Journal articles on the topic 'Spatial-temporal CNN'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Spatial-temporal CNN.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhao, Zhen, Ze Li, Fuxin Li, and Yang Liu. "CNN-LSTM Based Traffic Prediction Using Spatial-temporal Features." Journal of Physics: Conference Series 2037, no. 1 (2021): 012065. http://dx.doi.org/10.1088/1742-6596/2037/1/012065.
Full textHorváth, András, and Tamás Roska. "Detection of Spatial-Temporal Events with Delayed CNN Templates." IEICE Proceeding Series 2 (March 17, 2014): 378–81. http://dx.doi.org/10.15248/proc.2.378.
Full textLiu, Yumin, Zheyun Zhao, Shuai Zhang, and Uk Jung. "Identification of Abnormal Processes with Spatial-Temporal Data Using Convolutional Neural Networks." Processes 8, no. 1 (2020): 73. http://dx.doi.org/10.3390/pr8010073.
Full textWang, Changyuan, Ting Yan, and Hongbo Jia. "Spatial-Temporal Feature Representation Learning for Facial Fatigue Detection." International Journal of Pattern Recognition and Artificial Intelligence 32, no. 12 (2018): 1856018. http://dx.doi.org/10.1142/s0218001418560189.
Full textWang, Zengkai. "Spatial-Temporal Feature-Based Sports Video Classification." International Journal of Ambient Computing and Intelligence 12, no. 4 (2021): 79–97. http://dx.doi.org/10.4018/ijaci.2021100105.
Full textMeshkini, K., F. Bovolo, and L. Bruzzone. "A 3D CNN APPROACH FOR CHANGE DETECTION IN HR SATELLITE IMAGE TIME SERIES BASED ON A PRETRAINED 2D CNN." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2022 (May 30, 2022): 143–50. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2022-143-2022.
Full textWu, Honggang, Jiabi Niu, Yongqiang Li, Yinsheng Wang, and Daohong Qiu. "Landslide Susceptibility Prediction Based on a CNN–LSTM–SAM–Attention Hybrid Model." Applied Sciences 15, no. 13 (2025): 7245. https://doi.org/10.3390/app15137245.
Full textLi, Jianing, Shiliang Zhang, and Tiejun Huang. "Multi-Scale 3D Convolution Network for Video Based Person Re-Identification." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 8618–25. http://dx.doi.org/10.1609/aaai.v33i01.33018618.
Full textYang, Hao, Chunfeng Yuan, Li Zhang, Yunda Sun, Weiming Hu, and Stephen J. Maybank. "STA-CNN: Convolutional Spatial-Temporal Attention Learning for Action Recognition." IEEE Transactions on Image Processing 29 (2020): 5783–93. http://dx.doi.org/10.1109/tip.2020.2984904.
Full textLiu, Yiqiang, Luming Shen, Xinghui Zhu, Yangfan Xie, and Shaofang He. "Spectral Data-Driven Prediction of Soil Properties Using LSTM-CNN-Attention Model." Applied Sciences 14, no. 24 (2024): 11687. https://doi.org/10.3390/app142411687.
Full textYang, Shaojun, Shangping Zhong, and Kaizhi Chen. "W-WaveNet: A multi-site water quality prediction model incorporating adaptive graph convolution and CNN-LSTM." PLOS ONE 19, no. 3 (2024): e0276155. http://dx.doi.org/10.1371/journal.pone.0276155.
Full textHwang, Bor-Jiunn, Hui-Hui Chen, Chaur-Heh Hsieh, and Deng-Yu Huang. "Gaze Tracking Based on Concatenating Spatial-Temporal Features." Sensors 22, no. 2 (2022): 545. http://dx.doi.org/10.3390/s22020545.
Full textMekouar, Youssef, Imad Saleh, and Mohammed Karim. "GreenNav: Spatiotemporal Prediction of CO2 Emissions in Paris Road Traffic Using a Hybrid CNN-LSTM Model." Network 5, no. 1 (2025): 2. https://doi.org/10.3390/network5010002.
