.837449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Chao, Aneesh Alex, Janarthanan Rasakanthan, and Yutao Ma. "Space-division multiplexing optical coherence tomography." Optics Express 21, no. 16 (August 6, 2013): 19219. http://dx.doi.org/10.1364/oe.21.019219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Guifang, Magnus Karlsson, Xiang Liu, and Yves Quiquempois. "Focus issue introduction: space-division multiplexing." Optics Express 22, no. 26 (December 29, 2014): 32526. http://dx.doi.org/10.1364/oe.22.032526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carboni, Christian, and Guifang Li. "Novel applications of space-division multiplexing." Frontiers of Optoelectronics 9, no. 2 (April 9, 2016): 270–76. http://dx.doi.org/10.1007/s12200-016-0607-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tu Jiajing, 涂佳静, and 李朝晖 Li Zhaohui. "Review of Space Division Multiplexing Fibers." Acta Optica Sinica 41, no. 1 (2021): 0106003. http://dx.doi.org/10.3788/aos202141.0106003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mizuno, Takayuki, and Yutaka Miyamoto. "High-capacity dense space division multiplexing transmission." Optical Fiber Technology 35 (February 2017): 108–17. http://dx.doi.org/10.1016/j.yofte.2016.09.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jia, Dagong, Haiwei Zhang, Zhe Ji, Neng Bai, and Guifang Li. "Optical fiber amplifiers for space-division multiplexing." Frontiers of Optoelectronics 5, no. 4 (November 8, 2012): 351–57. http://dx.doi.org/10.1007/s12200-012-0294-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Puttnam, Benjamin J., Georg Rademacher, and Ruben S. Luís. "Space-division multiplexing for optical fiber communications." Optica 8, no. 9 (September 2, 2021): 1186. http://dx.doi.org/10.1364/optica.427631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

TAKENAGA, Katsuhiro. "Multi-Core Fibers for Space Division Multiplexing Transmission." Review of Laser Engineering 46, no. 8 (2018): 443. http://dx.doi.org/10.2184/lsj.46.8_443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Butler, Douglas L., Ming-Jun Li, Shenping Li, Ying Geng, Rostislav R. Khrapko, Robert A. Modavis, Vladimir N. Nazarov, and Alexander V. Koklyushkin. "Space Division Multiplexing in Short Reach Optical Interconnects." Journal of Lightwave Technology 35, no. 4 (February 15, 2017): 677–82. http://dx.doi.org/10.1109/jlt.2016.2619981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhang, Meng, Henan Liu, Bing Wang, Guifang Li, and Lin Zhang. "Efficient Grating Couplers for Space Division Multiplexing Applications." IEEE Journal of Selected Topics in Quantum Electronics 24, no. 6 (November 2018): 1–5. http://dx.doi.org/10.1109/jstqe.2018.2829659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Leon-Saval, Sergio G., Nicolas K. Fontaine, Joel R. Salazar-Gil, Burcu Ercan, Roland Ryf, and Joss Bland-Hawthorn. "Mode-selective photonic lanterns for space-division multiplexing." Optics Express 22, no. 1 (January 10, 2014): 1036. http://dx.doi.org/10.1364/oe.22.001036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lin, Chun-Yu, Ying-Pyng Lin, Hai-Han Lu, Chia-Yi Chen, Tai-Wei Jhang, and Min-Chou Chen. "Optical free-space wavelength-division-multiplexing transport system." Optics Letters 39, no. 2 (January 8, 2014): 315. http://dx.doi.org/10.1364/ol.39.000315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Klaus, Werner, Benjamin J. Puttnam, Ruben S. Luís, Jun Sakaguchi, José-Manuel Delgado Mendinueta, Yoshinari Awaji, and Naoya Wada. "Advanced Space Division Multiplexing Technologies for Optical Networks." Journal of Optical Communications and Networking 9, no. 4 (February 7, 2017): C1. http://dx.doi.org/10.1364/jocn.9.0000c1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kurita, Hisakazu, and Shigeru Kawai. "Wavelength-Division Multiplexing Switches Using Free-Space Optics." Optical Review 4, no. 6 (November 1997): 666–69. http://dx.doi.org/10.1007/s10043-997-0666-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ferrari, Alessio, Emanuele Virgillito, and Vittorio Curri. "Band-Division vs. Space-Division Multiplexing: A Network Performance Statistical Assessment." Journal of Lightwave Technology 38, no. 5 (March 1, 2020): 1041–49. http://dx.doi.org/10.1109/jlt.2020.2970484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Solyman, Ahmad AA, Hani Attar, Mohammad R. Khosravi, and Baki Koyuncu. "MIMO-OFDM/OCDM low-complexity equalization under a doubly dispersive channel in wireless sensor networks." International Journal of Distributed Sensor Networks 16, no. 6 (June 2020): 155014772091295. http://dx.doi.org/10.1177/1550147720912950.

