Academic literature on the topic 'Spam message'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spam message.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spam message"
Jain, Ankit Kumar, Sumit Kumar Yadav, and Neelam Choudhary. "A Novel Approach to Detect Spam and Smishing SMS using Machine Learning Techniques." International Journal of E-Services and Mobile Applications 12, no. 1 (January 2020): 21–38. http://dx.doi.org/10.4018/ijesma.2020010102.
Full textShe, Xue Bing. "Incremental-Learning Spam Messages Distinguishing and Sorting System Based on Arm Platform." Applied Mechanics and Materials 602-605 (August 2014): 3843–45. http://dx.doi.org/10.4028/www.scientific.net/amm.602-605.3843.
Full textGIANNELLA, CHRIS R., RANSOM WINDER, and BRANDON WILSON. "(Un/Semi-)supervised SMS text message SPAM detection." Natural Language Engineering 21, no. 4 (October 15, 2014): 553–67. http://dx.doi.org/10.1017/s1351324914000102.
Full textHemalatha, M., Sriharsha Katta, R. Sai Santosh, and Priyanka Priyanka. "E-MAIL SPAM DETECTION." International Journal of Computer Science and Mobile Computing 11, no. 1 (January 30, 2022): 36–44. http://dx.doi.org/10.47760/ijcsmc.2022.v11i01.006.
Full textJany Shabu, S. L., V. Netaji Subhash Chandra Bose, Venkatesh Bandaru, Sardar Maran, and J. Refonaa. "Spam and Fake Spam Message Detection Framework Using Machine Learning Algorithm." Journal of Computational and Theoretical Nanoscience 17, no. 8 (August 1, 2020): 3444–48. http://dx.doi.org/10.1166/jctn.2020.9202.
Full textGuangJun, Luo, Shah Nazir, Habib Ullah Khan, and Amin Ul Haq. "Spam Detection Approach for Secure Mobile Message Communication Using Machine Learning Algorithms." Security and Communication Networks 2020 (July 9, 2020): 1–6. http://dx.doi.org/10.1155/2020/8873639.
Full textMa, Jialin, Yongjun Zhang, Lin Zhang, Kun Yu, and Jinlin Liu. "Bi-Term Topic Model for SMS Classification." International Journal of Business Data Communications and Networking 13, no. 2 (July 2017): 28–40. http://dx.doi.org/10.4018/ijbdcn.2017070103.
Full textAdewole, Kayode Sakariyah, Nor Badrul Anuar, Amirrudin Kamsin, and Arun Kumar Sangaiah. "SMSAD: a framework for spam message and spam account detection." Multimedia Tools and Applications 78, no. 4 (July 21, 2017): 3925–60. http://dx.doi.org/10.1007/s11042-017-5018-x.
Full text&NA;. "E-mail spam sends a message." Nursing 35, no. 9 (September 2005): 34. http://dx.doi.org/10.1097/00152193-200509000-00032.
Full textKim, Seongyoon, Taesoo Cha, Jeawon Park, Jaehyun Choi, and Namyong Lee. "A Technique of Statistical Message Filtering for Blocking Spam Message." Journal of the Korea society of IT services 13, no. 3 (September 30, 2014): 299–308. http://dx.doi.org/10.9716/kits.2014.13.3.299.
Full textDissertations / Theses on the topic "Spam message"
Qvist, Olof, and Julia Berggren. "Viral Marketing : How does the individual view a viral marketing message and what makes him or her pass it along?" Thesis, University of Gävle, Department of Business Administration and Economics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-672.
Full textViral marketing is a form of marketing that is based on individuals sharing of a message within their social network. When viral marketing works, it’s cheap and efficient and there are several examples of successful viral marketing campaigns that has given products or companies great success.
Viral marketing is relatively unexplored as a phenomenon, and there are several different suggested paths to choose to form a successful campaign. One suggestion is that viral marketers base their campaigns on different feelings to make the individual share the campaign, or feeling, with its social network. This is one of the things that we are looking at in this report. With a quantitative study based on the replies of over 800 students, we try to determine which feeling is more efficient in viral marketing campaigns. We also try to determine how viral campaigns are received and handled as well as students view on viral marketing as a phenomenon.