Full textSun, Tuo, Chenwei Yang, Ke Han, Wanjing Ma, and Fan Zhang. "Bidirectional Spatial–Temporal Network for Traffic Prediction with Multisource Data." Transportation Research Record: Journal of the Transportation Research Board 2674, no. 8 (2020): 78–89. http://dx.doi.org/10.1177/0361198120927393.
Full textZhang, Yang, Ziwen Wei, Zhihua Liu, Xiaolong Wu, and Junchao Qian. "Posture Monitoring of Patients in Radiotherapy Scenarios Based on Stacked Grayscale 3-Channel Images." JUCS - Journal of Universal Computer Science 31, no. (6) (2025): 648–65. https://doi.org/10.3897/jucs.130186.
Full textAfrasiabi, Mahlagha, Hassan Khotanlou, and Theo Gevers. "Spatial-temporal dual-actor CNN for human interaction prediction in video." Multimedia Tools and Applications 79, no. 27-28 (2020): 20019–38. http://dx.doi.org/10.1007/s11042-020-08845-2.
Full textCserey, György, András Falus, and Tamás Roska. "Immune response inspired spatial-temporal target detection algorithms with CNN-UM." International Journal of Circuit Theory and Applications 34, no. 1 (2006): 21–47. http://dx.doi.org/10.1002/cta.341.
Full textYao, Xiuzhen, Tianwen Li, Peng Ding, et al. "Emotion Classification Based on Transformer and CNN for EEG Spatial–Temporal Feature Learning." Brain Sciences 14, no. 3 (2024): 268. http://dx.doi.org/10.3390/brainsci14030268.
Full textCensi, Alessandro Michele, Dino Ienco, Yawogan Jean Eudes Gbodjo, Ruggero Gaetano Pensa, Roberto Interdonato, and Raffaele Gaetano. "Attentive Spatial Temporal Graph CNN for Land Cover Mapping From Multi Temporal Remote Sensing Data." IEEE Access 9 (2021): 23070–82. http://dx.doi.org/10.1109/access.2021.3055554.
Full textGarima Pandey, Abhishek Kumar Karn, and Manish Jha. "Human Activity Recognition Using CNN-LSTM-GRU Model." International Research Journal on Advanced Engineering Hub (IRJAEH) 2, no. 04 (2024): 889–94. http://dx.doi.org/10.47392/irjaeh.2024.0125.
Full textZeng, Chunyan, Shuai Kong, Zhifeng Wang, Kun Li, and Yuhao Zhao. "Digital Audio Tampering Detection Based on Deep Temporal–Spatial Features of Electrical Network Frequency." Information 14, no. 5 (2023): 253. http://dx.doi.org/10.3390/info14050253.
Full textZhen, Hao, Dongxiao Niu, Min Yu, Keke Wang, Yi Liang, and Xiaomin Xu. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction." Sustainability 12, no. 22 (2020): 9490. http://dx.doi.org/10.3390/su12229490.
Full textWu, Ruowu, Yandan Liang, Lianlei Lin, and Zongwei Zhang. "Spatiotemporal Multivariate Weather Prediction Network Based on CNN-Transformer." Sensors 24, no. 23 (2024): 7837. https://doi.org/10.3390/s24237837.
Full textBao, Yin-Xin, Quan Shi, Qin-Qin Shen, and Yang Cao. "Spatial-Temporal 3D Residual Correlation Network for Urban Traffic Status Prediction." Symmetry 14, no. 1 (2021): 33. http://dx.doi.org/10.3390/sym14010033.
Full textZhou, C., J. Li, H. Shen, and Q. Yuan. "MULTI-TEMPORAL SAR IMAGE DESPECKLING BASED A CONVOLUTIONAL NEURAL NETWORK." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-5-2020 (August 3, 2020): 101–7. http://dx.doi.org/10.5194/isprs-annals-v-5-2020-101-2020.
Full textAbdlrazg, Bassma A. Awad, Sumaia Masoud, and Mnal M. Ali. "Human Action Detection Using A hybrid Architecture of CNN and Transformer." International Science and Technology Journal 34, no. 1 (2024): 1–15. http://dx.doi.org/10.62341/bsmh2119.
Full textBÁLYA, DAVID. "SUDDEN GLOBAL SPATIAL-TEMPORAL CHANGE DETECTION AND ITS APPLICATIONS." Journal of Circuits, Systems and Computers 12, no. 06 (2003): 845–56. http://dx.doi.org/10.1142/s0218126603001173.
Full textChen, Zhigang, Haotian Peng, and Yongxin Su. "Nonintrusive load disaggregation by fusion of graph signal processing and CNN." Journal of Physics: Conference Series 2853, no. 1 (2024): 012061. http://dx.doi.org/10.1088/1742-6596/2853/1/012061.
Full textTong, Runze, Yue Zhang, Hongfeng Chen, and Honghai Liu. "Learn the Temporal-Spatial Feature of sEMG via Dual-Flow Network." International Journal of Humanoid Robotics 16, no. 04 (2019): 1941004. http://dx.doi.org/10.1142/s0219843619410044.
Full textLu, Peng, Yaqin Zhao, and Yuan Xu. "A Two-Stream CNN Model with Adaptive Adjustment of Receptive Field Dedicated to Flame Region Detection." Symmetry 13, no. 3 (2021): 397. http://dx.doi.org/10.3390/sym13030397.
Full textMiao, Yunqi, Jungong Han, Yongsheng Gao, and Baochang Zhang. "ST-CNN: Spatial-Temporal Convolutional Neural Network for crowd counting in videos." Pattern Recognition Letters 125 (July 2019): 113–18. http://dx.doi.org/10.1016/j.patrec.2019.04.012.
Full textZhang, Peng, Tao Zhuo, Wei Huang, Kangli Chen, and Mohan Kankanhalli. "Online object tracking based on CNN with spatial-temporal saliency guided sampling." Neurocomputing 257 (September 2017): 115–27. http://dx.doi.org/10.1016/j.neucom.2016.10.073.
Full textLan, Yi. "A Hybrid CNN-LSTM Model for Stock Price Prediction with Spatial and Temporal Dependencies." Applied and Computational Engineering 155, no. 1 (2025): 236–42. https://doi.org/10.54254/2755-2721/2025.gl23570.
Full textLi, Qianjing, Jia Tian, and Qingjiu Tian. "Deep Learning Application for Crop Classification via Multi-Temporal Remote Sensing Images." Agriculture 13, no. 4 (2023): 906. http://dx.doi.org/10.3390/agriculture13040906.
Full textUllah, Hayat, and Arslan Munir. "Human Activity Recognition Using Cascaded Dual Attention CNN and Bi-Directional GRU Framework." Journal of Imaging 9, no. 7 (2023): 130. http://dx.doi.org/10.3390/jimaging9070130.
Full textMekruksavanich, Sakorn, Wikanda Phaphan, and Anuchit Jitpattanakul. "Epileptic seizure detection in EEG signals via an enhanced hybrid CNN with an integrated attention mechanism." Mathematical Biosciences and Engineering 22, no. 1 (2024): 73–105. https://doi.org/10.3934/mbe.2025004.
Full textKolipaka, Venkata Rama Rao, and Anupama Namburu. "Integrating Temporal Fluctuations in Crop Growth with Stacked Bidirectional LSTM and 3D CNN Fusion for Enhanced Crop Yield Prediction." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 9 (2023): 376–83. http://dx.doi.org/10.17762/ijritcc.v11i9.8543.
Full textAlharkan, Hamad, Shabana Habib, and Muhammad Islam. "Solar Power Prediction Using Dual Stream CNN-LSTM Architecture." Sensors 23, no. 2 (2023): 945. http://dx.doi.org/10.3390/s23020945.
Full textLin, Shaofu, Yuying Zhang, Xiliang Liu, Qiang Mei, Xiaoying Zhi, and Xingjia Fei. "Incorporating the Third Law of Geography with Spatial Attention Module–Convolutional Neural Network–Transformer for Fine-Grained Non-Stationary Air Quality Predictive Learning." Mathematics 12, no. 10 (2024): 1457. http://dx.doi.org/10.3390/math12101457.
Full textYang, Honglei, Youfeng Liu, Qing Han, et al. "Improved Landslide Deformation Prediction Using Convolutional Neural Network–Gated Recurrent Unit and Spatial–Temporal Data." Remote Sensing 17, no. 4 (2025): 727. https://doi.org/10.3390/rs17040727.
Full textBaral, Rojina, Sanjivan Satyal, and Anisha Pokhrel. "CNN-Transformer Based Speech Emotion Detection." Journal of Advanced College of Engineering and Management 10 (March 11, 2025): 135–45. https://doi.org/10.3126/jacem.v10i1.76324.
Full textReddy, Mr G. Sekhar, A. Sahithi, P. Harsha Vardhan, and P. Ushasri. "Conversion of Sign Language Video to Text and Speech." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (2022): 159–64. http://dx.doi.org/10.22214/ijraset.2022.42078.
Full textXu, Jie, Haoliang Wei, Linke Li, Qiuru Fu, and Jinhong Guo. "Video Description Model Based on Temporal-Spatial and Channel Multi-Attention Mechanisms." Applied Sciences 10, no. 12 (2020): 4312. http://dx.doi.org/10.3390/app10124312.
Full textYang, Zizhen, Wei Li, Fang Yuan, et al. "Hybrid CNN-BiLSTM-MHSA Model for Accurate Fault Diagnosis of Rotor Motor Bearings." Mathematics 13, no. 3 (2025): 334. https://doi.org/10.3390/math13030334.
Full textShreya, Shankar. "A CNN-LSTM hybrid model for parkinson's disease detection from handwritten spirals using transfer learning." i-manager’s Journal on Image Processing 12, no. 2 (2025): 16. https://doi.org/10.26634/jip.12.2.21905.
Full textGao, Song, Dingzhuo Zhang, Zhaoming Tang, and Hongyan Wang. "Deep Fusion of Skeleton Spatial–Temporal and Dynamic Information for Action Recognition." Sensors 24, no. 23 (2024): 7609. http://dx.doi.org/10.3390/s24237609.
Full textAlthamary, Ibrahim, Rubbens Boisguene, and Chih-Wei Huang. "Enhanced Multi-Task Traffic Forecasting in Beyond 5G Networks: Leveraging Transformer Technology and Multi-Source Data Fusion." Future Internet 16, no. 5 (2024): 159. http://dx.doi.org/10.3390/fi16050159.
Full textFu, Zhongjun, Yuhui Wang, Lei Zhou, Keyang Li, and Hang Rao. "Partial Discharge Recognition of Transformers Based on Data Augmentation and CNN-BiLSTM-Attention Mechanism." Electronics 14, no. 1 (2025): 193. https://doi.org/10.3390/electronics14010193.
Full textCarpentier, B., A. Masse, E. Lavergne, and C. Sannier. "BENCHMARKING OF CONVOLUTIONAL NEURAL NETWORK APPROACHES FOR VEGETATION LAND COVER MAPPING." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2021 (June 28, 2021): 915–22. http://dx.doi.org/10.5194/isprs-archives-xliii-b2-2021-915-2021.
Full textN., Atansuyi. "Hybrid Deep Learning Models for Gait Recognition: A Comparative Analysis of CNN, CNN-LSTM, and HOA Techniques." International Journal for Research in Applied Science and Engineering Technology 13, no. 7 (2025): 1831–38. https://doi.org/10.22214/ijraset.2025.73234.
Full text