Academic literature on the topic 'Spam detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spam detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spam detection"
Kim, So Yeon, and Kyung-Ah Sohn. "Graph-Based Spam Image Detection for Mobile Phone Spam Image Filtering." International Journal of Software Innovation 3, no. 4 (October 2015): 72–86. http://dx.doi.org/10.4018/ijsi.2015100106.
Full textHemalatha, M., Sriharsha Katta, R. Sai Santosh, and Priyanka Priyanka. "E-MAIL SPAM DETECTION." International Journal of Computer Science and Mobile Computing 11, no. 1 (January 30, 2022): 36–44. http://dx.doi.org/10.47760/ijcsmc.2022.v11i01.006.
Full textLiu, Xiaoxu, Haoye Lu, and Amiya Nayak. "A Spam Transformer Model for SMS Spam Detection." IEEE Access 9 (2021): 80253–63. http://dx.doi.org/10.1109/access.2021.3081479.
Full textWang, Junzhang, Diwen Xue, and Karen Shi. "An Ensemble Framework for Spam Detection on Social Media Platforms." International Journal of Machine Learning and Computing 11, no. 1 (January 2021): 77–84. http://dx.doi.org/10.18178/ijmlc.2021.11.1.1017.
Full textKumar D, Mr Girish. "Spam Detection in Twitter." International Journal for Research in Applied Science and Engineering Technology 8, no. 7 (July 31, 2020): 783–87. http://dx.doi.org/10.22214/ijraset.2020.30337.
Full textHeron, Simon. "Technologies for spam detection." Network Security 2009, no. 1 (January 2009): 11–15. http://dx.doi.org/10.1016/s1353-4858(09)70007-8.
Full textPanwar, Manish, Jayesh Rajesh Jogi, Mahesh Vijay Mankar, Mohamed Alhassan, and Shreyas Kulkarni. "Detection of Spam Email." American Journal of Innovation in Science and Engineering 1, no. 1 (December 30, 2022): 18–21. http://dx.doi.org/10.54536/ajise.v1i1.996.
Full textV, Shoba, Ravi Shankar, Ramya Shree, Dhanush H, and Manjunath L. "Spam Detection Using Machine Learning." International Research Journal of Computer Science 10, no. 05 (June 23, 2023): 130–34. http://dx.doi.org/10.26562/irjcs.2023.v1005.05.
Full textDouzi, Samira, Feda A. AlShahwan, Mouad Lemoudden, and Bouabid El Ouahidi. "Hybrid Email Spam Detection Model Using Artificial Intelligence." International Journal of Machine Learning and Computing 10, no. 2 (February 2020): 316–22. http://dx.doi.org/10.18178/ijmlc.2020.10.2.937.
Full textShweta B., Dand. "Survey on Spam Review Detection Using Spam Filtering Algorithms." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (July 10, 2021): 535–38. http://dx.doi.org/10.22214/ijraset.2021.36333.
Full textDissertations / Theses on the topic "Spam detection"
Hao, Shuang. "Early detection of spam-related activity." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53091.
Full textSheikhalishahi, Mina. "Spam campaign detection, analysis, and formalization." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/26935.
Full textLes courriels Spams (courriels indésirables ou pourriels) imposent des coûts annuels extrêmement lourds en termes de temps, d’espace de stockage et d’argent aux utilisateurs privés et aux entreprises. Afin de lutter efficacement contre le problème des spams, il ne suffit pas d’arrêter les messages de spam qui sont livrés à la boîte de réception de l’utilisateur. Il est obligatoire, soit d’essayer de trouver et de persécuter les spammeurs qui, généralement, se cachent derrière des réseaux complexes de dispositifs infectés, ou d’analyser le comportement des spammeurs afin de trouver des stratégies de défense appropriées. Cependant, une telle tâche est difficile en raison des techniques de camouflage, ce qui nécessite une analyse manuelle des spams corrélés pour trouver les spammeurs. Pour faciliter une telle analyse, qui doit être effectuée sur de grandes quantités des courriels non classés, nous proposons une méthodologie de regroupement catégorique, nommé CCTree, permettant de diviser un grand volume de spams en des campagnes, et ce, en se basant sur leur similarité structurale. Nous montrons l’efficacité et l’efficience de notre algorithme de clustering proposé par plusieurs expériences. Ensuite, une approche d’auto-apprentissage est proposée pour étiqueter les campagnes de spam en se basant sur le but des spammeur, par exemple, phishing. Les campagnes de spam marquées sont utilisées afin de former un classificateur, qui peut être appliqué dans la classification des nouveaux courriels de spam. En outre, les campagnes marquées, avec un ensemble de quatre autres critères de classement, sont ordonnées selon les priorités des enquêteurs. Finalement, une structure basée sur le semiring est proposée pour la représentation abstraite de CCTree. Le schéma abstrait de CCTree, nommé CCTree terme, est appliqué pour formaliser la parallélisation du CCTree. Grâce à un certain nombre d’analyses mathématiques et de résultats expérimentaux, nous montrons l’efficience et l’efficacité du cadre proposé.
