Academic literature on the topic 'Spares Demand Forecasting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spares Demand Forecasting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spares Demand Forecasting"
Rosienkiewicz, Maria, Edward Chlebus, and Jerzy Detyna. "A hybrid spares demand forecasting method dedicated to mining industry." Applied Mathematical Modelling 49 (September 2017): 87–107. http://dx.doi.org/10.1016/j.apm.2017.04.027.
Full textLelo, Nzita Alain, P. Stephan Heyns, and Johann Wannenburg. "Forecasting spare parts demand using condition monitoring information." Journal of Quality in Maintenance Engineering 26, no. 1 (September 9, 2019): 53–68. http://dx.doi.org/10.1108/jqme-07-2018-0062.
Full textAnglou, Fiorentia Zoi, Stavros Ponis, and Athanasios Spanos. "A machine learning approach to enable bulk orders of critical spare-parts in the shipping industry." Journal of Industrial Engineering and Management 14, no. 3 (July 19, 2021): 604. http://dx.doi.org/10.3926/jiem.3446.
Full textMayur, R., and Baibhav Kumar. "Demand Forecasting of Spare Parts of Automobiles using Gaussian Support Vector Machine." IJOSTHE 6, no. 1 (February 10, 2019): 4. http://dx.doi.org/10.24113/ojssports.v7i1.114.
Full textVasumathi, B., and A. Saradha. "Forecasting Intermittent Demand for Spare Parts." International Journal of Computer Applications 75, no. 11 (August 23, 2013): 12–16. http://dx.doi.org/10.5120/13154-0805.
Full textSulistyo, Sinta Rahmawidya, and Alvian Jonathan Sutrisno. "LUMPY DEMAND FORECASTING USING LINEAR EXPONENTIAL SMOOTHING, ARTIFICIAL NEURAL NETWORK, AND BOOTSTRAP." Angkasa: Jurnal Ilmiah Bidang Teknologi 10, no. 2 (October 29, 2018): 107. http://dx.doi.org/10.28989/angkasa.v10i2.362.
Full textHemeimat, Raghad, Lina Al-Qatawneh, Mazen Arafeh, and Shadi Masoud. "Forecasting Spare Parts Demand Using Statistical Analysis." American Journal of Operations Research 06, no. 02 (2016): 113–20. http://dx.doi.org/10.4236/ajor.2016.62014.
Full textMilojevic, Ivan, and Rade Guberinic. "Stochastic model of forecasting spare parts demand." Vojnotehnicki glasnik 60, no. 1 (2012): 216–34. http://dx.doi.org/10.5937/vojtehg1201216m.
Full textHu, Yao Guang, Shuo Sun, and Jing Qian Wen. "Agricultural Machinery Spare Parts Demand Forecast Based on BP Neural Network." Applied Mechanics and Materials 635-637 (September 2014): 1822–25. http://dx.doi.org/10.4028/www.scientific.net/amm.635-637.1822.
Full textWang, Wenbin, and Aris A. Syntetos. "Spare parts demand: Linking forecasting to equipment maintenance." Transportation Research Part E: Logistics and Transportation Review 47, no. 6 (November 2011): 1194–209. http://dx.doi.org/10.1016/j.tre.2011.04.008.
Full textDissertations / Theses on the topic "Spares Demand Forecasting"
Eguasa, Uyi Harrison. "Strategies to Improve Data Quality for Forecasting Repairable Spare Parts." ScholarWorks, 2016. https://scholarworks.waldenu.edu/dissertations/3155.
Full textLowas, Albert Frank III. "Improved Spare Part Forecasting for Low Quantity Parts with Low and Increasing Failure Rates." Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1432380369.
Full textLelo, Nzita Alain. "Forecasting spare parts demand using condition monitoring information." Diss., University of Pretoria, 2009. http://hdl.handle.net/2263/67760.
Full textDissertation (MSc)--University of Pretoria, 2018.
Mechanical and Aeronautical Engineering
MSc
Unrestricted
Moon, Seongmin. "Hierarchical forecasting for predicting spare parts demand in the South Korean Navy." Thesis, University of Newcastle Upon Tyne, 2010. http://hdl.handle.net/10443/1834.
Full textMoscoso, Rios Yves Igor, and Zanabria Henry Alcántara. "Propuesta para reducir reclamos en el abastecimiento de repuestos de productos de línea blanca." Bachelor's thesis, Universidad Ricardo Palma, 2015. http://cybertesis.urp.edu.pe/handle/urp/1303.
