Academic literature on the topic 'Sparse signal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sparse signal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sparse signal"
Mingjiang Shi, Xiaoyan Zhuang, and He Zhang. "Signal Reconstruction for Frequency Sparse Sampling Signals." Journal of Convergence Information Technology 8, no. 9 (May 15, 2013): 1197–203. http://dx.doi.org/10.4156/jcit.vol8.issue9.147.
Full textPeng, Wei, Dong Wang, Changqing Shen, and Dongni Liu. "Sparse Signal Representations of Bearing Fault Signals for Exhibiting Bearing Fault Features." Shock and Vibration 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/1835127.
Full textWang, Tianjing, Hang Shen, Xiaomei Zhu, Guoqing Liu, and Hua Jiang. "An Adaptive Gradient Projection Algorithm for Piecewise Convex Optimization and Its Application in Compressed Spectrum Sensing." Mathematical Problems in Engineering 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/9547934.
Full textVujović, Stefan, Andjela Draganić, Maja Lakičević Žarić, Irena Orović, Miloš Daković, Marko Beko, and Srdjan Stanković. "Sparse Analyzer Tool for Biomedical Signals." Sensors 20, no. 9 (May 2, 2020): 2602. http://dx.doi.org/10.3390/s20092602.
Full textXuan Liu, Xuan Liu, and Jin U. Kang Jin U. Kang. "Iterative sparse reconstruction of spectral domain OCT signal." Chinese Optics Letters 12, no. 5 (2014): 051701–51704. http://dx.doi.org/10.3788/col201412.051701.
Full textYe, Chen, Guan Gui, Shin-ya Matsushita, and Li Xu. "Block Sparse Signal Reconstruction Using Block-Sparse Adaptive Filtering Algorithms." Journal of Advanced Computational Intelligence and Intelligent Informatics 20, no. 7 (December 20, 2016): 1119–26. http://dx.doi.org/10.20965/jaciii.2016.p1119.
Full textSelesnick, Ivan W., and Ilker Bayram. "Sparse Signal Estimation by Maximally Sparse Convex Optimization." IEEE Transactions on Signal Processing 62, no. 5 (March 2014): 1078–92. http://dx.doi.org/10.1109/tsp.2014.2298839.
Full textWand, Weidong, Qunfei Zhang, Wentao Shi, Juan SHI, Weijie Tan, and Xuhu Wang. "Iterative Sparse Covariance Matrix Fitting Direction of Arrival Estimation Method Based on Vector Hydrophone Array." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 38, no. 1 (February 2020): 14–23. http://dx.doi.org/10.1051/jnwpu/20203810014.
Full textZhao, Shengjie, Jianchen Zhu, and Di Wu. "Design and Application of a Greedy Pursuit Algorithm Adapted to Overcomplete Dictionary for Sparse Signal Recovery." Traitement du Signal 37, no. 5 (November 25, 2020): 723–32. http://dx.doi.org/10.18280/ts.370504.
Full textSong, Heping, and Guoli Wang. "Sparse Signal Recovery via ECME Thresholding Pursuits." Mathematical Problems in Engineering 2012 (2012): 1–22. http://dx.doi.org/10.1155/2012/478931.
Full textDissertations / Theses on the topic "Sparse signal"
Tan, Xing. "Bayesian sparse signal recovery." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0041176.
Full textSkretting, Karl. "Sparse Signal Representation using Overlapping Frames." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-102.
Full textSignal expansions using frames may be considered as generalizations of signal representations based on transforms and filter banks. Frames for sparse signal representations may be designed using an iterative method with two main steps: (1) Frame vector selection and expansion coefficient determination for signals in a training set, – selected to be representative of the signals for which compact representations are desired, using the frame designed in the previous iteration. (2) Update of frame vectors with the objective of improving the representation of step (1). In this thesis we solve step (2) of the general frame design problem using the compact notation of linear algebra.
This makes the solution both conceptually and computationally easy, especially for the non-block-oriented frames, – for short overlapping frames, that may be viewed as generalizations of critically sampled filter banks. Also, the solution is more general than those presented earlier, facilitating the imposition of constraints, such as symmetry, on the designed frame vectors. We also take a closer look at step (1) in the design method. Some of the available vector selection algorithms are reviewed, and adaptations to some of these are given. These adaptations make the algorithms better suited for both the frame design method and the sparse representation of signals problem, both for block-oriented and overlapping frames.
The performances of the improved frame design method are shown in extensive experiments. The sparse representation capabilities are illustrated both for one-dimensional and two-dimensional signals, and in both cases the new possibilities in frame design give better results.
Also a new method for texture classification, denoted Frame Texture Classification Method (FTCM), is presented. The main idea is that a frame trained for making sparse representations of a certain class of signals is a model for this signal class. The FTCM is applied to nine test images, yielding excellent overall performance, for many test images the number of wrongly classified pixels is more than halved, in comparison to state of the art texture classification methods presented in [59].
Finally, frames are analyzed from a practical viewpoint, rather than in a mathematical theoretic perspective. As a result of this, some new frame properties are suggested. So far, the new insight this has given has been moderate, but we think that this approach may be useful in frame analysis in the future.
ABBASI, MUHAMMAD MOHSIN. "Solving Sudoku by Sparse Signal Processing." Thesis, KTH, Signalbehandling, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160908.
Full textSudoku är ett diskret bivillkorsproblem som kan modelleras som ett underbestämt ekvationssystem. Denna rapport fokuserar på att tillämpa ett antal nya signalbehandlingsmetoder för att lösa sudoku och att jämföra resultaten med några existerande metoder. Eftersom målet inte enbart är att lösa sudoku, implementerades approximativa lösare baserade på optimeringsteori. En positiv-definit konvex relaxeringsmetod (SDR) för att lösa sudoku utvecklades. Iterativ-adaptiv-metoden för amplitud- och fasskattning (IAA-APES) från gruppantennsignalbehandling användes också för sudoku för att utnyttja glesheten i sudokulösningen på liknande sätt som i mättillämpningen. LIKES och SPICE testades också för sudokuproblemet och resultaten jämfördes med l1-norm-minimiering, viktad l1- norm, och sinkhorn-balancering. SPICE och l1-norm är ekvivalenta i termer av prestanda men SPICE är långsammare. LIKES och viktad l1-norm är ekvivalenta och har bättre noggrannhet än SPICE och l1- norm. SDR visade sig ha bäst prestanda för sudoku med unika lösningar, men SDR är också den metod med beräkningsmässigt högst komplexitet. Prestandan för IAA-APES ligger någonstans mellan SPICE och LIKES men är snabbare än bägge dessa.
Berinde, Radu. "Advances in sparse signal recovery methods." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/61274.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 96-101).
The general problem of obtaining a useful succinct representation (sketch) of some piece of data is ubiquitous; it has applications in signal acquisition, data compression, sub-linear space algorithms, etc. In this thesis we focus on sparse recovery, where the goal is to recover sparse vectors exactly, and to approximately recover nearly-sparse vectors. More precisely, from the short representation of a vector x, we want to recover a vector x* such that the approximation error ... is comparable to the "tail" min[subscript x'] ... where x' ranges over all vectors with at most k terms. The sparse recovery problem has been subject to extensive research over the last few years, notably in areas such as data stream computing and compressed sensing. We consider two types of sketches: linear and non-linear. For the linear sketching case, where the compressed representation of x is Ax for a measurement matrix A, we introduce a class of binary sparse matrices as valid measurement matrices. We show that they can be used with the popular geometric " 1 minimization" recovery procedure. We also present two iterative recovery algorithms, Sparse Matching Pursuit and Sequential Sparse Matching Pursuit, that can be used with the same matrices. Thanks to the sparsity of the matrices, the resulting algorithms are much more efficient than the ones previously known, while maintaining high quality of recovery. We also show experiments which establish the practicality of these algorithms. For the non-linear case, we present a better analysis of a class of counter algorithms which process large streams of items and maintain enough data to approximately recover the item frequencies. The class includes the popular FREQUENT and SPACESAVING algorithms. We show that the errors in the approximations generated by these algorithms do not grow with the frequencies of the most frequent elements, but only depend on the remaining "tail" of the frequency vector. Therefore, they provide a non-linear sparse recovery scheme, achieving compression rates that are an order of magnitude better than their linear counterparts.
by Radu Berinde.
M.Eng.
Perelli, Alessandro <1985>. "Sparse Signal Representation of Ultrasonic Signals for Structural Health Monitoring Applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6321/.
Full textAlmshaal, Rashwan M. "Sparse Signal Processing Based Image Compression and Inpainting." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4286.
Full textLebed, Evgeniy. "Sparse signal recovery in a transform domain." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/4171.
Full textCharles, Adam Shabti. "Dynamics and correlations in sparse signal acquisition." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53592.
Full textHan, Puxiao. "Distributed sparse signal recovery in networked systems." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4630.
Full textZachariah, Dave. "Estimation for Sensor Fusion and Sparse Signal Processing." Doctoral thesis, KTH, Signalbehandling, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121283.
Full textQC 20130426
Books on the topic "Sparse signal"
A wavelet tour of signal processing: The sparse way. 3rd ed. Amsterdam: Elsevier/Academic Press, 2009.
Find full textMächler, Patrick. VLSI architectures for compressive sensing and sparse signal recovery. Konstanz: Hartung-Gorre Verlag, 2013.
Find full textStarck, J. L. Sparse image and signal processing: Wavelets, curvelets, morphological diversity. New York: Cambridge University Press, 2010.
Find full textStarck, J. L. Sparse image and signal processing: Wavelets, curvelets, morphological diversity. Cambridge: Cambridge University Press, 2010.
Find full textElad, M. Sparse and redundant representations: From theory to applications in signal and image processing. New York: Springer, 2010.
Find full textHlawatsch, Franz. Time-Frequency Analysis and Synthesis of Linear Signal Spaces. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2815-6.
Full textBrown, Susan. Police signal boxes in Glasgow: A survey of surroundings, structure and spare parts. [Glasgow]: [Glasgow Building Preservation Trust], 1993.
Find full textTime-frequency analysis and synthesis of linear signal spaces: Time-frequency filters, signal detection and estimation, and range-Doppler estimation. Boston: Kluwer Academic Publishers, 1998.
Find full textHlawatsch, F. Time-Frequency Analysis and Synthesis of Linear Signal Spaces: Time-Frequency Filters, Signal Detection and Estimation, and Range-Doppler Estimation. Boston, MA: Springer US, 1998.
Find full textBook chapters on the topic "Sparse signal"
Azghani, Masoumeh, and Farokh Marvasti. "Sparse Signal Processing." In New Perspectives on Approximation and Sampling Theory, 189–213. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08801-3_8.
Full textHenniges, Marc, Gervasio Puertas, Jörg Bornschein, Julian Eggert, and Jörg Lücke. "Binary Sparse Coding." In Latent Variable Analysis and Signal Separation, 450–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15995-4_56.
Full textExarchakis, Georgios, Marc Henniges, Julian Eggert, and Jörg Lücke. "Ternary Sparse Coding." In Latent Variable Analysis and Signal Separation, 204–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28551-6_26.
Full textDe Mol, Christine. "Sparse Markowitz Portfolios." In Financial Signal Processing and Machine Learning, 11–22. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118745540.ch2.
Full textElad, Michael. "Sparsity-Seeking Methods in Signal Processing." In Sparse and Redundant Representations, 169–84. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7011-4_9.
Full textMowlaee, Pejman, Amirhossein Froghani, and Abolghasem Sayadiyan. "Sparse Sinusoidal Signal Representation for Speech and Music Signals." In Communications in Computer and Information Science, 469–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89985-3_58.
Full textVaswani, Namrata, and Wei Lu. "Recursive Reconstruction of Sparse Signal Sequences." In Compressed Sensing & Sparse Filtering, 357–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38398-4_11.
Full textGeorgiev, Pando, Danielle Nuzillard, and Anca Ralescu. "Sparse Deflations in Blind Signal Separation." In Independent Component Analysis and Blind Signal Separation, 807–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11679363_100.
Full textChen, Guangyi, Sridhar Krishnan, Weihua Liu, and Wenfang Xie. "Sparse Signal Analysis Using Ramanujan Sums." In Intelligent Computing Theories and Technology, 450–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39482-9_52.
Full textYanhong, Zhang, Guo Jinku, and Wu Jinying. "Sparse Signal Representation with Dispersion Dictionary." In Lecture Notes in Electrical Engineering, 1023–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21747-0_133.
Full textConference papers on the topic "Sparse signal"
Pope, Graeme, and Helmut Bolcskei. "Sparse signal recovery in Hilbert spaces." In 2012 IEEE International Symposium on Information Theory - ISIT. IEEE, 2012. http://dx.doi.org/10.1109/isit.2012.6283506.
Full textBabaie-Zadeh, Massoud, Behzad Mehrdad, and Georgios B. Giannakis. "Weighted sparse signal decomposition." In ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6288652.
Full textGiri, Ritwik, and Bhaskar D. Rao. "Bootstrapped sparse Bayesian learning for sparse signal recovery." In 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE, 2014. http://dx.doi.org/10.1109/acssc.2014.7094748.
Full textAzghani, Masoumeh, and Farokh Marvasti. "Applications of sparse signal processing." In 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2016. http://dx.doi.org/10.1109/globalsip.2016.7906061.
Full text"Session TP3b: Sparse signal recovery." In 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE, 2014. http://dx.doi.org/10.1109/acssc.2014.7094745.
Full textWang, Linyu, Mingqi He, and Jianhong Xiang. "Sparse Signal Recovery via Improved Sparse Adaptive Matching Pursuit Algorithm." In the 2019 3rd International Conference. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3316551.3316553.
Full textJi, Aiguo, Weiping Liu, and Zhiqiang Liu. "DOA Estimation of Quasi-Stationary Signals Using Sparse Signal Reconstruction." In 2019 IEEE International Conference on Smart Internet of Things (SmartIoT). IEEE, 2019. http://dx.doi.org/10.1109/smartiot.2019.00084.
Full textQu, Dongdong, Jiuling Jia, and Jian Zhou. "Digital alias-free signal processing methodology for sparse multiband signals." In 2013 6th International Congress on Image and Signal Processing (CISP). IEEE, 2013. http://dx.doi.org/10.1109/cisp.2013.6743865.
Full textMotamedvaziri, Delaram, Mohammad H. Rohban, and Venkatesh Saligrama. "Sparse signal recovery under Poisson statistics." In 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2013. http://dx.doi.org/10.1109/allerton.2013.6736698.
Full textMixon, Dustin G., Waheed U. Bajwa, and Robert Calderbank. "Frame coherence and sparse signal processing." In 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6034214.
Full textReports on the topic "Sparse signal"
Cevher, Volkan, Chinmay Hegde, Marco F. Duarte, and Richard G. Baraniuk. Sparse Signal Recovery Using Markov Random Fields. Fort Belvoir, VA: Defense Technical Information Center, December 2009. http://dx.doi.org/10.21236/ada520187.
Full textReeves, Galen. Sparse Signal Sampling using Noisy Linear Projections. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada519085.
Full textStiles, James M. Multi-Dimensional Signal Processing for Sparse Radar Arrays. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada419885.
Full textMascarenas, David D., Rose Long, Metodi Iliev, Kiril Ianakiev, and Charles R. Farrar. Nonlinear Signal Processing for Removing Microphonic Noise from Nuclear Spectrometer Measurements: Sparse Linear Modeling via L1 Norm Regularization. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1060366.
Full textGoodman, Joel, Keith Forsythe, and Benjamin Miller. Efficient Reconstruction of Block-Sparse Signals. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada541046.
Full textChinco, Alexander, Adam Clark-Joseph, and Mao Ye. Sparse Signals in the Cross-Section of Returns. Cambridge, MA: National Bureau of Economic Research, October 2017. http://dx.doi.org/10.3386/w23933.
Full textCevher, Volkan, Piotr Indyk, Chinmay Hegde, and Richard G. Baraniuk. Recovery of Clustered Sparse Signals from Compressive Measurements. Fort Belvoir, VA: Defense Technical Information Center, December 2009. http://dx.doi.org/10.21236/ada520218.
Full textRingo, John. Mixed-Signal Electronics Technology for Space (MSETS). Fort Belvoir, VA: Defense Technical Information Center, February 2006. http://dx.doi.org/10.21236/ada453348.
Full textKuperman, William A., and Gerald D'Spain. Waveguide Invariants and Space-Frequency Time Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada425248.
Full textFainman, Yeshaiahu, and Paul E. Shames. Optoelectronic Systems for Space-Variant Signal and Image Processing. Fort Belvoir, VA: Defense Technical Information Center, October 1998. http://dx.doi.org/10.21236/ada358424.
Full text