Academic literature on the topic 'Spatial interpolation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spatial interpolation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spatial interpolation"
Earshia V., Diana, and Sumathi M. "Interpolation of Low-Resolution Images for Improved Accuracy Using an ANN Quadratic Interpolator." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 4s (April 3, 2023): 135–40. http://dx.doi.org/10.17762/ijritcc.v11i4s.6319.
Full textEtherington, Thomas R. "Discrete natural neighbour interpolation with uncertainty using cross-validation error-distance fields." PeerJ Computer Science 6 (July 13, 2020): e282. http://dx.doi.org/10.7717/peerj-cs.282.
Full textStein, A. "Spatial Interpolation." Biometrics 50, no. 2 (June 1994): 592. http://dx.doi.org/10.2307/2533421.
Full textCaloiero, Tommaso, Gaetano Pellicone, Giuseppe Modica, and Ilaria Guagliardi. "Comparative Analysis of Different Spatial Interpolation Methods Applied to Monthly Rainfall as Support for Landscape Management." Applied Sciences 11, no. 20 (October 14, 2021): 9566. http://dx.doi.org/10.3390/app11209566.
Full textAl-husban, Yusra. "Comparison of Spatial Interpolation Methods for Estimating the Annual Rainfall in the Wadi Al-Mujib Basin in Jordan." Jordan Journal of Social Sciences 15, no. 2 (September 29, 2022): 198–208. http://dx.doi.org/10.35516/jjss.v15i2.490.
Full textDeGaetano, Arthur T., Brian N. Belcher, and William Noon. "Temporal and Spatial Interpolation of the Standardized Precipitation Index for Computational Efficiency in the Dynamic Drought Index Tool." Journal of Applied Meteorology and Climatology 54, no. 4 (April 2015): 795–810. http://dx.doi.org/10.1175/jamc-d-14-0088.1.
Full textVan der Steen, A., B. Heeg, F. De Charro, and BA Van Hout. "PMC10 SPATIAL INTERPOLATION." Value in Health 10, no. 6 (November 2007): A453. http://dx.doi.org/10.1016/s1098-3015(10)65564-7.
Full textWickramathilaka, Nevil, Uznir Ujang, Suhaibah Azri, and Tan Liat Choon. "Calculation of Road Traffic Noise, Development of Data, and Spatial Interpolations for Traffic Noise Visualization in Three-dimensional Space." Geomatics and Environmental Engineering 17, no. 5 (August 28, 2023): 61–85. http://dx.doi.org/10.7494/geom.2023.17.5.61.
Full textFlannigan, M. D., and B. M. Wotton. "A study of interpolation methods for forest fire danger rating in Canada." Canadian Journal of Forest Research 19, no. 8 (August 1, 1989): 1059–66. http://dx.doi.org/10.1139/x89-161.
Full textEtzel, K. R., and J. M. McCarthy. "Interpolation of Spatial Displacements Using the Clifford Algebra of E4." Journal of Mechanical Design 121, no. 1 (March 1, 1999): 39–44. http://dx.doi.org/10.1115/1.2829427.
Full textDissertations / Theses on the topic "Spatial interpolation"
Martin, Peter. "Spatial interpolation in other dimensions /." Connect to this title online, 2004. http://hdl.handle.net/1957/4063.
Full textGholmi, Allan. "Evaluating spatial mapping using interpolation techniques." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139704.
Full textSchmidt, Alexandra Mello. "Bayesian spatial interpolation of environmental monitoring stations." Thesis, University of Sheffield, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370075.
Full textGorsich, David John 1968. "Nonparametric modeling of dependencies for spatial interpolation." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9029.
Full textIncludes bibliographical references (p. 140-148).
Crucial in spatial interpolation of stochastic processes is the determination of the underlying dependency of the data. The dependency can be represented by an underlying covariogram, variogram, or generalized covariogram. Estimating this function in a nonparametric way is the theme of this thesis. If the function can be found accurately, then kriging is the optimal linear interpolation technique. A nev,· technique for variogram model selection using the derivative of the empirical variogram and non-negative least squares is discussed. The eigenstructure of the spatial design matrix, the key matrix in Matheron's variogram estimator is determined. Then a nonparametric estimator of the variogram and covariogram of a spatial stochastic process is found. The optimal node selection is determined as well as conditions when the spectral coefficients can be found without a non-linear algorithm. A method of extending isotropic positive definite functions in ]Rd is determined in order to avoid a Gibbs effect on the Fourier-Bessel expansion. Finally, a nonparametric estimator of the generalized covariance is discussed.
by David John Gorsich.
Ph.D.
Cui, Haiyan. "Robustness and Bayesian analysis of spatial interpolation." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187077.
Full textDavies, Helen Catherine. "Bovine TB in badgers : a spatial analysis." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289778.
Full textAtalay-Satoglu, Fatma Betul. "Spatial decompositions for geometric interpolation and efficient rendering." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1812.
Full textThesis research directed by: Computer Science. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Höglund, Melker. "Machine Learning Methods for Spatial Interpolation of Wind." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275743.
Full textDenna studie jämför två populära maskininlärningsmetoder samt ett antal vanliga enklare metoder för interpolation av vindfältsobservationer från Sverige. Specifikt betraktas neurala nätverk och random forests, med huvudsakligen geografiska koordinater som indata. Vidare studeras även dessa modeller med höjd över havet av observationerna som ytterligare indata. Noggrannheten av metoderna undersöks med hjälp av leave-one-out-korsvalidering. Interpolationsresultaten samt interpolationsfelen studeras även visuellt som ytterligare jämförelsepunkt. Resultaten visar att random forests med höjddata inkluderad producerar de minsta felen av alla testade metoder. Från detta dras slutsatsen att det är möjligt att uppnå bättre noggrannhet med interpolationsmetoder baserade på maskininlärning jämfört med traditionella metoder.
McNeill, Lindsay. "Topics in interpolation and smoothing of spatial data." Doctoral thesis, University of Cape Town, 1994. http://hdl.handle.net/11427/15969.
Full textThis thesis addresses a number of special topics in spatial interpolation and smoothing. The motivation for the thesis comes from two projects, one being to extend the availability of a daily rainfall model for southern Africa to sites at which little or no rainfall data is available, using data from nearby sites, and the other arising from a need to improve the species abundance estimates used to produce maps for the Southern African Bird Atlas Project in areas where the original presence/absence data is sparse. Although problems of spatial interpolation and smoothing have been the subject of much research in recent years, leading to the development of the specialised discipline of geostatistics, these two problems have features which render the available methodology inappropriate in certain respects. The semi-variogram plays a central role in geostatistical work. In both of the applications considered here, the raw semi-variogram is 'contaminated' by error, but the error variance varies widely between data points, so that the spatial autocorrelation structure of the underlying error-free variable is blurred. An adjusted semi-variogram, which removes the effect of the measurement error, is defined and incorporated into the kriging equations. A number of measures have been proposed for kriging in the presence of trend, ranging from explicit modelling of a deterministic trend function to 'moving window' kriging, which assumes local stationarity as an approximation. The former approach is often inappropriate over large non-homogenous regions, while the latter approach tends to underestimate the kriging variance. As an alternative strategy it is proposed here that the trend function be considered as another random variable, with a long-range spatial autocorrelation. This approach is simple to implement, and can also be used as a basis for filtering the data to separate trend from local or high-frequency variation. The daily rainfall model is based on a Fourier series representation giving rise to amplitude and phase parameters; the latter are circular in nature, and not amenable to analysis by standard techniques. This thesis describes a method of interpolation and smoothing, analogous to kriging, which is appropriate for unit vector data available at a number of spatial locations. The cumulated values of species counts in the SABAP are essentially binomially distributed and thus again specialised techniques are required for interpolation. New geostatistical methods which cater for both binomial and Poisson data are presented. Another problem arises from the need to improve interpolated values of the rainfall model parameters by incorporating information on altitude. Although a number of approaches are possible, for example, using co-kriging or kriging with external drift, difficulties are caused by the complexity of the relationship between the rainfall at a point and the surrounding topography. This problem is overcome by the use of orthogonal functions of altitude to model the patterns of topography.
Khosravan, Najafabadi Shohreh. "Optimal vector interpolation of asynoptic spatial survey of vector quantities for interpolating ADCP water velocity measurements." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27381.
Full textBooks on the topic "Spatial interpolation"
Stein, Michael L. Interpolation of Spatial Data. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1494-6.
Full textDobesch, Hartwig, Pierre Dumolard, and Izabela Dyras, eds. Spatial Interpolation for Climate Data. London, UK: ISTE, 2007. http://dx.doi.org/10.1002/9780470612262.
Full textJanis, Michael J. Multivariate spatial interpolation of monthly precipitation. Elmer, N.J: C.W. Thornthwaite Associates, Laboratory of Climatology, 1995.
Find full textStein, Michael Leonard. Interpolation of spatial data: Some theory for kriging. New York: Springer, 1999.
Find full textRobeson, Scott M. Spatial interpolation, network bias, and terrestrial air temperature variability. Elmer, N.J: C.W. Thornthwaite Associates, Laboratory of Climatology, 1993.
Find full textAllanson, Paul. Resolving the spatial limitations of parish agricultural census data by areal interpolation. Newcastle upon Tyne: Countryside Change Unit, Dept. of Agricultural Economics & Food Marketing, University of Newcastle upon Tyne, 1991.
Find full textHartwig, Dobesch, Dumolard Pierre, and Dyras Izabela, eds. Spatial interpolation for climate data: The use of GIS in climatology and meterology. Newport Beach, CA: ISTE Ltd, 2007.
Find full textDyras, Isabela, Hartwig Dobesch, Pierre Dumolard, and Izabela Dyras. Spatial Interpolation for Climate Data. Wiley & Sons, Incorporated, John, 2010.
Find full textStein, Michael L. Interpolation of Spatial Data: Some Theory for Kriging. Springer London, Limited, 2012.
Find full textBook chapters on the topic "Spatial interpolation"
Bajjali, William. "Spatial Interpolation." In Springer Textbooks in Earth Sciences, Geography and Environment, 219–34. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-61158-7_13.
Full textBhattacharjee, Shrutilipi, Soumya Kanti Ghosh, and Jia Chen. "Spatial Interpolation." In Studies in Computational Intelligence, 19–41. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8664-0_2.
Full textShekhar, Shashi, and Hui Xiong. "Spatial Interpolation." In Encyclopedia of GIS, 1101. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_1277.
Full textDavis, Jerry D. "Spatial Interpolation." In Introduction to Environmental Data Science, 205–24. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003317821-11.
Full textPebesma, Edzer, and Roger Bivand. "Spatial Interpolation." In Spatial Data Science, 165–80. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9780429459016-12.
Full textWang, Fahui, and Lingbo Liu. "Spatial Smoothing and Spatial Interpolation." In Computational Methods and GIS Applications in Social Science, 65–92. 3rd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003292302-4.
Full textLiu, Lingbo, and Fahui Wang. "Spatial Smoothing and Spatial Interpolation." In Computational Methods and GIS Applications in Social Science - Lab Manual, 63–86. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003304357-3.
Full textBărbulescu, Alina. "Spatial Interpolation with Applications." In Studies on Time Series Applications in Environmental Sciences, 159–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30436-6_7.
Full textGao, Jay. "Geostatistics and Spatial Interpolation." In Fundamentals of Spatial Analysis and Modelling, 159–88. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003220527-5.
Full textLi, Jin. "Mathematical spatial interpolation methods." In Spatial Predictive Modeling with R, 53–66. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003091776-4.
Full textConference papers on the topic "Spatial interpolation"
Fazio, Vinicius Sousa, and Mauro Roisenberg. "Spatial interpolation." In the 28th Annual ACM Symposium. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2480362.2480364.
Full textLi, Jia, Jiatian Li, Xiaoqing Zuo, and Ping Duan. "Natural neighbors interpolation method for correcting IDW." In International Symposium on Spatial Analysis, Spatial-temporal Data Modeling, and Data Mining, edited by Yaolin Liu and Xinming Tang. SPIE, 2009. http://dx.doi.org/10.1117/12.838426.
Full textCOBOS, FERNANDO. "LOGARITHMIC INTERPOLATION SPACES." In Spectral Theory and Nonlinear Analysis with Applications to Spatial Ecology. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701589_0002.
Full textWen Wang, Zuqiang Xiong, Huamin Li, and Dongyin Li. "Comparison discrete smooth interpolation and traditional spatial interpolation." In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5964246.
Full textOhashi, Orlando, and Luis Torgo. "Spatial Interpolation Using Multiple Regression." In 2012 IEEE 12th International Conference on Data Mining (ICDM). IEEE, 2012. http://dx.doi.org/10.1109/icdm.2012.48.
Full textDuan, Ping, Jiatian Li, Xiaoqing Zuo, and Jia Li. "A new interpolation model of convex hull in Delaunay triangulation." In International Symposium on Spatial Analysis, Spatial-temporal Data Modeling, and Data Mining, edited by Yaolin Liu and Xinming Tang. SPIE, 2009. http://dx.doi.org/10.1117/12.838405.
Full textLiu, Fucheng, Xuezhao He, and Li Zhou. "Application of generalized regression neural network residual kriging for terrain surface interpolation." In International Symposium on Spatial Analysis, Spatial-temporal Data Modeling, and Data Mining, edited by Yaolin Liu and Xinming Tang. SPIE, 2009. http://dx.doi.org/10.1117/12.837425.
Full textFaerman, Evgeniy, Manuell Rogalla, Niklas StrauB, Adrian Kruger, Benedict Blumel, Max Berrendorf, Michael Fromm, and Matthias Schubert. "Spatial Interpolation with Message Passing Framework." In 2019 International Conference on Data Mining Workshops (ICDMW). IEEE, 2019. http://dx.doi.org/10.1109/icdmw.2019.00030.
Full textPolyak, M. D., and I. U. Gorchakov. "SPATIAL INTERPOLATION ALGORITHMS FOR BUILDING HEATMAPS." In PROCESSING, TRANSMISSION AND PROTECTION OF INFORMATION IN COMPUTER SYSTEMS. St. Petersburg State University of Aerospace Instrumentation, 2020. http://dx.doi.org/10.31799/978-5-8088-1452-3-2020-1-80-85.
Full textGharavi, Hamid, and Shaoshuai Gao. "Spatial interpolation algorithm for error concealment." In ICASSP 2008 - 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/icassp.2008.4517819.
Full textReports on the topic "Spatial interpolation"
Niemann, Jeffrey D. Scaling Properties and Spatial Interpolation of Soil Moisture. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada426497.
Full textRutherford, Paula. Spatial and Temporal Interpolation Analysis Process of Shock Loading. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1876754.
Full textJiang, Wenping, and Jin Li. The effects of spatial reference systems on the predictive accuracy of spatial interpolation methods. Geoscience Australia, 2014. http://dx.doi.org/10.11636/record.2014.001.
Full textGoff, John A. Spatial Variability and Robust Interpolation of Seafloor Sediment Properties Using the SEABED Data Bases. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada522852.
Full textJenkins, Chris. Spatial Variability and Robust Interpolation of Seafloor Sediment Properties Using the SEABED Data Bases. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada522854.
Full textJenkins, Chris. Spatial Variability and Robust Interpolation of Seafloor Sediment Properties Using the SEABED Data Bases. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada572342.
Full textGoff, John A. Spatial Variability and Robust Interpolation of Seafloor Sediment Properties Using the SEABED Data Bases. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada572625.
Full textFuentes, Montserrat, and Adrian E. Raftery. Model Validation and Spatial Interpolation by Combining Observations with Outputs from Numerical Models via Bayesian Melding. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada459748.
Full textKingston, A. W., A. Mort, C. Deblonde, and O H Ardakani. Hydrogen sulfide (H2S) distribution in the Triassic Montney Formation of the Western Canadian Sedimentary Basin. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329266.
Full textDowning, W. Logan, Howell Li, William T. Morgan, Cassandra McKee, and Darcy M. Bullock. Using Probe Data Analytics for Assessing Freeway Speed Reductions during Rain Events. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317350.
Full text