Full textBoström, Emma, and Julia Lundell. "Availability vs. Cost Efficiency : A Case Study Taking on an Integrated Approach to Spare Part Distribution in the High-Tech Industry." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279641.
Full textInom hanteringen av reservdelar är det en stor utmaning att hitta rätt avvägning mellan tillgänglighet och kostnadseffektivitet. Leverantörer av reservdelar måste snabbt kunna möta kundefterfrågan eftersom uteblivna leveranser av kritiska reservdelar kan få allvarliga konsekvenser för både kund och leverantör. Vilka artiklar som ska lager-hållas och var de ska lagerhållas är avgörande beslut för att undvika att artiklar rest-noteras. I den här fallstudien, som utfördes på ett stort teknikföretag som tillverkarproduktionsutrustning till elektronikindustrin, var syftet att sänka lagernivåerna av reservdelar utan att göra avkall på tillgängligheten. Detta genom att kombineragruppering av artiklar, beräkning av kommande efterfrågan och optimering av distributionsnätverket. För att klassificera artiklar i grupper med liknande egenskaper skapades ett schematiskt beslutsdiagram med hjälp av metoden AHP. Tjugo artiklar ur sortimentet valdes ut som beslutsdiagrammet testades på. För samma tjugo artiklar gjordes prognoser för den kommande efterfrågan med metoden Syntetos-Boylan-Approximation. Distributionsnätverket i den europeiska regionen optimerades medavseende på fraktkostnad genom att applicera en linjär optimeringsmodell. Hur kritisk en reservdel är för den relaterade maskinens funktionalitet, reservdelensårliga förbrukningsvärde och den geografiska placeringen av installerade maskinervisade sig vara kritiska för att kunna klassificera artiklarna effektivt. Analysen av distributionsnätverket i Europa visade att fraktkostnaderna kan minskas om nätverket utgjordes av tre lager istället för fem som det gör i dagsläget. De tjugo undersökta reservdelarna uppvisade de typiska egenskaperna för reservdelar som har rapporterats i litteraturen som låg och oregelbunden efterfrågan. Att sätta prognoser på efterfrågan verkar obefogat med tanke på komplexiteten i beräkningarna och att de ger få tillfredsställande resultat. Istället för att kombinera resultaten från klassificering, prognoser på efterfrågan och lageroptimering föreslår vi att alla de funktioner i ett företag som arbetar med att tillgodose kundefterfrågan bör samarbeta i högre grad och jobba mot ett gemensamt mål, nämligen att tillgodose kundernas efterfrågan på ett kostnadseffektivt sätt. Således vill vi utvidga betydelsen av att ta en integrerad strategi för reservdelshantering
Yaqin, Alvin Muhammad Ainul, and Alvin Muhammad Ainul Yaqin. "Spare Parts Demand Forecasting in Energy Industry." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/qkvc4v.
Full text國立臺灣科技大學
工業管理系
107
This paper deals with spare parts demand forecasting problem in energy industry. Forecasting parts demand has its own challenges because in general spares demand is characterized by high variation in its demand size and in its inter-demand interval. In this study, two forecasting approaches to deal with spare parts demand are proposed: in the base approach, traditional time series forecasting methods and machine learning methods are combined using stacked generalization; in the improved approach, external information is utilized to improve the predictions from the base approach, resulting in more accurate predictions. To test the performance of these approaches, a case study in a natural gas liquefaction company is provided in this research. In the case study, these approaches are employed to forecast the monthly demand of parts used in the company’s maintenance operations. Several traditional time series forecasting methods (including Simple Moving Average, Single Exponential Smoothing, Croston’s Method, Syntetos-Boylan’s Approximation, and Teunter-Syntetos-Babai’s Method) and several machine learning methods (including Multiple Linear Regression, Elastic Net, Neural Network, Support Vector Machine, and Random Forests) are also utilized in the case study to compare the performance of the proposed approaches. In the end, results showed that the approaches proposed in this paper are promising.
Chang, Wei-Yu, and 張維友. "Demand Clustering and Forecasting Model for Auto Spare Parts." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/azrwbk.
Full text國立臺灣大學
商學研究所
105
This study focuses on the demand forecast for the spare parts. With practical data, we use the monthly data of spare parts to create the index for clustering. Let the spare parts which have similar demand pattern in the same group. Next, this study then observes the results after clustering. Eliminate the group which has the fewest demand. Leave the group with more demand for analysis. At last, we will forecast the remaining group. The forecasting method is calculated by the current demand forecasting method and the method proposed in this study. The predictive value will compare with the actual value to measure the forecasting performance. The results obtained by comparing the current demand forecasting methods of the case companies show that the forecasting method proposed in this study can accurately predict the demand of spare parts, and confirmed the different demand patterns of spare parts applicable to different demand forecasting methods, the current demand forecasting method encountered greater demand’s variation of spare parts will have a poor performance. Therefore, this study proposed a demand forecasting method to provide a new way to predict the spare parts, so that enterprises can choose a better demand forecasting method according to the spare parts demand pattern.
Chen, Kai-Chien, and 陳愷謙. "Spare Parts Demand Forecasting in the Final Order Problem." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/qz2748.
Full text國立清華大學
統計學研究所
107
After-sales service is an increasingly important issue nowadays. In order to provide their customers good after-sales service, companies need to ensure the amount of spare parts needed in maintenance service. After the product ends its manufacturing, the corresponding parts are not available for ordering. The suppliers give the last chance to the company to order spare parts before the end of the supply. The time horizon of the final order includes a three-year warranty and a four-month buffer, a total of forty months. Our model predicts the demand of the final order over the next forty months. The model combines the concept of the moving average model with random forest algorithm to introduce the latest information, making the prediction more accurate. Compared with moving average, the conventional method for demand forecasting, the prediction of our model progresses significantly.
Chan, Chen-Wei, and 陳朝偉. "Demand Forecasting and Inventory Management for Aircraft Spare Parts." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/15113123934048163307.
Full text國立交通大學
交通運輸研究所
98
The importance of demand forecasting and inventory management for aircraft spare parts for reducing the airline operating cost is increasing. It will not only cause the increasing of inventory cost when spare parts are excessive but also great loss result from flight delay or cancellation when those are in shortage. Therefore, the department of maintenance expects to establish the accurate demand forecasting system and inventory management system. The types of aircraft spare parts demand are mostly intermittent demand and lumpy demand. This thesis applies Back-Propagation Neural Network (BPN) and Support Vector Regression (SVR) to forecast the intermittent demand and lumpy demand of aircraft spare parts. In addition, the forecasting results of BPN and SVR are compared to that of traditional methods, Single Exponential Smoothing (SES) and two types of Weighted Moving Average (WMA). From the results, BPN and SVR outperform the traditional methods, particularly, the accuracy of BPN is better. Finally, according to the best result of intermittent demand forecasting and lumpy demand forecasting, the reorder level and economic order quantity are computed to establish the inventory model of aircraft spare parts.
Books on the topic "Spares Demand Forecasting"
L, Adams John. Modeling and forecasting the demand for aircraft recoverable spare parts. Santa Monica, CA: Rand, 1993.
Find full textAltay, Nezih, and L. A. Litteral. Service parts management: Demand forecasting and inventory control. London: Springer-Verlag, 2011.
Find full textAltay, Nezih, and Lewis A. Litteral. Service Parts Management: Demand Forecasting and Inventory Control. Springer, 2014.
Find full textAltay, Nezih, and Lewis A. Litteral. Service Parts Management: Demand Forecasting and Inventory Control. Springer, 2011.
Find full textBrowning, Judkin, and Timothy Silver. An Environmental History of the Civil War. University of North Carolina Press, 2020. http://dx.doi.org/10.5149/northcarolina/9781469655383.001.0001.
Full textBook chapters on the topic "Spares Demand Forecasting"
Özbay, Elif, Banu Hacialioğlu, Büşra İlayda Dokuyucu, Hakan Şahin, Mehmet Mukan Saçlı, Merve Nur Genç, Efthymia Staiou, and Mert Paldrak. "Developing a Spare Parts Demand Forecasting System." In Lecture Notes in Mechanical Engineering, 676–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31343-2_58.
Full textZhang, Junni L., and John Bryant. "Bayesian Disaggregated Forecasts: Internal Migration in Iceland." In Developments in Demographic Forecasting, 193–215. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42472-5_10.
Full textSi, Xiao-Sheng, Zheng-Xin Zhang, and Chang-Hua Hu. "An Adaptive Spare Parts Demand Forecasting Method Based on Degradation Modeling." In Springer Series in Reliability Engineering, 405–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54030-5_15.
Full textZhang, Lianwu, Fanggeng Zhao, Jiangsheng Sun, and Xiaoyan Shi. "The Demand Forecasting Method for Repairable Spare Parts Based on Availability." In Lecture Notes in Electrical Engineering, 291–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34522-7_32.
Full textRosienkiewicz, Maria. "Accuracy Assessment of Artificial Intelligence-Based Hybrid Models for Spare Parts Demand Forecasting in Mining Industry." In Advances in Intelligent Systems and Computing, 176–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30443-0_16.
Full textAPAK, SINAN. "SPARE PART DEMAND FORECASTING WITH BAYESIAN MODEL." In Uncertainty Modeling in Knowledge Engineering and Decision Making, 851–56. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814417747_0136.
Full textde Oliveira, Alexandre Crepory Abbott, Jéssica Mendes Jorge, Andrea Cristina dos Santos, and Geraldo Pereira Rocha Filho. "Neural Network with Specialized Knowledge for Forecasting Intermittent Demand." In Advances in Transdisciplinary Engineering. IOS Press, 2020. http://dx.doi.org/10.3233/atde200113.
Full textMahuzier, Ignacio Aranís, Pablo A. Viveros Gunckel, Rodrigo Mena Bustos, Christopher Nikulin Chandía, and Vicente González-Prida Díaz. "Innovation in Scientific Knowledge Based on Forecasting Assessment." In Advances in Human and Social Aspects of Technology, 247–63. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7152-0.ch013.
Full textJamieson, Kathleen Hall. "Introduction." In Cyberwar, 1–16. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190058838.003.0001.
Full textConference papers on the topic "Spares Demand Forecasting"
Guo, Feng, Bin Zhou, Chen-yu Liu, and Heng-xin Wang. "Spares demand combined forecasting based on grey model and exponential smoothing." In 2012 International Conference on Information Management, Innovation Management and Industrial Engineering (ICIII). IEEE, 2012. http://dx.doi.org/10.1109/iciii.2012.6339838.
Full textZhang, Chen, Tao Yang, Wei Gao, Weiqiu Chen, Jing He, and Xingwang Yang. "A Spare Parts Demand Prediction Method for Wind Farm Based on Periodic Maintenance Strategy." In ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/power-icope2017-3077.
Full textTsao, Yu-Chung, Nani Kurniati, I. Nyoman Pujawan, and Alvin Muhammad 'Ainul Yaqin. "Spare Parts Demand Forecasting in Energy Industry." In the 2019 International Conference. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3335550.3335573.
Full textSi, Xiao-Sheng, Chang-Hua Hu, and Donghua Zhou. "Forecasting spare parts demand based on degradation modeling." In 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 2013. http://dx.doi.org/10.1109/ccdc.2013.6561806.
Full text"Forecasting the spare part demands for mobile phones." In 2017 2nd International Conference on Mechatronics and Information Technology. Francis Academic Press, 2017. http://dx.doi.org/10.25236/icmit.2017.22.
Full textChristensen, Carissa Bryce. "Forecasting the demand for commercial telecommunications satellites." In Space technology and applications international forum - 2001. AIP, 2001. http://dx.doi.org/10.1063/1.1357989.
Full textde Melo Menezes, Breno Augusto, Diego de Siqueira Braga, Bernd Hellingrath, and Fernando Buarque de Lima Neto. "An evaluation of forecasting methods for anticipating spare parts demand." In 2015 Latin America Congress on Computational Intelligence (LA-CCI). IEEE, 2015. http://dx.doi.org/10.1109/la-cci.2015.7435980.
Full textSong, Hui, Cheng Zhang, Guangyu Liu, and Wukui Zhao. "Equipment spare parts demand forecasting model based on grey neural network." In 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE). IEEE, 2012. http://dx.doi.org/10.1109/icqr2mse.2012.6246453.
Full textPawar, Nikita, and Bhavana Tiple. "Demand Forecasting of Anti-Aircraft Missile Spare Parts Using Neural Network." In 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE, 2019. http://dx.doi.org/10.1109/iceca.2019.8821903.
Full textLee, Hanjun, and Jaedong Kim. "A Predictive Model for Forecasting Spare Parts Demand in Military Logistics." In 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2018. http://dx.doi.org/10.1109/ieem.2018.8607801.
Full text