Contents
Academic literature on the topic 'Spaltöffnung'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spaltöffnung.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spaltöffnung"
Klingauf, F., and Ç. ŞEngonca. "Raster-elektronenoptische Beobachtungenüber die Bedeckung von Spaltöffnungen durch Wachsabsonderungen von Trialeurodes vaporariorum Westw. (Horn., Aleyrodidae)." Zeitschrift für Angewandte Entomologie 93, no. 1-5 (August 26, 2009): 90–93. http://dx.doi.org/10.1111/j.1439-0418.1982.tb03573.x.
Full textDissertations / Theses on the topic "Spaltöffnung"
Mumm, Patrick. "Elektrophysiologische Untersuchungen der Ionenflüsse und ihrer Regulation in Stomakomplex-bildenden Zellen von Zea mays und Schließzellen von Arabidopsis thaliana." Doctoral thesis, 2010. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-49267.
Full text1. Within this dissertation the following new insights into the coordinated ion transport between guard and subsidiary cells of Zea mays were gained: a. Using the patch clamp technique on subsidiary and guard cell protoplasts, S-type-like anion channels were identified in both cell types. In subsidiary cells they were inhibited by elevated cytosolic calcium con-centrations and stimulated by ABA and cytosolic alkalinization. In con-trast, the S-type-like guard cell anion channels were hardly influenced by alkalinization and stimulated upon a rise in the cytosolic free calcium level. b. Impaling of subsidiary cells in intact Zea mays plants with microeletrodes revealed a reversed membrane polarization during light-/darkness-induced stomatal movement. Since the membrane potential of Hordeum vulgare subsidiary cells showed a similar behavior that was, however, reversed in the surrounding guard cells during stomatal movement, a similar change in the membrane potential of Zea mays guard cells is most likely. c. Furthermore an alkalinization in Zea mays subsidiary cell could be moni-tored during light-induced stomatal opening, which returned to original values after stomatal closure. d. Based on reconstructed 3D-models of intact maize stomatal complexes, a volume ratio between guard cells and subsidiary cells of 1:6 and 1:4 of open and closed stomata, respectively, were estimated. The obtained results could be conclusively embedded in a model that decribes the shuttle transport of ions between guard and subsidiary cells during light-induced stomatal movement. 2. Patch clamp studies on guard cells of A. thaliana CPK23- and OST1-loss-of-function mutants showed strongly reduced S-type anion currents after stimula-tion through Ca2+ or ABA compared to wild type. These in vivo data support the results of the working group of Prof. R. Hedrich (University Würzburg), that OST1 and CPK23 are directly interacting with the S-type anion channel in A. thaliana. The SLAC1-homologue gene SLAH3 is encoding for a nitrate perme-able S-type anion channel in guard cells. Since SLAC1-loss-of-funtion mutants generate S type anion currents when nitrate is the dominating anion or nitrate is present in chloride-based solutions, SLAH3 seems to represent an alternative pathway for anion efflux in guard cells. 3. The R-type anion channels from Arabidopsis thaliana guard cells were electro-physiologically characterized and revealed similar electrical characteristics as those known from Vicia faba guard cells: strong voltage dependence, fast activa-tion- and deactivation kinetics. In contrast to Vicia faba, however, the voltage dependence was not modulated by external malate. But in the presence of exter-nal malate the current response in ALMT12-loss-of-function mutants was strongly reduced, while similar anion currents were monitored in wild type and almt12 mutant plants in the absence of external malate. These results indicate that ALMT12 is likely responsible for the malate-activating component of the R-type anion channel
Förster, Sabrina. "Regulation des Kaliumausstroms im ABA- und Jasmonatvermittelten Stomaschluss." Doctoral thesis, 2015. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-115455.