This report shows that receivers of viral marketing campaigns have a pattern in the way they act as a result of it. Receivers who view one viral marketing campaign as spam, block the messages sender or delete the message are likely to view all campaigns as spam, no matter which type of viral marketing campaign they receive. This pattern does not exist for those who choose to forward viral messages, nor does the strength of the feeling matter. However, we are able to distinguish that campaigns based on sadness, anger, fear and disgust are forwarded more than campaigns based on other feelings. These types of campaigns are often forwarded by women. Campaigns based on sick humor or surprise are more commonly forwarded by men. However, women are more likely to forward viral messages.
Virusmarknadsföring är en typ av marknadsföring som går ut på att individer inom sociala nätverk skickar ett budskap vidare till varandra. När marknadsföringsformen fungerar är den mycket billig och effektiv. Det finns ett flertal exempel på framgångsrika virusmarknadsföringskampanjer som lyckats och gett produkter eller företag stor framgång.
Virusmarknadsföringen som fenomen är relativt outforskad och det finns olika förslag på vägar att gå för att forma en framgångsrik kampanj. Bland annat kan virusmarknadsförare spela på individers känslor för att få dem att skicka ett budskap vidare inom sitt sociala nätverk. I denna uppsats tittar vi närmare på just detta, och tar reda på vilka känslor som bäst lämpar sig för en virusmarknadsföringskampanj. Genom en kvantitativ undersökning där cirka 800 studenter från Blekinge Tekniska Högskola och Högskolan i Gävle deltagit tar vi också reda på hur synen på virusmarknadsföring ser ut, samt vilken reaktion det får när det mottas.
Detta examensarbete visar att de som tar emot virusmarknadsföring har ett mönster i sitt agerande. De som ser en virusmarknadsföringskampanj som spam eller till och med blockerar avsändaren, gör detsamma för oberoende av vilken typ av kampanj de mottar. Samma sak gäller de som väljer att radera meddelandet. Mönstret i agerandet gäller dock inte för de som skickar budskap vidare. Hur stark känsla som väcks av kampanjen spelar heller ingen roll. Dock tycker vi oss se att virusmarknadsföringskampanjer baserade på sorg, ilska, rädsla och äckel fungerar bättre än andra kampanjer. Dessa skickas oftast vidare av kvinnor. Män skickar inte virusmarknadsföringskampanjer vidare lika ofta som kvinnor. När de gör det så väljer de dock att skicka vidare sjuk humor eller budskap baserade på förvåning.
Рабізо, А. В. "Інформаційна технологія фільтрації спам-повідомлень." Thesis, Сумський державний університет, 2017. http://essuir.sumdu.edu.ua/handle/123456789/64946.
Full textCheung, Pak-to Patrick. "A study on combating the problem of unsolicited electronic messages in Hong Kong." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38608248.
Full textMartins, Da Cruz José Márcio. "Contribution au classement statistique mutualisé de messages électroniques (spam)." Phd thesis, École Nationale Supérieure des Mines de Paris, 2011. http://pastel.archives-ouvertes.fr/pastel-00637173.
Full textCruz, José Marcio Martins da. "Contribution au classement statistique mutualisé de messages électroniques (spam)." Paris, ENMP, 2011. https://pastel.archives-ouvertes.fr/pastel-00637173.
Full textSince the 90's, different machine learning methods were investigated and applied to the email classification problem (spam filtering), with very good but not perfect results. It was always considered that these methods are well adapted to filter messages to a single user and not filter to messages of a large set of users, like a community. Our approach was, at first, look for a better understanding of handled data, with the help of a corpus of real messages, before studying new algorithms. With the help of a logistic regression classifier with online active learning, we could show, empirically, that with a simple classification algorithm coupled with a learning strategy well adapted to the real context it's possible to get results which are as good as those we can get with more complex algorithms. We also show, empirically, with the help of messages from a small group of users, that the efficiency loss is not very high when the classifier is shared by a group of users
Cheung, Pak-to Patrick, and 張伯陶. "A study on combating the problem of unsolicited electronic messages inHong Kong." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38608248.
Full textRajdev, Meet. "Fake and Spam Messages: Detecting Misinformation During Natural Disasters on Social Media." DigitalCommons@USU, 2015. https://digitalcommons.usu.edu/etd/4462.
