Academic literature on the topic 'Sparse and low-rank decomposition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sparse and low-rank decomposition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sparse and low-rank decomposition"
Ong, Frank, and Michael Lustig. "Beyond Low Rank + Sparse: Multiscale Low Rank Matrix Decomposition." IEEE Journal of Selected Topics in Signal Processing 10, no. 4 (2016): 672–87. http://dx.doi.org/10.1109/jstsp.2016.2545518.
Full textYin, Jingwei, Bing Liu, Guangping Zhu, and Zhinan Xie. "Moving Target Detection Using Dynamic Mode Decomposition." Sensors 18, no. 10 (2018): 3461. http://dx.doi.org/10.3390/s18103461.
Full textRahmani, Mostafa, and George K. Atia. "High Dimensional Low Rank Plus Sparse Matrix Decomposition." IEEE Transactions on Signal Processing 65, no. 8 (2017): 2004–19. http://dx.doi.org/10.1109/tsp.2017.2649482.
Full textChartrand, R. "Nonconvex Splitting for Regularized Low-Rank + Sparse Decomposition." IEEE Transactions on Signal Processing 60, no. 11 (2012): 5810–19. http://dx.doi.org/10.1109/tsp.2012.2208955.
Full textLiu, Jingjing, Donghui He, Xiaoyang Zeng, et al. "ManiDec: Manifold Constrained Low-Rank and Sparse Decomposition." IEEE Access 7 (2019): 112939–52. http://dx.doi.org/10.1109/access.2019.2935235.
Full textRong, Kaixuan, Licheng Jiao, Shuang Wang, and Fang Liu. "Pansharpening Based on Low-Rank and Sparse Decomposition." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7, no. 12 (2014): 4793–805. http://dx.doi.org/10.1109/jstars.2014.2347072.
Full textZhao, Jingtao, Caixia Yu, Suping Peng, and Chuangjian Li. "3D diffraction imaging method using low-rank matrix decomposition." GEOPHYSICS 85, no. 1 (2020): S1—S10. http://dx.doi.org/10.1190/geo2018-0417.1.
Full textHuang, Jianjun, Xiongwei Zhang, Yafei Zhang, Xia Zou, and Li Zeng. "Speech Denoising via Low-Rank and Sparse Matrix Decomposition." ETRI Journal 36, no. 1 (2014): 167–70. http://dx.doi.org/10.4218/etrij.14.0213.0033.
Full textZhang, He, and Vishal M. Patel. "Convolutional Sparse and Low-Rank Coding-Based Image Decomposition." IEEE Transactions on Image Processing 27, no. 5 (2018): 2121–33. http://dx.doi.org/10.1109/tip.2017.2786469.
Full textGong, Wenyong, Weihong Xu, Leqin Wu, Xiaohua Xie, and Zhanglin Cheng. "Intrinsic Image Sequence Decomposition Using Low-Rank Sparse Model." IEEE Access 7 (2019): 4024–30. http://dx.doi.org/10.1109/access.2018.2888946.
Full textDissertations / Theses on the topic "Sparse and low-rank decomposition"
Ebadi, Salehe Erfanian. "Robust subspace estimation via low-rank and sparse decomposition and applications in computer vision." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/31790.
Full textCordolino, Sobral Andrews. "Robust low-rank and sparse decomposition for moving object detection : from matrices to tensors." Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS007/document.
Full textOreifej, Omar. "Robust Subspace Estimation Using Low-Rank Optimization. Theory and Applications in Scene Reconstruction, Video Denoising, and Activity Recognition." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5684.
Full textBomma, Sushma. "Sparse and low rank approximations for action recognition." Thesis, Heriot-Watt University, 2016. http://hdl.handle.net/10399/3189.
Full textKang, Zhao. "LOW RANK AND SPARSE MODELING FOR DATA ANALYSIS." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1366.
Full textSundin, Martin. "Bayesian methods for sparse and low-rank matrix problems." Doctoral thesis, KTH, Signalbehandling, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191139.
Full textLou, Jian. "Study on efficient sparse and low-rank optimization and its applications." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/543.
Full textShi, Qiquan. "Low rank tensor decomposition for feature extraction and tensor recovery." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/549.
Full textPrimadhanty, Audi. "Low-rank regularization for high-dimensional sparse conjunctive feature spaces in information extraction." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461682.
Full textWang, Tianming. "Non-convex methods for spectrally sparse signal reconstruction via low-rank Hankel matrix completion." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6331.
Full textBooks on the topic "Sparse and low-rank decomposition"
Fu, Yun, ed. Low-Rank and Sparse Modeling for Visual Analysis. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12000-3.
Full textBouwmans, Thierry, Necdet Serhat Aybat, and El-hadi Zahzah. Handbook of Robust Low-Rank and Sparse Matrix Decomposition. Taylor & Francis Group, 2020.
Find full textBouwmans, Thierry, Necdet Serhat Aybat, and El-hadi Zahzah, eds. Handbook of Robust Low-Rank and Sparse Matrix Decomposition. Chapman and Hall/CRC, 2016. http://dx.doi.org/10.1201/b20190.
Full textHuang, Thomas S. Deep Learning Through Sparse and Low-Rank Modeling. Elsevier Science & Technology, 2019.
Find full textDeep Learning Through Sparse and Low-Rank Modeling. Elsevier, 2019. http://dx.doi.org/10.1016/c2017-0-00154-4.
Full textBook chapters on the topic "Sparse and low-rank decomposition"
Fuentes, Victor K., and Jon Lee. "Low-Rank/Sparse-Inverse Decomposition via Woodbury." In Operations Research Proceedings 2016. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55702-1_16.
Full textNakajima, Shinichi, Masashi Sugiyama, and S. Babacan. "Bayesian Sparse Estimation for Background/Foreground Separation." In Handbook of Robust Low-Rank and Sparse Matrix Decomposition. CRC Press, 2016. http://dx.doi.org/10.1201/b20190-27.
Full textSobral, Andrews, Thierry Bouwmans, and El-Hadi Zahzah. "LRSLibrary: Low-Rank and Sparse Tools for Background Modeling and Subtraction in Videos." In Handbook of Robust Low-Rank and Sparse Matrix Decomposition. CRC Press, 2016. http://dx.doi.org/10.1201/b20190-24.
Full textKutz, Jake, Xing Fu, Steven Brunton, and Jacob Grosek. "Dynamic Mode Decomposition for Robust PCA with Applications to Foreground/Background Subtraction in Video Streams and Multi-Resolution Analysis." In Handbook of Robust Low-Rank and Sparse Matrix Decomposition. CRC Press, 2016. http://dx.doi.org/10.1201/b20190-25.
Full textJaved, Sajid, Seon Oh, Thierry Bouwmans, and Soon Jung. "Stochastic RPCA for Background/Foreground Separation." In Handbook of Robust Low-Rank and Sparse Matrix Decomposition. CRC Press, 2016. http://dx.doi.org/10.1201/b20190-26.
Full textGuo, Jie, Chunyou Li, Zuojian Zhou, and Jingui Pan. "Reflection Separation Using Patch-Wise Sparse and Low-Rank Decomposition." In Advances in Multimedia Information Processing – PCM 2018. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00776-8_17.
Full textZeng, Zinan, Tsung-Han Chan, Kui Jia, and Dong Xu. "Finding Correspondence from Multiple Images via Sparse and Low-Rank Decomposition." In Computer Vision – ECCV 2012. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33715-4_24.
Full textPeng, Tingying, Lichao Wang, Christine Bayer, Sailesh Conjeti, Maximilian Baust, and Nassir Navab. "Shading Correction for Whole Slide Image Using Low Rank and Sparse Decomposition." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10404-1_5.
Full textKong, Wanzeng, Yan Liu, Bei Jiang, Guojun Dai, and Lin Xu. "A New EEG Signal Processing Method Based on Low-Rank and Sparse Decomposition." In Communications in Computer and Information Science. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5230-9_54.
Full textZweng, Markus, Pascal Fallavollita, Stefanie Demirci, Markus Kowarschik, Nassir Navab, and Diana Mateus. "Automatic Guide-Wire Detection for Neurointerventions Using Low-Rank Sparse Matrix Decomposition and Denoising." In Augmented Environments for Computer-Assisted Interventions. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24601-7_12.
Full textConference papers on the topic "Sparse and low-rank decomposition"
Ong, Frank, and Michael Lustig. "Beyond low rank + sparse: Multi-scale low rank matrix decomposition." In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016. http://dx.doi.org/10.1109/icassp.2016.7472561.
Full textUlfarsson, M. O., V. Solo, and G. Marjanovic. "Sparse and low rank decomposition using l0 penalty." In ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178584.
Full textChen, Chongyu, Jianfei Cai, Weisi Lin, and Guangming Shi. "Surveillance video coding via low-rank and sparse decomposition." In the 20th ACM international conference. ACM Press, 2012. http://dx.doi.org/10.1145/2393347.2396294.
Full textXue, Yawen, Xiaojie Guo, and Xiaochun Cao. "Motion saliency detection using low-rank and sparse decomposition." In ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6288171.
Full textFevotte, Cedric, and Matthieu Kowalski. "Hybrid sparse and low-rank time-frequency signal decomposition." In 2015 23rd European Signal Processing Conference (EUSIPCO). IEEE, 2015. http://dx.doi.org/10.1109/eusipco.2015.7362426.
Full textRong, Kaixuan, Shuang Wang, Xiaohua Zhang, and Biao Hou. "Low-rank and sparse matrix decomposition-based pan sharpening." In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6351041.
Full textHuang, Junhao, Weize Sun, Lei Huang, and Shaowu Chen. "Deep Compression with Low Rank and Sparse Integrated Decomposition." In 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT). IEEE, 2019. http://dx.doi.org/10.1109/iccsnt47585.2019.8962461.
Full textZhang, Chunjie, Jing Liu, Qi Tian, Changsheng Xu, Hanqing Lu, and Songde Ma. "Image classification by non-negative sparse coding, low-rank and sparse decomposition." In 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2011. http://dx.doi.org/10.1109/cvpr.2011.5995484.
Full textZhang, Lihe, and Chen Ma. "Low-rank, sparse matrix decomposition and group sparse coding for image classification." In 2012 19th IEEE International Conference on Image Processing (ICIP 2012). IEEE, 2012. http://dx.doi.org/10.1109/icip.2012.6466948.
Full textChandrasekaran, Venkat, Sujay Sanghavi, Pablo A. Parrilo, and Alan S. Willsky. "Sparse and low-rank matrix decompositions." In 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2009. http://dx.doi.org/10.1109/allerton.2009.5394889.
Full textReports on the topic "Sparse and low-rank decomposition"
Ekambaram, Venkatesan, and Kannan Ramchandran. Cooperative Non-Line-of-Sight Localization Using Low-rank + Sparse Matrix Decomposition. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada561810.
Full textDoostan, Alireza. Early Career Award: An Enabling Computational Framework for Uncertainty Assimilation and Propagation in Complex PDE Systems: Sparse and Low-rank Techniques (Final Report). Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1511650.
Full text