Full textStomata are microscopically small pores in the leaf surface of land plants, through which the leaf tissue is supplied with CO2. To protect the plant from both desiccation and infection by pathogens, a mechanism evolved to adjust the pore width to the plants needs by movement of the surrounding guard cells. A dense signaling network controls these movements and is able to integrate external as well as internal stimuli. Stomatal closure is osmotically driven by the loss of turgor in guard cells caused by efflux of ions such as K+. In this work, we investigated the regulation by phosphorylation of the main K+ efflux channel for stomatal closure, GORK. The following results were obtained with electrophysiological measurements via the DEVC- technique: GORK is phosphorylated by OST1 in a Ca2+- independent and by CBL1/9-CIPK5 as well as CBL1-CIPK23 in a Ca2+-dependent manner. CBL1 anchors CIPK5 at the plasma membrane and must bind Ca2+ for activation of CIPK5. CIPK5 requires both ATP binding and a conformational change for phosphorylation of GORK. For the first time it was shown that the PP2C phosphatase ABI2 interacts directly with an ion channel and inhibits its activity. ABI2 also interacts with the kinases OST1, CIPK5 and CIPK23, implying a control by ABI2 over channel activity in multiple ways. OST1 and ABI2 link GORK regulation with the ABA signaling pathway. Guard cells of gork1-2, cbl1/cbl9 and cipk5-2 are insensitive to MeJA, but not to ABA. This represents a direct connection between JA signal transduction and Ca2+ signaling. In this work, further hints could be found for the complex interplay of the phytohormones ABA, JA and the effector Coronatine of Pseudomonas. Here it was shown for the first time that guard cells respond differently to MeJA and the phytotoxin Coronatine, based on incubation time. Depending on the temporal sequence of perception, ABA and Coronatine act antagonistically on the pore width. Jasmonate signal transduction in guard cells leads to a minor synthesis of ABA as well as protein degradation via the ubiquitin/ 26S proteasome system and initiates stomatal closure requiring ABA receptors (PYR/PYLs). This work describes the JA-controlled regulation of the potassium efflux channel GORK as well as some differential aspects of ABA, JA and Coronatine triggered stomatal movements
Lind, Christof Martin. "Während der Evolution von Landpflanzen geriet der Anionenkanal SLAC1 unter die Kontrolle des ABA-Signalwegs." Doctoral thesis, 2016. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-141669.
Full textSince the beginnings of the colonization of the land, plants had to overcome numerous obstacles. In this new environment the major challenge was the preservation of water supply despite the severe changes in the availability of water. Due to these new requirements plants had to balance water loss and the necessary uptake of CO2 for photosynthesis. Along the evolution of land plants they evolved numerous adaptations to the new environment like the cuticle and adjustable stomata. The stomata are small pores embedded in the epidermis of the leaves. A pair of guard cells regulates the aperture of the pore (stoma) via their turgor pressure. Potassium and the counter ions chloride and nitrate are the major osmolytes driving the opening and closing of the stoma. Specialized transport proteins regulate the ion fluxes across the plasma membrane of guard cells. In seed plants like the model plant Arabidopsis thaliana, the control of guard cells under drought stress conditions is well understood. Upon water shortage the plants produce the phytohormone ABA (abscisic acid). Following the perception of ABA by its receptors, the phytohormone activates the protein kinase OST1. The activated kinase on the one hand controls the expression of ABA dependent genes that lead to drought-adaptation and tolerance. On the other hand, the OST1 kinase phosphorylates and activates SLAC1-type anion channels. In turn, the activation of SLAC1 leads to the release of anions, thereby initiating guard cell depolarization which leads to the release of anions together with potassium. This depolarization step represents the initiation of ABA-dependent stomatal closure. The transcriptional ABA signaling pathway that regulates gene expression and the adaptation to drought stress is a very ancient and conserved pathway. It can be found in all plant tissues during periods of water shortage. In contrast, the ABA pathway leading to the activation of SLAC1 is restricted to guard cells only. Guard cells evolved rather late during the evolution of land plants. Therefore, the question arises, when did the ancient ABA signaling pathway co-opt SLAC1? Did the control of SLAC1 activity through the ABA-signaling pathway already exist before the stomata appeared in early land plants or did it co-evolve with stomata rather recently? To answer these questions, we investigated the relationship between the single components of the signaling cascade in the heterologous expression system of Xenopus laevis oocytes. To investigate the evolution of