Full textLaurent-Ricard, Eric. "Rétablir la confiance dans les messages électroniques : Le traitement des causes du "spam"." Thesis, Paris 2, 2011. http://www.theses.fr/2011PA020085/document.
Full textThe growing use of email in dematerialized exchanges, for both businesses and individuals, and the increase of undesirable mails, called "spam" (junk emails) generate a significant loss of time of manual processing And a lack of confidence both in the information transmitted and the issuers of such messages. What are the solutions to restore or build confidence in these exchanges? How to treat and reduce the growing number of «spam»?Existing solutions are often cumbersome to implement or relatively ineffective and are primarily concerned with treating the effects of "«spam»", forgetting to analyze and address the causes.The identification, if not the authentication, of the sender and recipients, is a key point to validate the origin of a message and ensure the content, as well as a significant level of traceability, but it is not the only one, and the basic mechanisms, themselves, of the email system, more precisely in terms of communication protocols are also at stake.The content of this thesis will focus primarily on opportunities related to changes in some Internet protocols, in particular SMTP, implementation specifications rarely used, and the tools and possible methods to ensure the identification of parties in a simple and transparent way for users.The objective is to define, firstly a methodology for using the mail with reliability and confidence, and secondly to draw the logical foundations of client and server programs for the implementation of this methodology
Kigerl, Alex Conrad. "An Empirical Assessment of the CAN SPAM Act." PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/704.
Full textKaushik, Saket. "Policy-controlled email services." Fairfax, VA : George Mason University, 2007. http://hdl.handle.net/1920/2937.
Full textTitle from PDF t.p. (viewed Jan. 18, 2008). Thesis directors: Paul Amman, Duminda Wijesekera. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Information Technology. Vita: p. 198. Includes bibliographical references (p. 189-197). Also available in print.
Books on the topic "Spam message"
Spam kings: The real story behind the high-rolling hucksters pushing porn, pills and @*#?% enlargements. Sebastopol, Calif: O'Reilly, 2005.
Find full textTorat ha-meser: Ben diṿur yashir le-"spam" = Online communication : from direct mail to spam. Ramat Gan: Ṿiṭal hotsaʼah le-or, 2012.
Find full textO spam e as pragas digitais: Uma visão jurídico-tecnológica. São Paulo: Editora LTr, 2009.
Find full textMyles, White John, ed. Machine learning for email. Sebastopol, CA: O'Reilly Media, 2011.
Find full textUnited, States Congress Senate Committee on Commerce Science and Transportation. Can-Spam Act of 2003: Report of the Committee on Commerce, Science, and Transportation on S. 877. Washington: U.S. G.P.O., 2003.
Find full textUnsolicited Commercial Electronic Mail Act of 2000: Report (to accompany H.R. 3113) (including cost estimate of the Congressional Budget Office). [Washington, D.C: U.S. G.P.O., 2000.
Find full textCan-Spam Act of 2003: Report of the Committee on Commerce, Science, and Transportation on S. 877. Washington: U.S. G.P.O., 2003.
Find full textUnited States. Congress. House. Committee on Commerce. Unsolicited Commercial Electronic Mail Act of 2001: Report together with additional views (to accompany H.R. 718). [Washington, D.C: U.S. G.P.O., 2001.
Find full textCommerce, United States Congress House Committee on. Unsolicited Commercial Electronic Mail Act of 2000: Report (to accompany H.R. 3113) (including cost estimate of the Congressional Budget Office). [Washington, D.C: U.S. G.P.O., 2000.
Find full textUnited, States Congress Senate Committee on Commerce Science and Transportation. Can-Spam Act of 2003: Report of the Committee on Commerce, Science, and Transportation on S. 877. Washington: U.S. G.P.O., 2003.
Find full textBook chapters on the topic "Spam message"
Duan, Zhenhai, Yingfei Dong, and Kartik Gopalan. "DMTP: Controlling Spam Through Message Delivery Differentiation." In NETWORKING 2006. Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems, 355–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11753810_30.
Full textSartaj, Sahil, and Ayatullah Faruk Mollah. "An Intelligent System for Spam Message Detection." In Algorithms for Intelligent Systems, 387–95. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2248-9_37.
Full textYang, Yitao, Runqiu Hu, Chengyan Qiu, Guozi Sun, and Huakang Li. "A Spam Message Detection Model Based on Bayesian Classification." In Advances in Internetworking, Data & Web Technologies, 424–35. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59463-7_42.
Full textChen, Pei-Chi, Hahn-Ming Lee, Hsiao-Rong Tyan, Jain-Shing Wu, and Te-En Wei. "Detecting Spam on Twitter via Message-Passing Based on Retweet-Relation." In Technologies and Applications of Artificial Intelligence, 56–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13987-6_6.
Full textSaeed, Waddah. "Comparison of Automated Machine Learning Tools for SMS Spam Message Filtering." In Communications in Computer and Information Science, 307–16. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-8059-5_18.
Full textJimoh, Rasheed G., Kayode S. Adewole, Tunbosun E. Aderemi, and Abdullateef O. Balogun. "Investigative Study of Unigram and Bigram Features for Short Message Spam Detection." In International Conference on Emerging Applications and Technologies for Industry 4.0 (EATI’2020), 70–81. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80216-5_6.
Full textChen, Cong-Jie, Yi-Dong Cui, and Ting Xie. "Study of Spam Short Message Filtering Based on Features Selection of Key Words." In Communications in Computer and Information Science, 646–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33506-8_79.
Full textWu, Fangzhao, and Yongfeng Huang. "Chapter 9 Social Spammer and Spam Message Detection in an Online Social Network: A Codetection Approach." In Social Network Analysis, 225–42. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315369594-10.
Full textZheng, Zhiyong. "Shannon Theory." In Financial Mathematics and Fintech, 91–151. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0920-7_3.
Full textGoswami, Gaurav, Richa Singh, and Mayank Vatsa. "Automated Spam Detection in Short Text Messages." In Machine Intelligence and Signal Processing, 85–98. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2625-3_8.
Full textConference papers on the topic "Spam message"
Fan, Wen-chan. "Spam Message Recognition Based on Content." In 2011 International Conference on Computational and Information Sciences (ICCIS). IEEE, 2011. http://dx.doi.org/10.1109/iccis.2011.257.
Full textDuan, Longzhen, Nan Li, and Longjun Huang. "A New Spam Short Message Classification." In 2009 First International Workshop on Education Technology and Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/etcs.2009.299.
Full textLee, Hyun-Young, and Seung-Shik Kang. "Word Embedding Method of SMS Messages for Spam Message Filtering." In 2019 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2019. http://dx.doi.org/10.1109/bigcomp.2019.8679476.
Full textMathew, Kuruvilla, and Biju Issac. "Intelligent spam classification for mobile text message." In 2011 International Conference on Computer Science and Network Technology (ICCSNT). IEEE, 2011. http://dx.doi.org/10.1109/iccsnt.2011.6181918.
Full textLueg, Christopher. "Spam and Anti-Spam Measures: A Look at Potential Impacts." In 2003 Informing Science + IT Education Conference. Informing Science Institute, 2003. http://dx.doi.org/10.28945/2729.
Full textDewi, Fatia Kusuma, Mgs M. Rizqi Fadhlurrahman, Mohamad Dwiyan Rahmanianto, and Rahmad Mahendra. "Multiclass SMS message categorization: Beyond spam binary classification." In 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS). IEEE, 2017. http://dx.doi.org/10.1109/icacsis.2017.8355035.
Full textChen, Hao. "Spam Message Filtering Recognition System Based on TensorFlow." In 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE). IEEE, 2018. http://dx.doi.org/10.1109/icmcce.2018.00124.
Full textHe, Peizhou, Yong Sun, Wei Zheng, and Xiangming Wen. "Filtering Short Message Spam of Group Sending Using CAPTCHA." In First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008). IEEE, 2008. http://dx.doi.org/10.1109/wkdd.2008.131.
Full textKumar, D. Ganesh, M. Kameswara Rao, and K. Premnath. "A Recurrent Neural Network Model for Spam Message Detection." In 2020 5th International Conference on Communication and Electronics Systems (ICCES). IEEE, 2020. http://dx.doi.org/10.1109/icces48766.2020.9137940.
Full textLahmadi, Abdelkader, Laurent Delosieres, and Olivier Festor. "Hinky: Defending against Text-Based Message Spam on Smartphones." In ICC 2011 - 2011 IEEE International Conference on Communications. IEEE, 2011. http://dx.doi.org/10.1109/icc.2011.5962722.
Full text