Spam emails yearly impose extremely heavy costs in terms of time, storage space, and money to both private users and companies. To effectively fight the problem of spam emails, it is not enough to stop spam messages to be delivered to end user inbox or be collected in spam box. It is mandatory either to try to find and persecute the spammers, generally hiding behind complex networks of infected devices, which send spam emails against their user will, i.e. botnets; or analyze the spammer behavior to find appropriate strategies against it. However, such a task is difficult due to the camouflage techniques, which makes necessary a manual analysis of correlated spam emails to find the spammers. To facilitate such an analysis, which should be performed on large amounts of unclassified raw emails, we propose a categorical clustering methodology, named CCTree, to divide large amount of spam emails into spam campaigns by structural similarity. We show the effectiveness and efficiency of our proposed clustering algorithm through several experiments. Afterwards, a self-learning approach is proposed to label spam campaigns based on the goal of spammer, e.g. phishing. The labeled spam campaigns are used to train a classifier, which can be applied in classifying new spam emails. Furthermore, the labeled campaigns, with the set of four more ranking features, are ordered according to investigators priorities. A semiring-based structure is proposed to abstract CCTree representation. Through several theorems we show under some conditions the proposed approach fully abstracts the tree representation. The abstract schema of CCTree, named CCTree term, is applied to formalize CCTree parallelism. Through a number of mathematical analysis and experimental results, we show the efficiency and effectiveness of our proposed framework as an automatic tool for spam campaign detection, labeling, ranking, and formalization.
Xu, Hailu. "Efficient Spam Detection across Online Social Networks." University of Toledo / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1470416658.
Full textWu, Hao. "Detecting spam relays by SMTP traffic characteristics using an autonomous detection system." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/10926.
Full textJaroš, Ján. "Detekce nevyžádaných zpráv v mobilní komunikaci a na sociálních sítích." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-236082.
Full textLam, Ho-Yu. "A learning approach to spam detection based on social networks /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CSED%202007%20LAM.
Full textNachenahalli, Bhuthegowda Bharath Kumar. "Methods for Analyzing the Evolution of Email Spam." Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24213.
Full textVural, Ickin. "Spamming mobile botnet detection using computational intelligence." Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/36775.
Full textDissertation (MSc)--University of Pretoria, 2013.
gm2014
Computer Science
unrestricted
Neuwirth, David. "Realizace spamového filtru na bázi umělého imunitního systému." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2009. http://www.nusl.cz/ntk/nusl-236637.
Full textHayati, Pedram. "Addressing the new generation of spam (Spam 2.0) through Web usage models." Thesis, Curtin University, 2011. http://hdl.handle.net/20.500.11937/850.
Full textBooks on the topic "Spam detection"
Rajalingam, Mallikka. Text Segmentation and Recognition for Enhanced Image Spam Detection. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-53047-1.
Full textPlay it again, Spam: A Pennsylvania Dutch mystery with recipes. New York, New York, U.S.A: Penguin Group, 1999.
Find full textDhavale, Sunita Vikrant. Advanced Image-Based Spam Detection and Filtering Techniques. IGI Global, 2017.
Find full textsabharwal, munish, and jagmeet kaur. Spam Detection in Online Social Networks Using Feed Forward Neural Network. Independently Published, 2018.
Find full textRajalingam, Mallikka. Text Segmentation and Recognition for Enhanced Image Spam Detection: An Integrated Approach. Springer International Publishing AG, 2021.
Find full textRajalingam, Mallikka. Text Segmentation and Recognition for Enhanced Image Spam Detection: An Integrated Approach. Springer International Publishing AG, 2020.
Find full textIsaacson, Jeff, and Jeff Isaacson. This Atlanta World: A Sinister Span Mystery. 6134, 2020.
Find full textBook chapters on the topic "Spam detection"
Martin, Eric, Samuel Kaski, Fei Zheng, Geoffrey I. Webb, Xiaojin Zhu, Ion Muslea, Kai Ming Ting, et al. "Spam Detection." In Encyclopedia of Machine Learning, 906. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_768.
Full textNajork, Marc. "Web Spam Detection." In Encyclopedia of Database Systems, 1–5. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4899-7993-3_465-2.
Full textNajork, Marc. "Web Spam Detection." In Encyclopedia of Database Systems, 1–5. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4899-7993-3_465-3.
Full textNajork, Marc. "Web Spam Detection." In Encyclopedia of Database Systems, 3520–23. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-39940-9_465.
Full textNajork, Marc. "Web Spam Detection." In Encyclopedia of Database Systems, 4677–81. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-8265-9_465.
Full textAntony, Anu, Anusha Rajendran, and G. Deepa. "YouTube Spam Comment Detection." In Proceedings of the 2nd International Conference on Signal and Data Processing, 387–94. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1410-4_32.
Full textGupta, Vashu, Aman Mehta, Akshay Goel, Utkarsh Dixit, and Avinash Chandra Pandey. "Spam Detection Using Ensemble Learning." In Harmony Search and Nature Inspired Optimization Algorithms, 661–68. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0761-4_63.
Full textRosso, Paolo, and Leticia C. Cagnina. "Deception Detection and Opinion Spam." In A Practical Guide to Sentiment Analysis, 155–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55394-8_8.
Full textIbrahim, Asma, and Izzeldin Mohamed Osman. "A Behavioral Spam Detection System." In Advances in Intelligent and Soft Computing, 77–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25538-0_12.
Full textLiu, Ninghao, and Xia Hu. "Spam Detection on Social Networks." In Encyclopedia of Social Network Analysis and Mining, 1–9. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4614-7163-9_110199-1.
Full textConference papers on the topic "Spam detection"
Zhang, Wuxain, and Hung-Min Sun. "Instagram Spam Detection." In 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC). IEEE, 2017. http://dx.doi.org/10.1109/prdc.2017.43.
Full textMarkines, Benjamin, Ciro Cattuto, and Filippo Menczer. "Social spam detection." In the 5th International Workshop. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1531914.1531924.
Full textJindal, Nitin, and Bing Liu. "Review spam detection." In the 16th international conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1242572.1242759.
Full textBensouda, Nissrine, Sanaa El Fkihi, and Rdouan Faizi. "Opinion Spam Detection." In the International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3230905.3230922.
Full textRayana, Shebuti, and Leman Akoglu. "Collective Opinion Spam Detection." In KDD '15: The 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2783258.2783370.
Full textNagaraj, P., K. Muthamil Sudar, P. Thrived, P. Girish Kumar Reddy, Sk Baji Babu, and P. Siva Rama Krishna. "Youtube Comment Spam Detection." In 2023 International Conference on Computer Communication and Informatics (ICCCI). IEEE, 2023. http://dx.doi.org/10.1109/iccci56745.2023.10128559.
Full textZhou, Dengyong, Christopher J. C. Burges, and Tao Tao. "Transductive link spam detection." In the 3rd international workshop. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1244408.1244413.
Full textNelson, Blaine. "Session details: Spam detection." In CCS'12: the ACM Conference on Computer and Communications Security. New York, NY, USA: ACM, 2012. http://dx.doi.org/10.1145/3251569.
Full textKishore, Sidharth, Mohammed Awad, and Ahmed Al-Zubidy. "Spam Detection Techniques Recapped." In 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA). IEEE, 2022. http://dx.doi.org/10.1109/icecta57148.2022.9990450.
Full textStanton, Gray, and Athirai A. Irissappane. "GANs for Semi-Supervised Opinion Spam Detection." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/723.
Full textReports on the topic "Spam detection"
Tan, Pang-Ning, and Anil K. Jain. Information Assurance: Detection & Response to Web Spam Attacks. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada535002.
Full textDenowh, Chantz, and David Futch. PR-652-213801-R01 Technology Assessment for Detection of Fatigue Cracks on Heavy Wall Gas Risers. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2022. http://dx.doi.org/10.55274/r0012198.
Full textRahmani, Mehran, Xintong Ji, and Sovann Reach Kiet. Damage Detection and Damage Localization in Bridges with Low-Density Instrumentations Using the Wave-Method: Application to a Shake-Table Tested Bridge. Mineta Transportation Institute, September 2022. http://dx.doi.org/10.31979/mti.2022.2033.
Full textHaakonsen, Rune. PR-576-163705-R01 Qualification and Guideline of Inspection Technologies for Flexible Pipe Integrity. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2020. http://dx.doi.org/10.55274/r0011741.
Full textOliver, Peter, and Gillian Robert. PR-420-183903-R01 Pipeline Right-of-Way River Crossing Monitoring With Satellites. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2022. http://dx.doi.org/10.55274/r0012247.
Full textAlexander, Chris, and Chantz Denowh. PR-652-195104-R01 Development of Heavy Wall ILI Test Samples. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2020. http://dx.doi.org/10.55274/r0011680.
Full textRahmani, Mehran, and Manan Naik. Structural Identification and Damage Detection in Bridges using Wave Method and Uniform Shear Beam Models: A Feasibility Study. Mineta Transportation Institute, February 2021. http://dx.doi.org/10.31979/mti.2021.1934.
Full textHedrick, Ronald, and Herve Bercovier. Characterization and Control of KHV, A New Herpes Viral Pathogen of Koi and Common Carp. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7695871.bard.
Full textDenowh, Chantz, Chris Alexander, and Ahmed Hassanin. PR-652-195104-R02 Development of Heavy Wall ILI Test Samples. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2021. http://dx.doi.org/10.55274/r0012096.
Full textBrydie, Dr James, Dr Alireza Jafari, and Stephanie Trottier. PR-487-143727-R01 Modelling and Simulation of Subsurface Fluid Migration from Small Pipeline Leaks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2017. http://dx.doi.org/10.55274/r0011025.
Full text