fast ABA signaling, we cloned the key players of the signaling cascade from six different model plants and functionally characterized the ABA-signaling components in oocytes. The model plants were chosen from green algae (Klebsormidium nitens), liverworts (Marchantia polymorpha), mosses (Physcomitrella patens), lycophytes (Selaginella moellendorffii) and ferns (Ceratopteris richardii) and their ABA-signaling components were compared to those of the seed plant Arabidopsis thaliana. These plant families diverged during evolution of land plants at distinct evolutionary steps. Thus these plant species should allow us insights into the evolution of land plants. Although the first stomata were found in mosses, already the green algae Klebsormidium nitens expressed SLAC1-type anion channels and the OST1 kinase. Gene expression studies with Arabidopsis protoplasts revealed that already the OST1 kinase of green algae is able to regulate ABA-dependent gene expression in seed plants. This indicates that the substrate specificity of OST1 kinases remained highly conserved during evolution. This notion was reinforced by biophysical investigations in the oocyte system. All thirteen tested OST1 kinases originating from the six model plants were capable to activate the evolutionary youngest SLAC channel AtSLAC1 from Arabidopsis in the heterologous expression system. Thus the structure and function of OST1 kinases is highly conserved during the evolution of land plants. In contrast, SLAC1 channels originating from ferns, lycophytes, liverworts and algae could not be activated by any of the OST1 kinases. Only the SLAC1 channel and the OST1 kinase of the seed plant Arabidopsis thaliana formed a functional anion channel/kinase-pair. Apart from Arabidopsis SLAC1, only the moss (Physcomitrella patens) PpSLAC1 could be activated by the Arabidopsis and one of the moss OST1 kinases. Subsequent detailed structure-function analysis revealed several essential domains in the anion channel’s N-terminus and C-terminus which are important for the functional interaction between SLACs and OSTs
Koers, Sandra. "Die Rolle der S-Typ Anionenkanäle in der Reaktion von Gerstenschließzellen auf Blumeria graminis f. sp. hordei." Doctoral thesis, 2013. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-77335.
Full textDuring evolution, plants had to evolve potent strategies to defend themselves against airborne pathogens, as well as against those encountered in the soil. Understanding the mechanisms that provide plant immunity is crucial for modern society. The world population is growing at rapid pace, leading to the necessity of using agricultural areas as productive as possible. Without improvement of agricultural practice, a sufficient supply with staple foods will not be possible. It is very likely that an important percentage of crop loss is due to plant diseases, even though precise data on this issue are lacking, (Orke et al. 1994, Pinstrup-Andersen; 2001). Crop loss is not exclusively caused by the death of infected plants, but more often by so called costs of resistance (Walters and Heil; 2007). To gain protection against an attacking pathogen, resources have to be consumed, which otherwise would be used for proper plant, crop and fruit development. Plant cuticles, that cover the leaf surface, are the first line of defence to airborne pathogenic microorganisms. To bypass this barrier, bacteria and some fungi use stomata as an entry site into the apoplastic space of leaves. The entry of pathogens through stomata can be prevented by plants upon closure of these pores. This guard cell response was proposed to contribute to plant innate immunity against bacteria (Melotto et al. 2006). However, stomata were found to close during the infection of powdery mildew fungi, which do not use open stomata to enter the leaf. We therefore pursued single cell studies within intact barley plants to elucidate the signal perception and transduction mechanisms that evoke stomatal closure during a pathogen attack (Koers et al. 2011). All results taken together, stomatal closure is an integral part of plant innate immunity. Within the stomatal response to airborne pathogens, the activation of S-type anion channels is essential. It is shown, that the immunity responses of guard cells bypass light induced inhibition of anion channels. S-type anion channels are not only crucial for responses to pathogens, but they are also involved in the response of guard cells towards drought. However, it is unknown to which extent both signals share mutual components. Together with the, now available, mutant lines of barley, the single cell techniques described in this thesis can provide a further insight into the interplay of drought and pathogen responses in plants. The results are likely to be used for optimizing crops for the future agriculture, which is a pivotal step in providing enough food for mankind in the near future
Books on the topic "Spaltöffnung"
Weyers, Jonathan D. B. Methods in stomatal research. Harlow, Essex, England: Longman Scientific & Technical, 1990.
Find full text