To see the other types of publications on this topic, follow the link: Spatial confinement.

Journal articles on the topic 'Spatial confinement'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Spatial confinement.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Story, B. "Alone inside: solitary confinement and the ontology of the individual in modern life." Geographica Helvetica 69, no. 5 (2014): 355–64. http://dx.doi.org/10.5194/gh-69-355-2014.

Full text
Abstract:
Abstract. The long-term solitary confinement of prisoners causes fundamentally debilitative psychological damage. This violence, inherent to the socio-spatial organization of solitary confinement, diminishes prisoners' capacity to function as human beings. Yet while violence might characterize the ends of solitary confinement, individuation defines the means. This paper argues that solitary confinement, while an extreme case, shares crucial characteristics with other spaces, structures, and modes of organization familiar to Western society. The actual experiences of prisoners subjected to cond
APA, Harvard, Vancouver, ISO, and other styles
2

Keller, Ole. "Theory of spatial confinement of light." Materials Science and Engineering: B 48, no. 1-2 (1997): 175–83. http://dx.doi.org/10.1016/s0921-5107(97)00099-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shen, Jian, T. Z. Ward, and L. F. Yin. "Emergent phenomena in manganites under spatial confinement." Chinese Physics B 22, no. 1 (2013): 017501. http://dx.doi.org/10.1088/1674-1056/22/1/017501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Xingwen, Zefeng Yang, Jian Wu, et al. "Spatial confinement in laser-induced breakdown spectroscopy." Journal of Physics D: Applied Physics 50, no. 1 (2016): 015203. http://dx.doi.org/10.1088/1361-6463/50/1/015203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chung, Tsai-Ming, Tzu-Chung Wang, Rong-Ming Ho, Ya-Sen Sun, and Bao-Tsan Ko. "Polymeric Crystallization under Nanoscale 2D Spatial Confinement." Macromolecules 43, no. 14 (2010): 6237–40. http://dx.doi.org/10.1021/ma100998k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, Ya-Sen, Tsai-Ming Chung, Yi-Jing Li, et al. "Crystalline Polymers in Nanoscale 1D Spatial Confinement." Macromolecules 39, no. 17 (2006): 5782–88. http://dx.doi.org/10.1021/ma0608121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Heidrun, Bückmann, Capellades Gemma, Hamouzová Kateřina, et al. "Cytoplasmic male sterility as a biological confinement tool for maize coexistence: optimization of pollinator spatial arrangement." Plant, Soil and Environment 63, No. 4 (2017): 145–51. http://dx.doi.org/10.17221/761/2016-pse.

Full text
Abstract:
Cytoplasmic male sterility (CMS) allows efficient biological confinement of transgenes if pollen-mediated gene flow has to be reduced or eliminated. For introduction of CMS maize in agricultural practice, sufficient yields comparable with conventional systems should be achieved. The plus-cultivar-system in maize offers a possibility for biological confinement together with high and stable yields whereas pollinator amount and distribution within the CMS crop is crucial. The aim of this EU-funded study was to identify the best proportion (10, 15, and 20%) and spatial arrangement (inserted rows,
APA, Harvard, Vancouver, ISO, and other styles
8

Broe, Jacob, and Ole Keller. "Superluminality and spatial field confinement in optical tunneling." Optics Communications 194, no. 1-3 (2001): 83–95. http://dx.doi.org/10.1016/s0030-4018(01)01280-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jäckle, J. "Expected influence of spatial confinement on glass transitions." Le Journal de Physique IV 10, PR7 (2000): Pr7–3—Pr7–7. http://dx.doi.org/10.1051/jp4:2000701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jain, Nikhil, and Viola Vogel. "Spatial confinement downsizes the inflammatory response of macrophages." Nature Materials 17, no. 12 (2018): 1134–44. http://dx.doi.org/10.1038/s41563-018-0190-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lancaster, Jack R., and Benjamin Gaston. "NO and nitrosothiols: spatial confinement and free diffusion." American Journal of Physiology-Lung Cellular and Molecular Physiology 287, no. 3 (2004): L465—L466. http://dx.doi.org/10.1152/ajplung.00151.2004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Isenberg, Philip A. "SPATIAL CONFINEMENT OF THEIBEXRIBBON: A DOMINANT TURBULENCE MECHANISM." Astrophysical Journal 787, no. 1 (2014): 76. http://dx.doi.org/10.1088/0004-637x/787/1/76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wang, Gang, and Siu-Tung Yau. "Spatial Confinement Induced Enzyme Stability for Bioelectronic Applications." Journal of Physical Chemistry C 111, no. 32 (2007): 11921–26. http://dx.doi.org/10.1021/jp070152h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Saito, Shingo, and Takenari Goto. "Spatial-confinement effect on phonons and excitons inPbI2microcrystallites." Physical Review B 52, no. 8 (1995): 5929–34. http://dx.doi.org/10.1103/physrevb.52.5929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Johnson, Dawn M., Jad P. Abi-Mansour, and Joshua A. Maurer. "Spatial confinement instigates environmental determination of neuronal polarity." Integrative Biology 4, no. 9 (2012): 1034–37. http://dx.doi.org/10.1039/c2ib20126g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Shen, X. K., J. Sun, H. Ling, and Y. F. Lu. "Spatial confinement effects in laser-induced breakdown spectroscopy." Applied Physics Letters 91, no. 8 (2007): 081501. http://dx.doi.org/10.1063/1.2770772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Arnold, Nikita. "On the spatial confinement in energy beam microprocessing." Journal of Applied Physics 78, no. 7 (1995): 4805–7. http://dx.doi.org/10.1063/1.359765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Japaridze, Aleksandre, Enzo Orlandini, Kathleen Beth Smith, et al. "Spatial confinement induces hairpins in nicked circular DNA." Nucleic Acids Research 45, no. 8 (2017): 4905–14. http://dx.doi.org/10.1093/nar/gkx098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Meek, Claudia C., and Paul Pantano. "Spatial confinement of avidin domains in microwell arrays." Lab on a Chip 1, no. 2 (2001): 158. http://dx.doi.org/10.1039/b107733c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lukavský, Jiří. "Changes in boundary extension effect during spatial confinement." Visual Cognition 22, no. 7 (2014): 996–1012. http://dx.doi.org/10.1080/13506285.2014.941966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mondal, Santanu, K. D. Sen, and Jayanta K. Saha. "Structural properties of Na atom under impenetrable spatial confinement." Canadian Journal of Physics 99, no. 9 (2021): 754–63. http://dx.doi.org/10.1139/cjp-2020-0603.

Full text
Abstract:
The structural properties and radial distributions of the valence electron in different excited levels of Na atom (n = 3–5, l = 0–4; n and l being the principal and orbital angular momentum quantum numbers, respectively) under impenetrable spherical confinement have been studied, where the interaction between the frozen core and the valence electron is mimicked by a model potential available in the literature. The effect of the core on the valence electron has been investigated by estimating the structural properties of Na10+ ion under similar confinement. Scaled radial densities at the nucleu
APA, Harvard, Vancouver, ISO, and other styles
22

Choura, S., S. EL-Borgi, and A. H. Nayfeh. "Axial Vibration Confinement in Nonhomogenous Rods." Shock and Vibration 12, no. 3 (2005): 177–95. http://dx.doi.org/10.1155/2005/514824.

Full text
Abstract:
A design methodology for the vibration confinement of axial vibrations in nonhomogenous rods is proposed. This is achieved by a proper selection of a set of spatially dependent functions characterizing the rod material and geometric properties. Conditions for selecting such properties are established by constructing positive Lyapunov functions whose derivative with respect to the space variable is negative. It is shown that varying the shape of the rod alone is sufficient to confine the vibratory motion. In such a case, the vibration confinement requires that the eigenfunctions be exponentiall
APA, Harvard, Vancouver, ISO, and other styles
23

Закускин, А. С., А. М. Попов, Н. Б. Зоров та Т. А. Лабутин. "Ударное сжатие лазерной плазмы для увеличения интенсивности сигнала при спектрометрическом определении микрокомпонентов в рудах". Письма в журнал технической физики 44, № 2 (2018): 79. http://dx.doi.org/10.21883/pjtf.2018.02.45468.16964.

Full text
Abstract:
AbstractWe have studied the confinement of laser plasma by shock waves (also known as “spatial confinement” induced on an ore sample, as exemplified by changes in the intensity of Ag I 328.07 nm and Au I 267.60 nm emission lines. It is established that the maximum increase in intensity of these lines is observed at 2- to 2.5-μs delay, which corresponds to an increase in the plasma temperature up to 5900 K. The signal-to-noise ratio upon the spatial confinement of plasma is somewhat reduced, but the overall growth of signal intensity provides increase in the sensitivity of laser-induced breakdo
APA, Harvard, Vancouver, ISO, and other styles
24

Keller, Ole. "Towards a microscopic theory of spatial confinement of light." Ultramicroscopy 71, no. 1-4 (1998): 1–9. http://dx.doi.org/10.1016/s0304-3991(97)00060-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Padoan, Paolo, and John Scalo. "Confinement-driven Spatial Variations in the Cosmic-Ray Flux." Astrophysical Journal 624, no. 2 (2005): L97—L100. http://dx.doi.org/10.1086/430598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Manneberg, Otto, S. Melker Hagsäter, Jessica Svennebring, et al. "Spatial confinement of ultrasonic force fields in microfluidic channels." Ultrasonics 49, no. 1 (2009): 112–19. http://dx.doi.org/10.1016/j.ultras.2008.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Michaels, Thomas C. T., Alexander J. Dear, and Tuomas P. J. Knowles. "Stochastic calculus of protein filament formation under spatial confinement." New Journal of Physics 20, no. 5 (2018): 055007. http://dx.doi.org/10.1088/1367-2630/aac0bc.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Benedetti, Lorena, Andrew E. S. Barentine, Mirko Messa, Heather Wheeler, Joerg Bewersdorf, and Pietro De Camilli. "Light-activated protein interaction with high spatial subcellular confinement." Proceedings of the National Academy of Sciences 115, no. 10 (2018): E2238—E2245. http://dx.doi.org/10.1073/pnas.1713845115.

Full text
Abstract:
Methods to acutely manipulate protein interactions at the subcellular level are powerful tools in cell biology. Several blue-light-dependent optical dimerization tools have been developed. In these systems one protein component of the dimer (the bait) is directed to a specific subcellular location, while the other component (the prey) is fused to the protein of interest. Upon illumination, binding of the prey to the bait results in its subcellular redistribution. Here, we compared and quantified the extent of light-dependent dimer occurrence in small, subcellular volumes controlled by three su
APA, Harvard, Vancouver, ISO, and other styles
29

Krivoruchko, V. N., and A. I. Marchenko. "Spatial confinement of ferromagnetic resonances in honeycomb antidot lattices." Journal of Magnetism and Magnetic Materials 324, no. 19 (2012): 3087–93. http://dx.doi.org/10.1016/j.jmmm.2012.05.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cao, H., J. Y. Xu, D. Z. Zhang, et al. "Spatial Confinement of Laser Light in Active Random Media." Physical Review Letters 84, no. 24 (2000): 5584–87. http://dx.doi.org/10.1103/physrevlett.84.5584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Keller, Ole. "Relation between spatial confinement of light and optical tunneling." Physical Review A 60, no. 2 (1999): 1652–71. http://dx.doi.org/10.1103/physreva.60.1652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yu, Yongsheng, Jianpeng Wang, Jiahui Liu, Daishun Ling, and Jiang Xia. "Functional Assembly of Protein Fragments Induced by Spatial Confinement." PLOS ONE 10, no. 4 (2015): e0122101. http://dx.doi.org/10.1371/journal.pone.0122101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Otolski, Christopher J., A. Mohan Raj, Vaidhyanathan Ramamurthy, and Christopher G. Elles. "Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes." Chemical Science 11, no. 35 (2020): 9513–23. http://dx.doi.org/10.1039/d0sc03955a.

Full text
Abstract:
Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host–guest complex.
APA, Harvard, Vancouver, ISO, and other styles
34

Wehrspohn, R. B., J. N. Chazalviel, F. Ozanam, and I. Solomon. "Spatial versus quantum confinement in porous amorphous silicon nanostructures." European Physical Journal B 8, no. 2 (1999): 179–93. http://dx.doi.org/10.1007/s100510050681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gabriele, Sylvain. "Spatial Confinement Modulates Cell Velocity in Collective Cell Migration." Biophysical Journal 118, no. 3 (2020): 603a. http://dx.doi.org/10.1016/j.bpj.2019.11.3259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Tan, Zhi-Jie, and Shi-Jie Chen. "Ion-Mediated RNA Structural Collapse: Effect of Spatial Confinement." Biophysical Journal 103, no. 4 (2012): 827–36. http://dx.doi.org/10.1016/j.bpj.2012.06.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fily, Yaouen, Aparna Baskaran, and Michael F. Hagan. "Dynamics of self-propelled particles under strong confinement." Soft Matter 10, no. 30 (2014): 5609–17. http://dx.doi.org/10.1039/c4sm00975d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wong, Yutian. "Choreography of confinement in Body Memory." Short Film Studies 4, no. 2 (2014): 141–44. http://dx.doi.org/10.1386/sfs.4.2.141_1.

Full text
Abstract:
Using choreography as a conceptual framework involving movement vocabulary and syntax and examining the spatial relationships between bodies, this analysis focuses on the ways in which the movements of the animated characters in this film effectively evoke a sense of dread and confinement.
APA, Harvard, Vancouver, ISO, and other styles
39

Satarifard, Vahid, Maziar Heidari, Samaneh Mashaghi, Sander J. Tans, Mohammad Reza Ejtehadi, and Alireza Mashaghi. "Topology of polymer chains under nanoscale confinement." Nanoscale 9, no. 33 (2017): 12170–77. http://dx.doi.org/10.1039/c7nr04220e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zeng, Qingwei, Lei Liu, Kejin Zhang, Taichang Gao, Ming Chen, and Qi Wang. "Nonlinear energy deposition of filamentation with femtosecond Airy laser beams in water." Modern Physics Letters B 33, no. 28 (2019): 1950339. http://dx.doi.org/10.1142/s0217984919503391.

Full text
Abstract:
The nonlinear propagation of femtosecond Airy laser filaments in water is numerically investigated in this paper. We mainly consider the influences of confinement parameter, pulse duration and beam waist on the deposited energy of filaments. The values of confinement parameter are found to have a significant impact on the temporal and spatial dynamics of the pulse. The characteristics of energy deposition also differ widely for Airy beams with different confinement parameters. The less the confinement parameter, the more energy deposited by filamentation. However, the relative deposited energy
APA, Harvard, Vancouver, ISO, and other styles
41

Molinaro, Céline, Violette Da Cunha, Aurore Gorlas, et al. "Are bacteria claustrophobic? The problem of micrometric spatial confinement for the culturing of micro-organisms." RSC Advances 11, no. 21 (2021): 12500–12506. http://dx.doi.org/10.1039/d1ra00184a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hu, Yi, Ana M. Bragança, Lander Verstraete, et al. "Phase selectivity triggered by nanoconfinement: the impact of corral dimensions." Chemical Communications 55, no. 15 (2019): 2226–29. http://dx.doi.org/10.1039/c8cc08602h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Knight, Andrew W., Poorandokht Ilani-Kashkouli, Jacob A. Harvey, et al. "Interfacial reactions of Cu(ii) adsorption and hydrolysis driven by nano-scale confinement." Environmental Science: Nano 7, no. 1 (2020): 68–80. http://dx.doi.org/10.1039/c9en00855a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Feng, Xin, and Gangsheng Zhang. "New insights into the spatial confinement mechanism of nucleation of biogenic aragonite crystals from bivalve nacre." CrystEngComm 22, no. 40 (2020): 6596–602. http://dx.doi.org/10.1039/d0ce00867b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Vakakis, Alexander F. "Passive spatial confinement of impulsive responses in coupled nonlinear beams." AIAA Journal 32, no. 9 (1994): 1902–10. http://dx.doi.org/10.2514/3.12190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhao, Jiayu, Wei Chu, Zhi Wang, et al. "Strong Spatial Confinement of Terahertz Wave inside Femtosecond Laser Filament." ACS Photonics 3, no. 12 (2016): 2338–43. http://dx.doi.org/10.1021/acsphotonics.6b00512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yokoyama, Shiyoshi, Akira Otomo, Tatsuo Nakahama, and Shinro Mashiko. "Spatial photon confinement and super-radiation from dye cored dendrimer." Thin Solid Films 393, no. 1-2 (2001): 124–28. http://dx.doi.org/10.1016/s0040-6090(01)01117-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Solomon, I., R. B. Wehrspohn, J. N. Chazalviel, and F. Ozanam. "Spatial and quantum confinement in crystalline and amorphous porous silicon." Journal of Non-Crystalline Solids 227-230 (May 1998): 248–53. http://dx.doi.org/10.1016/s0022-3093(98)00170-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lipkowski, Paweł, Justyna Kozłowska, Agnieszka Roztoczyńska, and Wojciech Bartkowiak. "Hydrogen-bonded complexes upon spatial confinement: structural and energetic aspects." Phys. Chem. Chem. Phys. 16, no. 4 (2014): 1430–40. http://dx.doi.org/10.1039/c3cp53583e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kalampounias, A. G., K. S. Andrikopoulos, and S. N. Yannopoulos. "“Rounding” of the sulfur living polymerization transition under spatial confinement." Journal of Chemical Physics 119, no. 14 (2003): 7543–53. http://dx.doi.org/10.1063/1.1605733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!