Full text
Abstract:
In this article, three novel systems for wireless sensor networks based on Alamouti decoding were investigated and then compared, which are Alamouti space–time block coding multiple-input single-output/multiple-input multiple-output multicarrier modulation (MCM) system, extended orthogonal space–time block coding multiple-input single-output MCM system, and multiple-input multiple-output system. Moreover, the proposed work is applied over multiple-input multiple-output systems rather than the conventional single-antenna orthogonal chirp division multiplexing systems, based on the discrete fractional cosine transform orthogonal chirp division multiplexing system to mitigate the effect of frequency-selective and time-varying channels, using low-complexity equalizers, specifically by ignoring the intercarrier interference coming from faraway subcarriers and using the LSMR iteration algorithm to decrease the equalization complexity, mainly with long orthogonal chirp division multiplexing symbols, such as the TV symbols. The block diagrams for the proposed systems are provided to simplify the theoretical analysis by making it easier to follow. Simulation results confirm that the proposed multiple-input multiple-output and multiple-input single-output orthogonal chirp division multiplexing systems outperform the conventional multiple-input multiple-output and multiple-input single-output orthogonal frequency division multiplexing systems. Finally, the results show that orthogonal chirp division multiplexing exhibited a better channel energy behavior than classical orthogonal frequency division multiplexing, thus improving the system performance and allowing the system to decrease the equalization complexity.
APA, Harvard, Vancouver, ISO, and other styles
20

Dai, Daoxin, and John E. Bowers. "Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects." Nanophotonics 3, no. 4-5 (August 1, 2014): 283–311. http://dx.doi.org/10.1515/nanoph-2013-0021.

Full text
Abstract:
AbstractAn effective solution to enhance the capacity of an optical-interconnect link is utilizing advanced multiplexing technologies, like wavelength-division-multiplexing (WDM), polarization-division multiplexing (PDM), spatial-division multiplexing (SDM), bi-directional multiplexing, etc. On-chip (de)multiplexers are necessary as key components for realizing these multiplexing systems and they are desired to have small footprints due to the limited physical space for on-chip optical interconnects. As silicon photonics has provided a very attractive platform to build ultrasmall photonic integrated devices with CMOS-compatible processes, in this paper we focus on the discussion of silicon-based (de)multiplexers, including WDM filters, PDM devices, and SDM devices. The demand of devices to realize a hybrid multiplexing technology (combining WDM, PDM and SDM) as well as a bidirectional multiplexing technologies are also discussed to achieve Peta-bit optical interconnects.
APA, Harvard, Vancouver, ISO, and other styles
21

Slaveski, F., J. Sloss, M. Atiquzzaman, Hung Nguyen, and Due Ngo. "Optical fiber wavelength division multiplexing." IEEE Aerospace and Electronic Systems Magazine 18, no. 8 (August 2003): 3–8. http://dx.doi.org/10.1109/maes.2003.1224965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Upadhyay, Kamal Kishore, Saumya Srivastava, N. K. Shukla, and Sushank Chaudhary. "High-Speed 120 Gbps AMI-WDM-PDM Free Space Optical Transmission System." Journal of Optical Communications 40, no. 4 (October 25, 2019): 429–33. http://dx.doi.org/10.1515/joc-2017-0086.

Full text
Abstract:
Abstract Free space optical (FSO) communication systems are gaining high popularity from the last decade due to its various advantages such as no license spectrum, low-cost implementation etc. In this work, 160 Gbps data is transmitted over 8 km FSO link by adopting alternate mark inversion (AMI), wavelength division multiplexing (WDM) and polarization division multiplexing (PDM) schemes. The results are reported in terms of Q factor, bit error rate, signal to noise ratio, total received power and eye diagrams.
APA, Harvard, Vancouver, ISO, and other styles
23

TAKARA, Hidehiko, Tetsuo TAKAHASHI, Kazuhide NAKAJIMA, and Yutaka MIYAMOTO. "Petabit/s Optical Transmission Using Multicore Space-Division-Multiplexing." IEICE Transactions on Communications E97.B, no. 7 (2014): 1259–64. http://dx.doi.org/10.1587/transcom.e97.b.1259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

AWAJI, Yoshinari. "Review of Space-Division Multiplexing Technologies in Optical Communications." IEICE Transactions on Communications E102.B, no. 1 (January 1, 2019): 1–16. http://dx.doi.org/10.1587/transcom.2017ebi0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

SENO, Kazunori, Kenya SUZUKI, Keita YAMAGUCHI, Mitsumasa NAKAJIMA, Toshikazu HASHIMOTO, Mitsunori FUKUTOKU, and Yutaka MIYAMOTO. "Optical Switching Technology for Space Division Multiplexing Network Nodes." Review of Laser Engineering 46, no. 8 (2018): 431. http://dx.doi.org/10.2184/lsj.46.8_431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fontaine, Nicolas K., Roland Ryf, Joss Bland-Hawthorn, and Sergio G. Leon-Saval. "Geometric requirements for photonic lanterns in space division multiplexing." Optics Express 20, no. 24 (November 16, 2012): 27123. http://dx.doi.org/10.1364/oe.20.027123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

IBI, S. "Space-Path Division Multiplexing Technique for Eigenmode Transmission System." IEICE Transactions on Communications E89-B, no. 6 (June 1, 2006): 1960–63. http://dx.doi.org/10.1093/ietcom/e89-b.6.1960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Weng, Yi, Xuan He, and Zhongqi Pan. "Space division multiplexing optical communication using few-mode fibers." Optical Fiber Technology 36 (July 2017): 155–80. http://dx.doi.org/10.1016/j.yofte.2017.03.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Jain, S., V. J. F. Rancaño, T. C. May-Smith, P. Petropoulos, J. K. Sahu, and D. J. Richardson. "Multi-Element Fiber Technology for Space-Division Multiplexing Applications." Optics Express 22, no. 4 (February 11, 2014): 3787. http://dx.doi.org/10.1364/oe.22.003787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Weitkemper, Petra, and Gerhard Bauch. "Analysis of distributed interleave-division-multiplexing space-frequency codes." Transactions on Emerging Telecommunications Technologies 24, no. 1 (August 28, 2012): 102–12. http://dx.doi.org/10.1002/ett.2568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jerwick, Jason, Yongyang Huang, Zhao Dong, Adrienne Slaudades, Alexander J. Brucker, and Chao Zhou. "Wide-field ophthalmic space-division multiplexing optical coherence tomography." Photonics Research 8, no. 4 (March 31, 2020): 539. http://dx.doi.org/10.1364/prj.383034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Huang, Yongyang, Jason Jerwick, Guoyan Liu, and Chao Zhou. "Full-range space-division multiplexing optical coherence tomography angiography." Biomedical Optics Express 11, no. 8 (July 31, 2020): 4817. http://dx.doi.org/10.1364/boe.400162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Li, Guifang, Neng Bai, Ningbo Zhao, and Cen Xia. "Space-division multiplexing: the next frontier in optical communication." Advances in Optics and Photonics 6, no. 4 (December 23, 2014): 413. http://dx.doi.org/10.1364/aop.6.000413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Rusch, Leslie A., and Sophie Larochelle. "Fiber transmission demonstrations in vector mode space division multiplexing." Frontiers of Optoelectronics 11, no. 2 (June 2018): 155–62. http://dx.doi.org/10.1007/s12200-018-0812-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Balasaraswathi, M., Mehtab Singh, Jyoteesh Malhotra, and Vigneswaran Dhasarathan. "A high-speed radio-over-free-space optics link using wavelength division multiplexing-mode division multiplexing-multibeam technique." Computers & Electrical Engineering 87 (October 2020): 106779. http://dx.doi.org/10.1016/j.compeleceng.2020.106779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Qu, Zhen, and Ivan Djordjevic. "Orbital Angular Momentum Multiplexed Free-Space Optical Communication Systems Based on Coded Modulation." Applied Sciences 8, no. 11 (November 7, 2018): 2179. http://dx.doi.org/10.3390/app8112179.

Full text
Abstract:
In this paper, we experimentally investigate the turbulence mitigation methods in free-space optical communication systems based on orbital angular momentum (OAM) multiplexing. To study the outdoor atmospheric turbulence environment, we use an indoor turbulence emulator. Adaptive optics, channel coding, Huffman coding combined with low-density parity-check (LDPC) coding, and spatial offset are used for turbulence mitigation; while OAM multiplexing and wavelength-division multiplexing (WDM) are applied to boost channel capacity.
APA, Harvard, Vancouver, ISO, and other styles
37

Lavery, Martin P. J., Hao Huang, Yongxiong Ren, Guodong Xie, and Alan E. Willner. "Demonstration of a 280 Gbit/s free-space space-division-multiplexing communications link utilizing plane-wave spatial multiplexing." Optics Letters 41, no. 5 (February 17, 2016): 851. http://dx.doi.org/10.1364/ol.41.000851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lee, Hyung, Soon-Woo Cho, Gyeong Kim, Myung Jeong, Young Won, and Chang-Seok Kim. "Parallel Imaging of 3D Surface Profile with Space-Division Multiplexing." Sensors 16, no. 1 (January 21, 2016): 129. http://dx.doi.org/10.3390/s16010129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

TAKARA, Hidehiko. "Large Capacity Optical Transmission Technology Using Multicore Space-Division-Multiplexing." Review of Laser Engineering 41, no. 6 (2013): 437. http://dx.doi.org/10.2184/lsj.41.6_437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

SUGIZAKI, Ryuichi, and Ryo NAGASE. "Optical Wiring Technologies in Photonic Node Utilizing Space Division Multiplexing." Review of Laser Engineering 46, no. 8 (2018): 437. http://dx.doi.org/10.2184/lsj.46.8_437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Pei Li, 裴. 丽., 王建帅 Wang Jianshuai, 郑晶晶 Zheng Jingjing, 宁提纲 Ning Tigang, 解宇恒 Xie Yuheng, 何. 倩. He Qian, and 李. 晶. Li Jing. "Research on specialty and application of space-division-multiplexing fiber." Infrared and Laser Engineering 47, no. 10 (2018): 1002001. http://dx.doi.org/10.3788/irla201847.1002001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Xia, Peng, Qinghua Wang, Shien Ri, and Hiroshi Tsuda. "Calibrated phase-shifting digital holography based on space-division multiplexing." Optics and Lasers in Engineering 123 (December 2019): 8–13. http://dx.doi.org/10.1016/j.optlaseng.2019.06.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Amphawan, Angela, Sushank Chaudhary, and Tse-Kian Neo. "Hermite-Gaussian Mode Division Multiplexing for Free-Space Optical Interconnects." Advanced Science Letters 21, no. 10 (October 1, 2015): 3050–53. http://dx.doi.org/10.1166/asl.2015.6532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Meng, Ziyi, Jianqiang Li, Chunjing Yin, Tian Zhang, Zhenming Yu, Ming Tang, Weijun Tong, and Kun Xu. "Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing." AIP Advances 9, no. 1 (January 2019): 015004. http://dx.doi.org/10.1063/1.5052276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zhang, Shengyu, and Kwan L. Yeung. "Dynamic service provisioning in space-division multiplexing elastic optical networks." Journal of Optical Communications and Networking 12, no. 11 (August 20, 2020): 335. http://dx.doi.org/10.1364/jocn.396197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bonjour, Romain, Samuel Welschen, and Juerg Leuthold. "Time-to-Space Division Multiplexing for Tb/s Mobile Cells." IEEE Transactions on Wireless Communications 17, no. 7 (July 2018): 4806–18. http://dx.doi.org/10.1109/twc.2018.2832046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Din, Der-Rong, and Zheng Jie Huang. "The RBCMLSA problem on space division multiplexing elastic optical networks." Optical Fiber Technology 53 (December 2019): 102003. http://dx.doi.org/10.1016/j.yofte.2019.102003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gatto, Alberto, Matteo Tacca, Paolo Martelli, Pierpaolo Boffi, and Mario Martinelli. "Free-space orbital angular momentum division multiplexing with Bessel beams." Journal of Optics 13, no. 6 (April 28, 2011): 064018. http://dx.doi.org/10.1088/2040-8978/13/6/064018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Jin, Y. D., and M. Kavehrad. "Optical cross connect based on WDM and space-division multiplexing." IEEE Photonics Technology Letters 7, no. 11 (November 1995): 1300–1302. http://dx.doi.org/10.1109/68.473478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Song Xiaomei, 宋晓梅, 宋. 菲. Song Fei, 宋. 鹏. Song Peng, and 李云红 Li Yunhong. "Routing Protocol of Ultraviolet Space Division Multiplexing Ad Hoc Network." Chinese Journal of Lasers 44, no. 10 (2017): 1006005. http://dx.doi.org/10.3788/cjl201744.1006005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography