Academic literature on the topic 'Spark Plasma Sintering (SPS)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spark Plasma Sintering (SPS).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Spark Plasma Sintering (SPS)"

1

Muhammad, Wan Nur Azrina Wan, Yoshiharu Mutoh, and Yukio Miyashita. "Microstructure and Mechanical Properties of Magnesium Prepared by Spark Plasma Sintering." Advanced Materials Research 129-131 (August 2010): 764–68. http://dx.doi.org/10.4028/www.scientific.net/amr.129-131.764.

Full text
Abstract:
Magnesium powders were sintered by using spark plasma sintering (SPS) and conventional pressureless sintering (PLS) techniques at sintering temperatures ranged from 552°C to 605°C to investigate effect of sintering method on microstructure and mechanical properties of sintered magnesium. High densed magnesium could be obtained by using spark plasma sintering technique compared to conventional presureless sintering at the same sintering temperature. It was found that the ultimate tensile strength increased with increasing sintering temperature for both the materials sintered by PLS and SPS. The magnesium samples prepared by SPS showed better mechanical properties than those prepared by PLS. The microstructural observations revealed that the grain growth was not significant in SPS process compared to PLS, which would enhance the mechanical properties of the SPS sintered magnesium.
APA, Harvard, Vancouver, ISO, and other styles
2

Nisar, Ambreen, Cheng Zhang, Benjamin Boesl, and Arvind Agarwal. "Unconventional Materials Processing Using Spark Plasma Sintering." Ceramics 4, no. 1 (January 8, 2021): 20–39. http://dx.doi.org/10.3390/ceramics4010003.

Full text
Abstract:
Spark plasma sintering (SPS) has gained recognition in the last 20 years for its rapid densification of hard-to-sinter conventional and advanced materials, including metals, ceramics, polymers, and composites. Herein, we describe the unconventional usages of the SPS technique developed in the field. The potential of various new modifications in the SPS technique, from pressureless to the integration of a novel gas quenching system to extrusion, has led to SPS’ evolution into a completely new manufacturing tool. The SPS technique’s modifications have broadened its usability from merely a densification tool to the fabrication of complex-shaped components, advanced functional materials, functionally gradient materials, interconnected materials, and porous filter materials for real-life applications. The broader application achieved by modification of the SPS technique can provide an alternative to conventional powder metallurgy methods as a scalable manufacturing process. The future challenges and opportunities in this emerging research field have also been identified and presented.
APA, Harvard, Vancouver, ISO, and other styles
3

Nisar, Ambreen, Cheng Zhang, Benjamin Boesl, and Arvind Agarwal. "Unconventional Materials Processing Using Spark Plasma Sintering." Ceramics 4, no. 1 (January 8, 2021): 20–40. http://dx.doi.org/10.3390/ceramics4010003.

Full text
Abstract:
Spark plasma sintering (SPS) has gained recognition in the last 20 years for its rapid densification of hard-to-sinter conventional and advanced materials, including metals, ceramics, polymers, and composites. Herein, we describe the unconventional usages of the SPS technique developed in the field. The potential of various new modifications in the SPS technique, from pressureless to the integration of a novel gas quenching system to extrusion, has led to SPS’ evolution into a completely new manufacturing tool. The SPS technique’s modifications have broadened its usability from merely a densification tool to the fabrication of complex-shaped components, advanced functional materials, functionally gradient materials, interconnected materials, and porous filter materials for real-life applications. The broader application achieved by modification of the SPS technique can provide an alternative to conventional powder metallurgy methods as a scalable manufacturing process. The future challenges and opportunities in this emerging research field have also been identified and presented.
APA, Harvard, Vancouver, ISO, and other styles
4

Drouet, Christophe, C. Largeot, G. Raimbeaux, Claude Estournès, Gérard Dechambre, Christèle Combes, and Christian Rey. "Bioceramics: Spark Plasma Sintering (SPS) of Calcium Phosphates." Advances in Science and Technology 49 (October 2006): 45–50. http://dx.doi.org/10.4028/www.scientific.net/ast.49.45.

Full text
Abstract:
Calcium phosphates (Ca-P) are major constituents of calcified tissues, and are also extensively used for the elaboration of biomaterials. However, the usual high-temperature sintering processes generally lead to strong alterations of their chemical, physical and biological properties. Spark plasma sintering (SPS) is a non-conventional sintering technique based on the use of pulsed current, enabling fast heating and cooling rates, and lower sintering temperatures are often observed. The sintering of several orthophosphates (DCPD, amorphous TCP, beta-TCP, OCP, HA and biomimetic nanocrystalline apatites) by SPS was investigated in order to track potential advantages of this technique over usual Ca-P sintering methods. Special attention was given to the SPS consolidation of highly bioactive nanocrystalline apatites.
APA, Harvard, Vancouver, ISO, and other styles
5

Olevsky, Eugene, S. Kandukuri, and Ludo Froyen. "Analysis of Mechanisms of Spark-Plasma Sintering." Key Engineering Materials 368-372 (February 2008): 1580–84. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.1580.

Full text
Abstract:
Spark-Plasma Sintering (SPS) involves rapid heating of powder by electric current with simultaneous application of external pressure. Numerous experimental investigations point to the ability of SPS to render highly-dense powder products with the potential of grain size retention. The latter ability is of significance for the consolidation of nano-powder materials where the grain growth is one of the major problems. A model for spark-plasma sintering taking into consideration various mechanisms of material transport is developed. The results of modeling agree satisfactorily with the experimental data in terms of SPS shrinkage kinetics.
APA, Harvard, Vancouver, ISO, and other styles
6

Sebayang, Darwin, Deni S. Khaerudini, Hendi Saryanto, M. A. Othman, Mat Husin Saleh, D. Fredrick, and Pudji Untoro. "Microstructure and Mechanical Properties of Nanocrystalline FeCr Alloy Prepared by Spark Plasma Sintering." Applied Mechanics and Materials 52-54 (March 2011): 2197–202. http://dx.doi.org/10.4028/www.scientific.net/amm.52-54.2197.

Full text
Abstract:
This paper investigates the efficiency of two consolidation processing techniques prepared by spark plasma sintering (SPS) and hot pressing (HP) which allow obtaining fully dense nanostructured materials. FeCr powders were sintered by using spark plasma sintering (SPS) and hot pressing (HP) sintering techniques over sintering temperature up to 1000oC. The microstructures of the sintered end-products were characterized by Scanning Electron Microscopy (SEM). X-rays diffraction line profile analysis was adopted to analyze the crystallite size of starting and sintered FeCr using Williamson–Hall method. The density of the sintered specimens was measured by using the Archimedes method. The result indicated that the dense specimen with relative similar density and approaching the equilibrium state obtained in shorter time and lower sintering temperature by spark plasma sintering compared to conventional hot pressing. The FeCr specimen prepared by SPS showed more effective to retain nanocrystalline and better mechanical properties than those prepared by HP. The diffraction investigation revealed that the grain growth was not significant in SPS process compared to HP, which would enhance the mechanical properties of the SPS sintered FeCr.
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Qing, Yong Huang, Chang An Wang, and Hou Xing Zhang. "Fabrication Processes and Properties of Highly Pure MgAlON Materials." Materials Science Forum 561-565 (October 2007): 543–46. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.543.

Full text
Abstract:
In this paper, the MgAlON ceramic was fabricated by Spark Plasma Sintering (SPS) and hot press sintering respectively. The results showed that highly pure and single-phase MgAlON could be fabricated at lower sintering temperature in a short period through SPS process, compared with the conventional Hot Press sintering (HP) process. The bending strength of MgAlON specimens prepared by SPS process was higher than 500MPa while bending strength of HP specimens was much lower. The open porosity was almost eliminated in SPS MgAlON specimens. Spark Plasma Sintered MgAlON had a single phase of MgAlON while Hot Press Sintered MgAlON had major MgAlON and minor AlN and Al2O3.
APA, Harvard, Vancouver, ISO, and other styles
8

Fang, Ming Hao, Wei Pan, Sui Lin Shi, and Zhen Yi Fang. "Kinetics Model for the Initial Stage of Spark Plasma Sintering." Key Engineering Materials 336-338 (April 2007): 2366–68. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.2366.

Full text
Abstract:
The sintering kinetics model of initial stage by spark plasma sintering (SPS) is discussed in this paper. During SPS, there are discharges among the powder particles. And the particles surface will be melted and form viscose flow. These phenomena accelerate the particles rearrangement and reduce the sintering time. The relationship between the shrinkage ratio of particles and the sintering time during the initial stages of sintering by SPS has been obtained. The results show that L/L0 is linear to the time.
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Ji-Sun, Chae-Myung Chang, Young IL Lee, Jong-Heun Lee, and Seong-Hyeon Hong. "Spark Plasma Sintering (SPS) of NASICON Ceramics." Journal of the American Ceramic Society 87, no. 2 (February 2004): 305–7. http://dx.doi.org/10.1111/j.1551-2916.2004.00305.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dudina, Dina, Boris Bokhonov, and Eugene Olevsky. "Fabrication of Porous Materials by Spark Plasma Sintering: A Review." Materials 12, no. 3 (February 12, 2019): 541. http://dx.doi.org/10.3390/ma12030541.

Full text
Abstract:
Spark plasma sintering (SPS), a sintering method that uses the action of pulsed direct current and pressure, has received a lot of attention due to its capability of exerting control over the microstructure of the sintered material and flexibility in terms of the heating rate and heating mode. Historically, SPS was developed in search of ways to preserve a fine-grained structure of the sintered material while eliminating porosity and reaching a high relative density. These goals have, therefore, been pursued in the majority of studies on the behavior of materials during SPS. Recently, the potential of SPS for the fabrication of porous materials has been recognized. This article is the first review to focus on the achievements in this area. The major approaches to the formation of porous materials by SPS are described: partial densification of powders (under low pressures, in pressureless sintering processes or at low temperatures), sintering of hollow particles/spheres, sintering of porous particles, and sintering with removable space holders or pore formers. In the case of conductive materials processed by SPS using the first approach, the formation of inter-particle contacts may be associated with local melting and non-conventional mechanisms of mass transfer. Studies of the morphology and microstructure of the inter-particle contacts as well as modeling of the processes occurring at the inter-particle contacts help gain insights into the physics of the initial stage of SPS. For pre-consolidated specimens, an SPS device can be used as a furnace to heat the materials at a high rate, which can also be beneficial for controlling the formation of porous structures. In sintering with space holders, SPS processing allows controlling the structure of the pore walls. In this article, using the literature data and our own research results, we have discussed the formation and structure of porous metals, intermetallics, ceramics, and carbon materials obtained by SPS.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Spark Plasma Sintering (SPS)"

1

Zgalat-Lozynskyy, O., M. Herrmann, and A. Ragulya. "Spark Plasma and Rate Controlled Sintering of High-Melting Point Nanocomposites." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35077.

Full text
Abstract:
Over the last decade, nano-structured materials, including nanocrystalline monolithic aggregates and nano-composites, became the object of increasing interest. To consolidate the nanocomposites and achieve desired properties the new technological processes have been applied. Rate Controlled Sintering and Spark Plasma Sintering are successfully used to obtain near fully dense high melting nanocomposites with grain size within nanometric scale and make sintering process faster and cheaper. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35077
APA, Harvard, Vancouver, ISO, and other styles
2

Guyon, Julien. "Évolution des microstructures et mécanismes de densification d'un alliage TiAl lors du frittage par Spark Plasma Sintering." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0244/document.

Full text
Abstract:
Ce travail porte sur l'évolution microstructurale d'un alliage TiAl lors du frittage par un procédé appelé Spark Plasma Sintering (SPS). Les poudres initiales, élaborées par atomisation, sont constituées principalement d'une phase métastable. Les transformations qui accompagnent le retour à l'équilibre de cette dernière durant un chauffage sont finement caractérisées par MEB, MET et EBSD. Ces transformations seront ensuite utilisées comme marqueur thermique lors de la densification SPS afin de mieux estimer les amplitudes des gradients thermiques et mécaniques du procédé de frittage. Les mécanismes de densification responsables de la formation des cous sont discutés, ainsi que les origines des hétérogénéités microstructurales des échantillons complètement densifiés. Un comparatif des mécanismes de densification et des microstructures finales entre une poudre broyée et une poudre non broyée est dressé. Enfin, l'influence de l'application d'une contrainte dynamique pendant la compaction au moyen d'un dispositif original est présentée
This work focuses on the microstructure evolution of a TiAl alloy during sintering by a process called Spark Plasma Sintering (SPS). The initial powders, elaborated by atomization, consist primarily of a metastable phase. The transformations of the return to equilibrium of the latter during heating are finely characterized using SEM, TEM and EBSD. These phase transformations are then used as a thermal indicator during the SPS densification to estimate the thermal and mechanical gradients. The densification mechanisms responsible for the neck formation and the origins of the microstructure heterogeneities of fully densified samples are discussed. A comparison between the densification mechanisms and the final microstructures of a milled powder and a no milled powder is showed. Finally, the effect of the application of a dynamic stress during the compaction using an original process is presented
APA, Harvard, Vancouver, ISO, and other styles
3

Lallemant, Lucile. "Obtention d’alumines α dopées polycristallines transparentes par Spark Plasma Sintering." Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0082/document.

Full text
Abstract:
L'élaboration de céramiques polycristallines transparentes constitue un défi technologique important. Les matériaux transparents actuellement utilisés (verres ou monocristaux) possèdent des propriétés mécaniques (dureté, résistance à l'usure) et physico-chimiques (résistance à la corrosion) moins intéressantes que celles des céramiques polycristallines. Par ailleurs, le coût de production de ces dernières est inférieur à celui des monocristaux. Les deux principaux paramètres à contrôler afin d'augmenter les propriétés optiques de l'alumine alpha polycristalline sont sa porosité, comme pour tout matériau transparent, et sa taille de grains, du fait de sa biréfringence. Aussi on cherchera à obtenir après frittage un matériau possédant une très faible porosité (inférieure à 0,05%) avec une distribution fine en taille de pores centrée sur des porosités nanométriques, et une taille de grains très fine (plus grand que 0,5 µm). Actuellement, cette microstructure particulière est obtenue en ~ 15 heures en combinant un frittage naturel suivi d'un traitement par Hot Isostatic Pressing (HIP). La technique de Spark Plasma Sintering (SPS) utilisée dans cette étude permet d’obtenir des céramiques denses possédant une microstructure fine en des temps plus courts. Premièrement, un protocole d'élaboration d'une alumine pure transparente a été mis au point. Il repose sur la préparation de crus à microstructure contrôlée avant l'étape de frittage. Principalement, ils doivent présenter une distribution fine en taille de pores avec un empilement particulaire macroscopique homogène dépourvu d'agglomérats. Le cycle de frittage SPS a également été optimisé afin d'obtenir les meilleures transmissions optiques possibles. Ensuite, un protocole de dopage par des inhibiteurs de croissance de grains a été optimisé. La nature du sel dopant influe au second ordre sur les propriétés optiques des échantillons par rapport à une calcination préalable au frittage. La nature et/ou la quantité de dopant induisent un décalage plus ou moins important de la densification vers les hautes températures. Le cycle de frittage SPS doit donc être adapté en conséquence. Le taux de dopant doit être optimisé afin d'obtenir une microstructure fine après frittage sans présence de particules de seconde phase. Différents dopants ont été comparés (magnésium Mg, lanthane La et zirconium Zr) et l'échantillon possédant les meilleures propriétés optiques a été obtenu grâce à un dopage à 200 cat ppm de lanthane. Des optimisations au niveau de la morphologie des poudres (plus fines et plus sphériques) et de la préparation des suspensions d'alumine alpha dopées au lanthane (lavage par centrifugation) ont permis d'obtenir l'un des meilleurs échantillons d'alumine transparente reporté dans la littérature. Il possède une transmission optique de 68% et une taille de grains de l'ordre de 300 nm. Ses propriétés mécaniques (dureté, résistance à l'abrasion) sont supérieures à celles d'un monocristal de saphir
Obtaining transparent polycrystalline ceramics became an important technological challenge over the last decade. Their high mechanical (hardness, wear resistance) and physico-chemical (corrosion resistance) properties combined with a high transparency and a reasonable price could lead them to replace glasses or monocrystals as sapphire in optical applications. The main parameters to control in order to obtain highly transparent polycrystalline alpha-alumina (PCA) are the porosity size and amount as for the other transparent materials. However, as PCA is a birefringent material, the grain size also needs to be controlled. That’s why PCA should possess after sintering grains as small as possible (bigger than 0.5 µm) and a porosity closed to 0.00% with nanometric pores. This particular microstructure is usually obtained in ~ 15 hours by combining natural sintering in air with a post Hot Isostatic Pressing (HIP) treatment. In our study, the Spark Plasma Sintering (SPS) technique was used as it enables to obtain fully dense ceramics in shorter times while limiting the grain growth. First, a protocol to obtain a pure transparent PCA was established. It consists on preparing green bodies with a controlled particle’s packing before sintering. Mainly, the particle’s packing has to be macroscopically homogeneous and without agglomerates. Moreover, the pore size distribution should be the narrowest. The SPS sintering cycle was also optimised to obtain the highest optical transmission. Then, a doping protocol with grain growth inhibitors was optimised. The nature of the doping salt has a secondary effect on optical properties compared to a thermal treatment applied before sintering. Depending on the doping agent nature and/or amount, the densification temperature changes. The SPS sintering cycle has thus to be adapted. The doping agent amount has to be optimised to obtain a fine microstructure after sintering without second phase particles. Different doping agents have been compared (magnesium Mg, lanthanum La and zirconium Zr). The sample having the highest optical properties was doped with 200 cat ppm of lanthanum. Finally, an optimisation of the powder’s morphology (finer and more spherical) was performed. Moreover, the lanthanum doped alpha-alumina slurry’s preparation was optimized using centrifugation. All these processes have enabled us to obtain one of the most transparent PCA sample ever reported in the literature. It possesses an optical transmission of 68% and a grain size around 300 nm. Its mechanical properties (hardness, wear resistance) are higher than the ones of a sapphire monocrystal
APA, Harvard, Vancouver, ISO, and other styles
4

Carneiro, Marcelo Bertolete. "Fabricação de ferramentas de corte em gradação funcional por Spark Plasma Sintering (SPS)." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/3/3151/tde-14122014-155118/.

Full text
Abstract:
O objetivo do trabalho foi fabricar ferramentas de corte para usinagem a partir de materiais em gradação funcional (Functionally Graded Materials FGM), fazendo uso da técnica de sinterização por plasma pulsado (Spark Plasma Sintering SPS), a qual permite taxa de aquecimento e resfriamento maior do que as técnicas tradicionais, menor temperatura e tempo de operação, melhor controle energético e alta repetibilidade. Os materiais utilizados foram pós cerâmicos a base de alumina (Al2O3-ZrO2 e Al2O3-TiC) e metal duro (WC-Co), de modo que dois insertos foram desenvolvidos, um de cerâmica branca (Al2O3-ZrO2) em gradação com metal duro e outro de cerâmica mista (Al2O3-TiC) em gradação com metal duro. A metodologia experimental levou em conta a aplicação de um modelo termomecânico para estimar a tensão residual térmica ao longo da espessura da ferramenta, estudo da influência dos parâmetros de sinterização por SPS (Temperatura e Pressão) sobre a qualidade do sinterizado (caracterização da propriedade física, densidade), com base nesses dados foi escolhida a melhor condição de operação para fabricar corpos de prova (CPs) para os ensaios mecânicos de resistência à flexão, dureza e tenacidade à fratura, além de insertos em FGM para os ensaios de usinagem em ferro fundido cinzento fazendo uso da operação de torneamento. Os resultados mostraram que o parâmetro de máquina que mais influenciou a densidade foi a Temperatura, os FGMs de AlTiC e AlZr obtiveram um aumento de 126 e 73% na resistência à flexão em relação às suas respectivas cerâmicas homogêneas, seguindo a sequência dos materiais, a dureza foi avaliada em 13,8 e 15,8 GPa, enquanto a tenacidade à fratura em 4,91 e 5,04 MPa.m1/2. Quanto aos ensaios de usinagem, as ferramentas de FGM AlZr apresentaram menor desgaste do que as de FGM AlTiC, as forças de corte foram influenciadas pelas variáveis Avanço e Velocidade de corte, finalmente, o Avanço foi a variável que mais influenciou os resultados de rugosidade.
The aim was fabricating cutting tools from functionally graded materials (FGM) by spark plasma sintering method (SPS), which allow heating and cooling rates higher than traditional methods, lower temperature and shorter time sintering, better energy control and high reproducibility. The materials used were ceramic powders based on alumina (Al2O3-ZrO2 and Al2O3-TiC) and cemented carbide (WC-Co), so that two inserts were developed, one of white ceramic (Al2O3-ZrO2) graded with cemented carbide and the other of mixed ceramic (Al2O3- TiC) graded with cemented carbide. The experimental methodology was developed from thermo-mechanical model application to estimate thermal residual stress along with tool thickness, study into the influence of SPS sintering parameters (Temperature and Pressure) over sintered quality (physical properties characterization, density), on the basis of these data, the best operating condition was chosen to fabricate workpieces for mechanical tests of flexural strength, hardness and fracture toughness, besides FGM inserts to machining tests in grey cast iron using turning operation. The results showed the machine parameter that mostly influenced density was Temperature; the AlTiC and AlZr FGMs got an increase of 126 and 73% in flexural strength in relation to their homogeneous ceramics. Following the materials sequence, the hardness was evaluated at 13.8 and 15.8 GPa, whereas the fracture toughness was 4.91 and 5.04 MPa.m1/2. For the machining tests, FGM AlZr cutting tools showed lower wear than FGM AlTiC ones; the cutting forces were influenced by Feed Rate and Cutting Speed. Finally, the Feed Rate was the variable that mostly influenced the roughness results.
APA, Harvard, Vancouver, ISO, and other styles
5

Lallemant, Lucile. "Obtention d'alumines α dopées polycristallines transparentes par Spark Plasma Sintering." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00808873.

Full text
Abstract:
L'élaboration de céramiques polycristallines transparentes constitue un défi technologique important. Les matériaux transparents actuellement utilisés (verres ou monocristaux) possèdent des propriétés mécaniques (dureté, résistance à l'usure) et physico-chimiques (résistance à la corrosion) moins intéressantes que celles des céramiques polycristallines. Par ailleurs, le coût de production de ces dernières est inférieur à celui des monocristaux. Les deux principaux paramètres à contrôler afin d'augmenter les propriétés optiques de l'alumine alpha polycristalline sont sa porosité, comme pour tout matériau transparent, et sa taille de grains, du fait de sa biréfringence. Aussi on cherchera à obtenir après frittage un matériau possédant une très faible porosité (inférieure à 0,05%) avec une distribution fine en taille de pores centrée sur des porosités nanométriques, et une taille de grains très fine (plus grand que 0,5 µm). Actuellement, cette microstructure particulière est obtenue en ~ 15 heures en combinant un frittage naturel suivi d'un traitement par Hot Isostatic Pressing (HIP). La technique de Spark Plasma Sintering (SPS) utilisée dans cette étude permet d'obtenir des céramiques denses possédant une microstructure fine en des temps plus courts. Premièrement, un protocole d'élaboration d'une alumine pure transparente a été mis au point. Il repose sur la préparation de crus à microstructure contrôlée avant l'étape de frittage. Principalement, ils doivent présenter une distribution fine en taille de pores avec un empilement particulaire macroscopique homogène dépourvu d'agglomérats. Le cycle de frittage SPS a également été optimisé afin d'obtenir les meilleures transmissions optiques possibles. Ensuite, un protocole de dopage par des inhibiteurs de croissance de grains a été optimisé. La nature du sel dopant influe au second ordre sur les propriétés optiques des échantillons par rapport à une calcination préalable au frittage. La nature et/ou la quantité de dopant induisent un décalage plus ou moins important de la densification vers les hautes températures. Le cycle de frittage SPS doit donc être adapté en conséquence. Le taux de dopant doit être optimisé afin d'obtenir une microstructure fine après frittage sans présence de particules de seconde phase. Différents dopants ont été comparés (magnésium Mg, lanthane La et zirconium Zr) et l'échantillon possédant les meilleures propriétés optiques a été obtenu grâce à un dopage à 200 cat ppm de lanthane. Des optimisations au niveau de la morphologie des poudres (plus fines et plus sphériques) et de la préparation des suspensions d'alumine alpha dopées au lanthane (lavage par centrifugation) ont permis d'obtenir l'un des meilleurs échantillons d'alumine transparente reporté dans la littérature. Il possède une transmission optique de 68% et une taille de grains de l'ordre de 300 nm. Ses propriétés mécaniques (dureté, résistance à l'abrasion) sont supérieures à celles d'un monocristal de saphir.
APA, Harvard, Vancouver, ISO, and other styles
6

Moleková, Kristína. "Zpracování práškových materiálů na bázi Mg metodou SPS." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2019. http://www.nusl.cz/ntk/nusl-401923.

Full text
Abstract:
Diploma thesis occupy with preparation of porous material from magnesium powder with a HAp admixture by cold pressing followed by spark plasma sintering (SPS). This thesis contain both preparation of bulk material, diffusion plot and charakterization of materials based on the compaction process conditions. On the basis of physical mechanical characteristics, the impact of the pressing process on the subsequent sintering and the resulting material properties are evaluated. Bulk material is characterized considering to structure and physical–mechanical properties. Properties of final metarial will serve to optimize conditions for process of bulk material preparation.
APA, Harvard, Vancouver, ISO, and other styles
7

Madec, Clémentine. "Elaboration de matériaux à gradient de fonction céramique / métal par SPS pour la protection balistique." Thesis, Dijon, 2016. http://www.theses.fr/2016DIJOS057/document.

Full text
Abstract:
Les propriétés idéales d’un matériau de blindage sont la combinaison d’une extrême dureté pour casserles noyaux des projectiles et d’une grande ductilité pour résister à l’impact et arrêter les fragments du projectile. Or cettecombinaison de propriétés est incompatible avec un matériau unique. Pour pallier ce problème, les concepteurs de blindageassocient un matériau dur (céramique) à un matériau ductile (métal). Une autre solution serait de réaliser un matériauprésentant un gradient de propriétés mécaniques : dans le cas présent, d’une très grande dureté de la face avant à une grandeductilité de la face arrière. Les technologies non conventionnelles de frittage telles que le Spark Plasma Sintering (SPS)permettent d’assembler ou de fritter/assembler des matériaux aux caractéristiques aussi différentes et complémentaires. Ils’agit donc d’étudier les conditions d’assemblage ou de cofrittage de tels matériaux (dans le cas présent, Al2O3 et Ti) ainsique l’influence de la microstructure résultante de l’ensemble sur sa performance balistique.La première partie de ce travail a porté sur la caractérisation de l’alumine et du titane. Cinq poudres d’alumines ontété étudiées d’un point de vue comportement au frittage. Trois d’entre elles sont retenues en raison de leurs microstructuresintéressantes, proches en termes de densité et de taille de grains. Ces alumines ont été caractérisées mécaniquement (dureté,ténacité, résistance à la rupture) et balistiquement pour n’en garder qu’une dans la deuxième partie du travail. Le titane, frittédans les mêmes conditions que l’alumine, a montré qu’il n’avait malheureusement pas les propriétés attendues (absence deductilité).La seconde partie du travail a montré que l’obtention de MGFs sains à partir de Al2O3 et Ti uniquement est délicate,que ce soit avec un intercalaire sous forme de monocouche ou de multicouche. La forte affinité du titane avec l’oxygène(formation d’oxyde ou en insertion) et le carbone (formant des carbures), ainsi que sa réactivité avec l’alumine (produisantdes intermétalliques) rend le MGF fragile et incapable d’accommoder les contraintes résiduelles d’élaboration. L’insertiond’une faible proportion de nickel (plus ductile et moins réactif vis-à-vis de l’oxygène que le titane) dans les composites apermis d’obtenir des MGFs sains, dont le comportement balistique a pu être évalué
The objective is to improve ballistic performance of armors. A perfect armor combines ductility to resistto the impact and high hardness to stop projectile’s fragments. However, such an association of properties is inconsistent witha single material. The solution is to perform a functionally graded material (FGM) with a ductile metal at the back side of thesample and a hard ceramic on the top side. Non-conventional technologies like Spark Plasma Sintering allow joining orsintering all types of materials with different and additional properties. Furthermore, with this technique, high heating ratescan be achieved, limiting grain growth and resulting in a fine microstructure. The goal is to study joining conditions or cosinteringof such materials (in this case, Al2O3 and Ti), as well as the resulting microstructure on the ballistic efficiency.The first part of the study focused on the characterization of alumina and titanium. Five powders of alumina werestudied from a sintering point of view. Three of which were selected because of their interesting microstructures, close indensities and grain sizes. These ceramics have been characterized mechanically (hardness, toughness and strength) andballistically. One of them is adopted to realize FGM. Titanium, sintered with the same conditions, unfortunately, doesn’t haveexpected properties (absence of ductility).The second part of the work showed that the preparation of FGM without cracks from Al2O3 and Ti only ischallenging, with an interlayer with one or more layers. The strong affinity of Ti with oxygen (formation of oxides orinsertion) with C (forming carbides) and its reactivity with alumina (forming intermetallics) make the FGM brittle and enablethe release of residual stresses during the process. By adding a low amount of nickel (more ductile and less reactive withoxygen and titanium) in composites, FGMs almost without cracks were obtained. The latter were evaluated ballistically
APA, Harvard, Vancouver, ISO, and other styles
8

Van, der Laan Antoine. "Etude du procédé de frittage par Spark Plasma Sintering (SPS) de formes complexes : de la modélisation à la fabrication." Electronic Thesis or Diss., Toulouse 3, 2021. http://www.theses.fr/2021TOU30302.

Full text
Abstract:
Le frittage par spark plasma sintering (SPS) est une méthode de densification de poudres qui permet, grâce à l’application d’un courant pulsé et d’une pression uniaxiale, de densifier une large gamme de matériaux (céramiques, métaux, alliages, matériaux réfractaires, etc.). Les caractéristiques du frittage SPS en font un procédé compétitif car il permet notamment de réduire les temps de fabrication tout en conservant une microstructure fine et donc de meilleures propriétés mécaniques comparés aux procédés conventionnels. Grâce à ces avantages, le frittage SPS un candidat de choix pour la production de formes complexes dont le verrou a été levé en 2015 grâce à une technique brevetée appelée « Mobilint ». Cette technique est basée sur l’utilisation d’une interface mobile localisée entre la pièce à densifier et un matériau poreux sacrificiel, et permet la production d’une grande variété de géométries complexes. En vue d’une industrialisation du procédé, une meilleure compréhension et connaissance des mécanismes mis en jeu est nécessaire, afin de maitriser la fabrication de pièces complexes pour répondre aux problématiques industrielles. La simulation numérique est un outil efficace pour à la fois répondre à ces nouvelles problématiques et permettre une meilleure compréhension du processus de frittage SPS. L’obtention d’un modèle numérique complet du frittage SPS passe par le développement d’une simulation électrothermique à laquelle sont ajoutées des considérations mécaniques de fluage et de frittage. Une nouvelle méthode numérique simple et rapide d’identification des paramètres clés que sont les résistances de contact a été développée. Elle permet l’obtention d’un modèle électrothermique précis pour tout type de matériaux à partir d’un seul essai expérimental. Le modèle obtenu a l’avantage de pouvoir être directement appliqué au frittage de formes complexes sans essais complémentaires. Les aspects mécaniques du frittage ont ensuite pu être ajoutés au modèle grâce au développement d’une nouvelle méthode numérique d’identification des paramètres de fluage, là aussi à partir d’un seul essai de densification. Une approche multi-mécanistique inédite a été développée et a permis de mieux caractériser le frittage d’un matériau comme le TiAl. Ces considérations ont permis l’obtention d’un modèle électrothermique et mécanique couplé précis du frittage de différents matériaux. L’application de ce modèle à des formes complexes a ensuite permis de mieux comprendre les différents mécanismes mis en jeu lors du frittage de telles géométries. Les conditions de frittage ont ensuite pu être optimisées afin d’anticiper certains phénomènes comme des gradients de température, de densité ou bien des déformations géométriques. Il a ainsi été possible de produire des pièces denses avec des géométries complexes et de microstructures contrôlées
Spark plasma sintering is a powder densification method which allows, through the application of a pulsed current and uniaxial pressure, to sinter a wide range of materials (ceramics, metals, alloys, refractory materials, etc.). Compared to other conventional processes, SPS allows to reduce production time while maintaining a fine microstructure that can enhanced the mechanical properties. Thanks to these benefits, the SPS process can be used for the production of complex shapes. A milestone has been reached in 2015 with the patented technique called “Mobilint”, which is based on a mobile interface located between the part to be sintered and a sacrificial porous material. With this technique, a large variety of complex geometry can be produced by SPS. For the industrialization of the process, a better understanding and knowledge of the mechanisms involved is needed. This will allow to have a better control of the process in order to answer industrial demands. Numerical modeling appears to be an efficient tool to address these new challenges. A fully coupled model of the SPS is composed of an electrothermal model to which are added the mechanical considerations such as creep and sintering aspects. A new, simple, and fast numerical method of identifying contact resistances, which are key parameters, has been developed. It allows to obtain an accurate electrothermal simulation of several materials based on only one experimental trial. The model can then be applied to complex configurations without further calibration experiments. The mechanical aspects of sintering could then be added to the model thanks to the development of a new numerical method of identifying the creep parameters of a material again from only one densification trial. An original multi-mechanisms approach of the sintering of a TiAl powder was also developed to better describe its densification. Those improvements allowed the obtention of an accurate fully coupled electrothermal and mechanical model of the spark plasma sintering of several materials. The model developed was then used to a better understanding of the different mechanisms involved in the sintering of complex shapes. This allowed to optimize sintering conditions by anticipating several features like temperature and density gradients or geometrical deformations. With these conditions, fully dense complex parts with controlled dimensions and microstructure were produced
APA, Harvard, Vancouver, ISO, and other styles
9

Motsi, Glenda Tsholofelo. "Spark plasma sintering de composites base titane renforcés par des carbures pour applications en tribocorrosion." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30309.

Full text
Abstract:
La faible résistance à l'usure du titane et de ses alliages limite leur application dans laquelle l'effet combiné de l'usure et de la corrosion peut être rencontré. À cet égard, l'ajout de phases céramiques sous forme de whiskers (TiB) ou de particules (TiB2 et TiC) dans une matrice à base de titane pour former des composites avancés à matrice de titane (TMC), peut aider à réduire les pertes de matériau et à prolonger la durée de vie. Dans cette étude, les composites de titane à base de TiB2, TiB et TiC ont été produits par Spark Plasma Sintering (SPS) réactif de titane pur commercial (CP-Ti) et de poudres B4C de différentes tailles de particules. On s'est rendu compte qu'à une température de consigne de 800°C, la réaction avait commencé en raison des avantages du courant pulsé dans le SPS. L'analyse SEM / FIB / TEM sur le matériau fritté à 800°C a montré une phase grise continue, constituée d'amas de particules de B4C partiellement réagies ségrégés aux joints des grains de la matrice Ti. À 1100°C, les réactifs ont complètement réagi et se sont transformés en clusters de divers composés riches en B et C (Ti-B et Ti-C). L'homogénéisation de la microstructure a été obtenue à des temps de séjour de 0 à 30 min pour éliminer les amas formés. Le comportement en corrosion et en tribocorrosion du CP-Ti et des TMC a été étudié dans des solutions 3,5% molaire de NaCl. Les résultats ont montré qu'une quantité croissante des phases de renforcement à 5% en poids réduisait la sensibilité à la corrosion et à la tribocorrosion des TMC frittés à 1100°C, car les valeurs de potentiel en circuit ouvert étaient positivement décalées pour Ti5wt% B4C. De graves dommages à la surface avec des rainures profondes dans CP-Ti ont été observés dans les pistes usées indiquant une usure adhésive. Aucun retrait des phases de renforcement TiB et TiC n'a été observé pour Ti5wt% B4C, en raison de la forte force de liaison interfaciale avec la matrice Ti
The poor wear resistance of titanium and its alloys limit their application in which the combined effect of wear and corrosion may be encountered. In this regard, addition of ceramic phases in the form of whiskers (TiB) or particles (TiB2 and TiC) in titanium based matrix to form advanced titanium matrix composites (TMCs), can aid reduce material loss and prolong the service life. In this study TiB2, TiB and TiC based titanium composites were produced by reactive Spark Plasma Sintering (SPS) of commercial pure titanium (CP-Ti) and B4C powders of varying particles sizes. It was realized that at 800°C set-point temperature the reaction had initiated due to the benefits of pulsed current in the SPS. SEM/FIB/TEM analysis on the material sintered at 800°C showed a continuous grey phase, constituted of clusters of partially reacted B4C particles segregated at Ti matrix grain boundaries. While at 1100°C, the reactants completely reacted and transformed into clusters of various compounds high in B and C (Ti-B and Ti-C). Microstructure homogenization was achieved at dwell times of 0-30 min to remove the formed clusters. Corrosion and tribocorrosion behaviour of CP-Ti and TMCs was investigated in solutions 3.5% molar of NaCl. The results showed that increasing amount of the reinforcing phases to 5wt% reduced the corrosion and tribocorrosion susceptibility of the TMCs sintered at 1100°C, as the open circuit potential values were positively shifted for Ti5wt%B4C. Severe surface damage with deep grooves in CP-Ti was observed in worn tracks indicating adhesive wear. No pulling out of TiB and TiC reinforcing phases was observed for Ti5wt%B4C, due to the strong interfacial bond strength with the Ti matrix
APA, Harvard, Vancouver, ISO, and other styles
10

Trapp, Johannes. "Mikroskopische Aspekte beim feldaktivierten Sintern metallischer Systeme." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-224118.

Full text
Abstract:
1. Beim feldaktivierten Sintern im Temperaturbereich von 500 bis 1000 °C fließen elektrische Ströme mit einer Dichte von 1 bis 3 A/mm². 2. Daraus folgt für die größten verwendeten Pulverteilchen mit einem Radius von 50 µm ein Strom je Teilchenkontakt von 10 bis 50 mA. 3. Die durch das Aufbringen des prozesstechnisch notwendigen Pressdruckes gebildeten relativen Kontaktradien (Kontaktradius geteilt durch Teilchenradius) haben eine Größe von 0,05 bis 0,3. 4. Die Einengung der Strompfade im Kontakt der Pulverteilchen erhöht, zusammen mit dem elektrischen Widerstand der Oxidschicht auf den Pulverteilchen, den elektrischen Widerstand des Pulverpresslings. 5. Der Stromfluss durch die Teilchenkontakte führt mit dem zusätzlichen elektrischen Widerstand dieser Teilchenkontakte zu einer lokalen Temperaturerhöhung (Übertemperatur) von 10-4 bis 1 Kelvin für Kupfer- respektive Stahlpulver. 6. Der zusätzliche elektrische Widerstand der Oxidschicht kann die Übertemperatur beim Kupferpulver auf bis zu 1 mK erhöhen. 7. Mit abnehmendem Teilchenradius sinkt die Übertemperatur quadratisch. 8. Das Wachstum der Teilchenkontakte im Verlauf der Verdichtung führt zu einer kontinuierlichen Verringerung der Übertemperatur. 9. Das Auftreten von schmelzflüssiger Phase, von Metalldampf oder von Plasma wird in den untersuchten metallischen Systemen ausgeschlossen. 10. Auch Elektromigration, Thermomigration oder andere Wirkungen des elektrischen Stromes spielen keine Rolle für die Verdichtung beim feldaktivierten Sintern. 11. Die Verwendung von gepulstem anstelle von kontinuierlichem Gleichstrom beeinflusst die Verdichtung der untersuchten Werkstoffe nicht. 12. Die Verdichtung vom Pulver zum kompakten Werkstoff findet für Pulverteilchen mit einem Radius größer als R = 10 µm über plastische Verformung durch verschiedene Formen des Kriechens statt. 13. Die Verformung ist im Anfangsstadium auf den Kontaktbereich begrenzt. 14. Bei Pulverteilen mit Teilchenradien unter R = 10 µm findet die Verdichtung zunächst als Folge von Leerstellenströmen in die Kontaktkorngrenze statt (Sintern). 15. Durch die schnelle Verdichtung bei niedriger homologer Temperatur werden Kornwachstum und Rekristallisation verringert.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Spark Plasma Sintering (SPS)"

1

Cavaliere, Pasquale, ed. Spark Plasma Sintering of Materials. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Spark Plasma Sintering. Elsevier, 2019. http://dx.doi.org/10.1016/c2018-0-02428-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cao, Giacomo, Javier Garay, Claude Estournes, and Roberto Orru. Spark Plasma Sintering: Current Status, New Developments and Challenges. Elsevier, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cao, Giacomo, Roberto Orrù, Javier Garay, and Claude Estournes. Spark Plasma Sintering: Current Status, New Developments and Challenges. Elsevier, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cavaliere, Pasquale. Spark Plasma Sintering of Materials: Advances in Processing and Applications. Springer, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spark-Plasma Sintering and Related Field- Assisted Powder Consolidation Technologies. MDPI, 2017. http://dx.doi.org/10.3390/books978-3-03842-383-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Decker, Sabine. Entwicklung Der Mikrostruktur Und Der Mechanischen Eigenschaften Eines Mg-Psz-Partikelverstarkten Trip-Matrix-Composits Wahrend Spark Plasma Sintering. Logos Verlag Berlin, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Spark Plasma Sintering (SPS)"

1

Mitra, Sunanda, and Tanmoy Maiti. "Thermoelectric Materials Synthesized by Spark Plasma Sintering (SPS) for Clean Energy Generation." In Spark Plasma Sintering of Materials, 493–514. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Voisin, Thomas, Jean-Philippe Monchoux, and Alain Couret. "Near-Net Shaping of Titanium-Aluminum Jet Engine Turbine Blades by SPS." In Spark Plasma Sintering of Materials, 713–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sharma, N., S. N. Alam, and B. C. Ray. "Fundamentals of Spark Plasma Sintering (SPS): An Ideal Processing Technique for Fabrication of Metal Matrix Nanocomposites." In Spark Plasma Sintering of Materials, 21–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nokhrin, Aleksey, Maksim Boldin, Aleksandr Piskunov, Nataliya Kozlova, Mikhail Chegurov, Vladimir Kopylov, Nataliya Tabachkova, Vladimir Chuvil’deev, and Petr Tryaev. "The Use of SPS for High-Rate Diffusion Welding of High-Strength Ultrafine-Grained α-Titanium Alloy Ti-5Al-2V." In Spark Plasma Sintering of Materials, 703–11. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nokhrin, Aleksey, Vladimir Chuvil’deev, Maksim Boldin, Gleb Baranov, Vladimir Belov, Eugeniy Lantcev, Nikolay Melekhin, Yu V. Blagoveshchenskiy, Nataliya Isaeva, and Aleksandr Popov. "Impact of High-Energy Mechanical Activation on Sintering Kinetics and Mechanical Properties of UFG Heavy Tungsten Alloys: SPS Versus Sintering in Hydrogen." In Spark Plasma Sintering of Materials, 337–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Drouet, Christophe, C. Largeot, G. Raimbeaux, C. Estournès, Gérard Dechambre, Christèle Combes, and Christian Rey. "Bioceramics: Spark Plasma Sintering (SPS) of Calcium Phosphates." In Advances in Science and Technology, 45–50. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-05-2.45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Olevsky, Eugene A., and Dina V. Dudina. "Sintering by Low-Voltage Electric Pulses (Including Spark Plasma Sintering (SPS))." In Field-Assisted Sintering, 89–191. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76032-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Karandikar, P., S. Wong, M. Duke, R. Haber, Minh Vu, and J. Singh. "Comparison of Armor Ceramics Made by Spark Plasma Sintering (SPS) and Pressureless Sintering." In Advances in Ceramic Armor IX, 85–99. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118807576.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tokita, Masao. "Development of Advanced Spark Plasma Sintering (SPS) Systems and its Industrial Applications." In Ceramic Transactions Series, 51–59. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470082751.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aigbodion, Victor Sunday. "High Strength and Electrical Conductivity of α-Al-CNTs + GAgNPs Nanocomposites." In Lecture Notes in Mechanical Engineering, 266–72. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28839-5_30.

Full text
Abstract:
AbstractThe development of new advanced material of α-Al- carbon nanotubes (CNTs and green synthesis silver nanoparticles (GAgNPs) superconductor nanocomposites was sudied. Green synthesis silver nanoparticles (GAgNPs) was used for the decoration of CNTS. The composites were by modified spark plasma sintering (SPS). The microstructure, strength and electrical conductivity of the nanocomposites were determined. The formation of sub-grain in the Al-4%CNTs + 2%GAg.NPs composite generates more dislocation density. The addition of GAgNPs to Al-CNTs significantly enhanced the ductility mode of fracture associated with the AlAg3(110) and AlAg2(100) phases and the small sub-grain formed at the surface. It can be concluded that a higher strength, electrical conductivity can be made from the developed nanocomposite.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Spark Plasma Sintering (SPS)"

1

Khor, K. A., L. G. Yu, and P. Cheang. "Spark Plasma Sintering of Plasma Sprayed HA Coatings." In ITSC2002, edited by C. C. Berndt and E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2002. http://dx.doi.org/10.31399/asm.cp.itsc2002p1024.

Full text
Abstract:
Abstract This paper examines the influence of spark plasma sintering (SPS) on plasma-sprayed hydroxyapatite (HA) coatings. For comparison purposes, a conventional heat treatment is also carried out. The surface microstructure as well as the crystallinity of each layer is determined by means of SEM and XRD analysis. Test results show that the crystallinity of the layers increases with increasing SPS temperature up to 800 °C and a large amount of β tricalcium phosphate is formed. Paper includes a German-language abstract.
APA, Harvard, Vancouver, ISO, and other styles
2

Prawara, B., H. Yara, Y. Miyagi, and T. Fukushima. "Densification of Thermal Sprayed Coatings with Spark Plasma Sintering (SPS)." In ITSC2002, edited by C. C. Berndt and E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2002. http://dx.doi.org/10.31399/asm.cp.itsc2002p0639.

Full text
Abstract:
Abstract This paper examines the effects of spark plasma sintering (SPS) on flame-sprayed zirconia coatings. It describes how the zirconia layers were produced, treated, and tested. The combination of heating and loading increased coating hardness and adhesion strength by a factor of three and caused a significant reduction in porosity. It also led to phase transformations which, in some cases, had an offsetting effect on coating properties. Paper includes a German-language abstract.
APA, Harvard, Vancouver, ISO, and other styles
3

Kuo, Chia-Hung, Chii-Shyang Hwang, Jie-Ren Ku, Ming-Shan Jeng, and Fang-Hei Tsau. "Spark Plasma Sintering of PbTe Thermoelectric Bulk Materials With Small Grains." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52181.

Full text
Abstract:
PbTe is a conventional thermoelectric material for thermoelectric generator at intermediate temperature. Small grain size effect has been reported to improve PbTe ZT values (figure of merit). We report a combination process of attrition milling and spark plasma sintering (SPS) for preparing PbTe bulk materials with small grain sizes. The PbTe powders were milled by attrition under 600 rpm for 6–96 h and followed by SPS process under the sintering temperature of 573–773 K, the heating rate of 100 K/min, and the sintering pressure of 50 MPa. The powders and bulk materials as-prepared were then studied by X-ray diffraction patterns, scanning electron microscopy images, and transmission electron microscopy images. Transport properties of polycrystalline PbTe bulks were evaluated through temperature dependent thermal conductivity measurements.
APA, Harvard, Vancouver, ISO, and other styles
4

Khor, K. A., X. J. Chen, and S. H. Chan. "Post-Spray Treatment of Plasma Sprayed Yttria Stabilized Zirconia (YSZ) Electrolyte with Spark Plasma Sintering (SPS) Technique." In ITSC2004, edited by Basil R. Marple and Christian Moreau. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.itsc2004p0027.

Full text
Abstract:
Abstract Spark-plasma sintering (SPS) was adopted in this study as a rapid post-spray treatment for yttria stabilized zirconia (YSZ) electrolytes prepared through the direct current (dc) plasma spray process. The lamellar microstructure in the as-sprayed samples was found to significantly reduced the ionic conductivity of the YSZ electrolytes. However, the ionic conductivity (at 1053 °C) increased sharply from 0.065 S/cm for the as-sprayed electrolyte to 0.122 S/cm for electrolyte post-spray treated through SPS at 1400°C for 3 minutes. These phenomena were attributed to the microstructure transformation from lamellar structure of the as-sprayed samples to equi-axial type granular structure of the post-spray samples treated by SPS. Correspondingly, porosity reduced from ~ 10.72 % in as-sprayed coating to ~ 1.38% in the SPS sample treated at 1400°C for 3 min. Majority of the pores in the SPS sample were also found to have contracted to a narrow size range 0.03 – 1 µm. AC impedance spectroscopy demonstrated the effect of the microstructure modification between samples treated in the SPS at temperature 1200, 1300 and 1400°C for 3 minutes with the concomitant reduction of the resistivity, which is consistent with the microstructure changes of the YSZ electrolyte from lamellar structure to granular structure. Overall, the results show that spark-plasma-sintering (SPS) is an effective and rapid post-spray treatment to improve the relative density and electrical properties of plasma sprayed YSZ electrolytes.
APA, Harvard, Vancouver, ISO, and other styles
5

Thet, N. S., I. M. Makhadilov, A. P. Malakhinsk, and P. Solis. "The influence of DC pulse current pattern on the different materials properties of samples obtained by spark plasma sintering." In 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.s4-o-014401.

Full text
Abstract:
Spark plasma sintering (SPS) also known as pulsed electric current sintering (PECS) or field-assisted sintering technique (FAST), belongs to a class of powder metallurgy techniques. The fundamental of this technique is appeared over last 50 years ago, but modern SPS technique is appeared within the last 20 years depending on this principle. The variation of this factor is so extensive for each material that only a few papers have been devoted to this research. This review paper summarizes the latest research findings with respect to experimental procedures, densification behaviors, microstructural characteristics, and mechanical properties of various materials synthesized using SPS, mainly highlighting the influence of the electric DC pulse current on the relative density, mechanical and tribological properties of various materials during sintering.
APA, Harvard, Vancouver, ISO, and other styles
6

"Dielectric investigation of polytetrafluoroethylene manufactured by a newly spark plasma sintering (SPS) technique." In 1st International Symposium on Dielectric Materials and Applications. Materials Research Forum LLC, 2016. http://dx.doi.org/10.21741/9781945291197-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Masuoka, Tadashi, Shin-ichi Moriya, Akihide Kurosu, and Akinaga Kumakawa. "Evaluation of Spark Plasma Sintering (SPS) Forming Method for Liquid Rocket Combustion Chambers." In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-7148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khor, K. A., L. G. Yu, S. H. Chan, and X. J. Chen. "Spark Plasma Sintering (SPS) of Plasma Sprayed YSZ Electrolyte for Solid Oxide Fuel Cell (SOFC) Application." In ITSC2002, edited by C. C. Berndt and E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2002. http://dx.doi.org/10.31399/asm.cp.itsc2002p0644.

Full text
Abstract:
Abstract Plasma spraying is a fast and inexpensive process for fabricating YSZ electrolyte for SOFCs. In this investigation, free-standing plasma sprayed YSZ disks are treated by spark plasma sintering at different temperatures, soak times, and loading cycles. SEM examination shows that the lamellar microstructure of the as-sprayed zirconia is converted to a predominantly granular structure with no significant phase changes as per XRD analysis. Microhardness and laser flash diffusivity measurements show that the SPS treatments also improve YSZ layer density, tensile modulus, and thermal conductivity. Paper includes a German-language abstract.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Shufeng, Hiroshi Izui, Michiharu Okano, Weihua Zhang, and Taku Watanabe. "Microstructure and Mechanical Properties of ZrO2(Y2O3)-Al2O3 Nano Composites Prepared by Spark Plasma Sintering." In ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72322.

Full text
Abstract:
Zirconia (Y2O3)-alumina ceramic nanocomposites were fabricated by spark plasma sintering (SPS). A commercially available nanocomposite powder TZP-3Y20A was used as starting powder, the other from conventionally mechanical mixed powder 3YSZ-20A used for comparison. The effect of sintering temperature on the densification, sintering behavior, mechanical properties, and microstructure of the composites were investigated. The results show that the density increase with increasing of sintering temperature, and thus mechanical properties were strengthened with enhancing of densification. The nanocomposite powder TZP-3Y20A was easily sintered and good mechanical properties were achieved, compared with the powder from conventionally mechanical mixed, where the maximum strength and toughness of composites are 967 MPa and 5.27 MPam1/2, respectively.
APA, Harvard, Vancouver, ISO, and other styles
10

Nam, Duk-Hyun, Chang-Young Son, Chang Kyu Kim, and Sunghak Lee. "Mechanical Properties of Cu-Based Amorphous Alloy Matrix Composites Consolidated by Spark Plasma Sintering." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47048.

Full text
Abstract:
In this study, microstructure and mechanical properties of Cu-based amorphous alloy matrix composites consolidated by spark plasma sintering (SPS) equipment were investigated. Amorphous alloy powders were mixed with 10∼40 vol.% of pure Cu powders, and were consolidated at 460°C for 1/2 minute under 300 or 700 MPa. The consolidated composites contained Cu particles homogeneously distributed in the amorphous matrix, and showed a considerable plastic strain, whereas their compressive strength was lower than that of the monolithic amorphous alloys. The compressive strength and plastic strain of the composites consolidated under 700 MPa showed 10∼20% and two times increases, respectively, over those of the composites consolidated under 300 MPa. The increase in consolidation pressure could play a role in sufficiently bonding between prior amorphous powders, in preventing micropores, and in suppressing the crystallization, thereby leading to the successful consolidation of the high-quality composites. Microfracture mechanisms were investigated by directly observing microfracture processes using an in situ loading stage. Cu particles present in the composites acted as blocking sites of crack propagation, and provided the stable crack growth. These findings suggested that the composites consolidated by the SPS presented new possibilities of application to structural materials or parts requiring excellent mechanical properties and large sizes.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Spark Plasma Sintering (SPS)"

1

Taya, Minoru. Spark Plasma Sintering (SPS) for Nanostructured Smart Materials. Fort Belvoir, VA: Defense Technical Information Center, February 2006. http://dx.doi.org/10.21236/ada443838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hill, Curtis W., Lynn A. Boatner, Dennis Tucker, James A. Kolopus, and Zhongyang Cheng. Spark Plasma Sintering of Ultracapacitors. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1236598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Olevsky, Eugene. Fundamentals of Spark-Plasma Sintering - Final Report. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1877929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Charit, Indrajit, Darryl Butt, Megan Frary, and Mark Carroll. Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1054226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Subhash, Ghatu, Kuang-Hsi Wu, and James Tulenko. Development of an Innovative High-Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1128531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lissenden, Cliff, Tasnim Hassan, and Vijaya Rangari. Development of a Innovative High Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1183653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography