Academic literature on the topic 'Specialized metabolite'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Specialized metabolite.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Specialized metabolite"
Panda, Sayantan, Yana Kazachkova, and Asaph Aharoni. "Catch-22 in specialized metabolism: balancing defense and growth." Journal of Experimental Botany 72, no. 17 (July 22, 2021): 6027–41. http://dx.doi.org/10.1093/jxb/erab348.
Full textRai, Megha, Amit Rai, Tetsuya Mori, Ryo Nakabayashi, Manami Yamamoto, Michimi Nakamura, Hideyuki Suzuki, Kazuki Saito, and Mami Yamazaki. "Gene-Metabolite Network Analysis Revealed Tissue-Specific Accumulation of Therapeutic Metabolites in Mallotus japonicus." International Journal of Molecular Sciences 22, no. 16 (August 17, 2021): 8835. http://dx.doi.org/10.3390/ijms22168835.
Full textChen, Si, Jun Lin, Huihui Liu, Zhihong Gong, Xiaxia Wang, Meihong Li, Asaph Aharoni, Zhenbiao Yang, and Xiaomin Yu. "Insights into Tissue-specific Specialized Metabolism in Tieguanyin Tea Cultivar by Untargeted Metabolomics." Molecules 23, no. 7 (July 21, 2018): 1817. http://dx.doi.org/10.3390/molecules23071817.
Full textNguyen, Don D., Veronika Saharuka, Vitaly Kovalev, Lachlan Stuart, Massimo Del Prete, Kinga Lubowiecka, René De Mot, Vittorio Venturi, and Theodore Alexandrov. "Facilitating Imaging Mass Spectrometry of Microbial Specialized Metabolites with METASPACE." Metabolites 11, no. 8 (July 23, 2021): 477. http://dx.doi.org/10.3390/metabo11080477.
Full textClark, Chase M., Maria S. Costa, Laura M. Sanchez, and Brian T. Murphy. "Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function." Proceedings of the National Academy of Sciences 115, no. 19 (April 23, 2018): 4981–86. http://dx.doi.org/10.1073/pnas.1801247115.
Full textNicault, Matthieu, Abdoul-Razak Tidjani, Anthony Gauthier, Stéphane Dumarcay, Eric Gelhaye, Cyril Bontemps, and Pierre Leblond. "Mining the Biosynthetic Potential for Specialized Metabolism of a Streptomyces Soil Community." Antibiotics 9, no. 5 (May 23, 2020): 271. http://dx.doi.org/10.3390/antibiotics9050271.
Full textNagel, Raimund. "Pyrethrin Biosynthesis: From a Phytohormone to Specialized Metabolite." Plant Physiology 181, no. 3 (November 2019): 836–37. http://dx.doi.org/10.1104/pp.19.01210.
Full textDu, Yi-Ling, Melanie A. Higgins, Guiyun Zhao, and Katherine S. Ryan. "Convergent biosynthetic transformations to a bacterial specialized metabolite." Nature Chemical Biology 15, no. 11 (August 12, 2019): 1043–48. http://dx.doi.org/10.1038/s41589-019-0331-5.
Full textShaikh, Arshad Ali, Louis-Felix Nothias, Santosh K. Srivastava, Pieter C. Dorrestein, and Kapil Tahlan. "Specialized Metabolites from Ribosome Engineered Strains of Streptomyces clavuligerus." Metabolites 11, no. 4 (April 13, 2021): 239. http://dx.doi.org/10.3390/metabo11040239.
Full textVicente, Cláudia, Annabelle Thibessard, Jean-Noël Lorenzi, Mabrouka Benhadj, Laurence Hôtel, Djamila Gacemi-Kirane, Olivier Lespinet, Pierre Leblond, and Bertrand Aigle. "Comparative Genomics among Closely Related Streptomyces Strains Revealed Specialized Metabolite Biosynthetic Gene Cluster Diversity." Antibiotics 7, no. 4 (October 2, 2018): 86. http://dx.doi.org/10.3390/antibiotics7040086.
Full textDissertations / Theses on the topic "Specialized metabolite"
Fallon, Timothy Robert. "The evolution and specialized metabolism of beetle bioluminescence." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122840.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Fireflies (Lampyridae) and certain other families of beetles including the American railroad worms (Phengodidae), Asian starworms (Rhagophthalmidae), and American click-beetles (Elateridae), produce light in a process known as bioluminescence. The bioluminescent systems of beetles, natively used for the purposes of mating communication and/or an aposematic warning signal, are now well understood and have been widely applied in biotechnology and biomedical research. There have been considerable advancements in the engineering of the luciferin substrate, and the luciferase enzyme, for beneficial characteristics such as altered emission wavelength, improved thermostability, and improved catalytic parameters, but despite this substantial effort focused on the biotechnological applications of beetle bioluminescence, major questions remain regarding its natural biochemistry and evolutionary origins.
Four major questions that were unanswered at the beginning of this PhD study were: (1) Do fireflies possess a storage form of their luciferin? (2) What is the evolutionary relationship of bioluminescence amongst the bioluminescent beetles families, and has this trait independently evolved multiple times? (3) How is firefly luciferin biosynthesized? And (4) Are there accessory genes from the bioluminescent beetles which act in bioluminescent metabolism, and might these genes be useful for biotechnological applications? Here I describe the discovery and characterization of the presumed storage form of luciferin in fireflies, sulfoluciferin, and the enzyme which produces it, luciferin-sulfotransferase.
Furthermore, I describe the sequencing, assembly, and characterization of the genome of the North American "Big Dipper" firefly Photinus pyralis, along with the Japanese "heike" firefly Aquatica lateralis genome, and the genome of the Puerto Rican bioluminescent click beetle or "cucubano" Ignelater luminosus. Genomic comparisons amongst these three species support the hypothesis that firefly and click beetle luciferase evolved independently, suggesting an independent evolutionary origin of the bioluminescent systems between these fireflies and click beetles. I also describe stable isotope tracing experiments in live fireflies, establishing that adult and larval fireflies likely do not de novo biosynthesize firefly luciferin, and may instead rely on a "recycling" pathway to re-synthesize luciferin from the luminescence product oxyluciferin. Lastly, I discuss the future directions resulting from this thesis, and the yet unanswered questions.
by Timothy Robert Fallon.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Biological Engineering
Xie, Zhengzhi. "Investigation of Plant Specialized Metabolism (Secondary Metabolism) Using Metabolomic and Proteomic Approaches." Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/195218.
Full textCasas, Maria I. "BIOCHEMICAL AND GENETIC CHARACTERIZATION OF SPECIALIZED FLAVONOID METABOLISM IN MAIZE." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1431071650.
Full textRazmilic, Neira Valeria Isabel. "Metabolism analysis of streptomyces leeuwenhoekii C34 with a genome scale model and identification of Biosynthetic genes of specialized metabolites by genome mining." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/144111.
Full textStreptomyces leeuwenhoekii C34 es una nueva cepa que fue aislada desde la laguna Chaxa ubicada en el Desierto de Atacama, Chile. Esta cepa produce metabolitos especializados con actividad contra Staph. aureus resistente a meticilina (MRSA): chaxamicinas y chaxalactinas. La secuencia genómica de S. leeuwenhoekii C34 se obtuvo mediante las tecnologías de Illumina Miseq y PACbio RS II SMRT. El genoma se utilizó para identificar clústers de genes biosintéticos (BGCs) que codifican para metabolitos especializados a través de minería de genomas, y para desarrollar un modelo a escala genómica (GSM) para estudiar las rutas de biosíntesis de producción de metabolitos especializados. Se encontraron 34 BGCs en el genoma de S. leeuwenhoekii C34, más un BGC ubicado en el plásmido pSLE2. Se encontró tres BGCs para lazo-péptidos. Específicamente, se identificó el producto del BGC del lazo-péptido 3 en el sobrenadante de S. leeuwenhoekii C34 cultivado en medio TSB/YEME y se expresó exitosamente en el huésped heterólogo S. coelicolor M1152. Se confirmó que este lazo-péptido era el mismo que la chaxapeptina, recientemente descrita para S. leeuwenhoekii C58. Por otra parte, se identificó un BGC de 64 kb (locus 1083651 a 1147687) que codifica para un híbrido trans-AT PKS/NRPS. Es probable que el producto de este BGC sea un compuesto halogenado debido a la presencia de un gen, sle09470, que codifica para una enzima cloradora. Para estudiar este clúster de genes, se desarrollaron diferentes cepas derivadas de S. leeuwenhoekii. También, el BGC se clonó en huéspedes heterólogos: S. coelicolor M1152, M1154 and S. albus. A través de análisis de HPLC MS/MS y comparación de perfiles de metabolitos, se identificó un grupo de compuestos con patrón clorado, sin embargo se descartaron como posibles productos del BGC ya que además de encontrarse en las cepas de S. leeuwenhoekii también se encontraron en muestras de S. coelicolor M1152. Por otra parte, se detecto un metabolito con una señal de m/z 611.53 [M + H]+ solamente en las muestras de S. leeuwenhoekii M1614 ( chaxamycin BGC) y M1619 ( chaxamycin BGC; sle09560). Se requieren msá estudios para confirmar si los metabolitos expresados diferencialmente corresponden a un producto del híbrido transAT-PKS/NRPS BGC. Para construir el GSM de S. leeuwenhoekii C34 se desarrolló una interfaz basada en python, que permite: buscar genes de Streptomyces asociados a reacciones en la base de datos KEGG, realizar BLAST local contra S. leeuwenhoekii C34, comparar los dominios de proteínas, descargar información de los metabolitos, construir el GSM y realizar simulaciones usando COBRApy. Las rutas biosintéticas de chaxamicinas, chaxalactinas, desferrioxaminas, ectoina y el producto del híbrido transAT-PKS/NRPS BGC (híbrido PK-NP) se incluyeron en el modelo. El modelo, iVR1007, consiste de 1722 reacciones, 1463 metabolitos y 1007 genes, y se validó usando información experimental de crecimiento en diferentes fuentes de carbono, nitrógeno y fósforo, mostrando un 83.7 % de precisión. El modelo se usó para encontrar deleción y sobre-expresión de genes no intuitivas que predicen un aumento en la producción de precursores de chaxamicinas, chaxalactinas e híbrido PK-NP. Las modificaciones predichas podrán ser usadas para realizar ingeniería metabólica de S. leeuwenhoekii C34 para incrementar la producción de metabolitos especializados.
Barthélémy, Morgane. "Etude de la diversité chimique et biologique d’endophytes de palmiers." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS563.
Full textThe palm Astrocaryum sciophilum is the host plant model chosen in this work. Indeed, due to the longevity of its leaves, we expected to highlight a competitive community of endophytes within the oldest leaves. Thus, 197 endophytes have been isolated and identified from different leaves of six palm specimens. In order to evaluate whether the compounds produced by these microorganisms could be used for the treatment of human disease, the ethyl acetate extracts of each endophyte were tested against methicillin-resistant Staphylococcus aureus (MRSA) as well as for a quorum quenching (QQ) activity. Simultaneously, co-culture were carried with the fungi Fusarium oxysporum in order to highlight endophytes providing plant protection against phytopathogens. We selected extracts in order to isolate and identify the bioactive metabolites. Various analytical tools have been used to improve the isolation process (LC-MS/MS, molecular networking or MS imaging).The study of the endophytic community isolated from older leaves did not show a more competitive chemical arsenal. However, two Luteibacter strains exhibited an ethyl acetate extract active against MRSA and several bacteria provide quorum quenching extracts. The metabolome of Colletotrichum genus was studied using molecular networking and a fungus from the Xylariaceae family was studied for its capacity to inhibit F. oxysporum’s growth. In our study, seven endophyte strains were chemically investigated leading to the isolation and identification of 42 molecules whose ten are new
Mütze, Ulrike, Alena Gerlinde Thiele, Christoph Baerwald, Uta Ceglarek, Wieland Kiess, and Skadi Beblo. "Ten years of specialized adult care for phenylketonuria." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-205208.
Full textAubry, Céline. "Towards combinatorial biosynthesis of pyrrolamide antibiotics in Streptomyces." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS245.
Full textFor more than 80 years, specialized metabolism has provided us with many molecules used in medicine, especially as anti-infectives. Yet today, with the rise of antimicrobial resistance worldwide, new antibiotics are crucially needed. One of the answers to this serious shortage could arise from synthetic biology. In the field of specialized metabolism, synthetic biology is used in particular to biosynthesize unnatural metabolites. Among specialized metabolites, non-ribosomal peptides constitute an attractive target as they have already provided us with clinically valuable molecules (e.g. the vancomycin and daptomycin antibiotics). In addition, most are synthesized by multimodular enzymes called non-ribosomal peptide synthetases (NRPS) and further diversified by tailoring enzymes. Thus, such biosynthetic pathways are particularly amenable to combinatorial biosynthesis, which consists in combining biosynthetic genes coming from various gene clusters or, in the case of NRPSs, combining modules or domains to create a new enzyme. Yet, if several studies have established the feasibility of such approaches, many obstacles remain before combinatorial biosynthesis approaches are fully effective for the synthesis of new metabolites. The work presented here is part of a project aiming at understanding the limiting factors impeding NRPS-based combinatorial biosynthesis approaches, using a synthetic biology approach. We chose to work with the NRPSs involved in the biosynthesis of pyrrolamides. Indeed, these NRPS are solely constituted of stand-alone modules and domains, and thus, particularly amenable to genetic and biochemical manipulations. The characterization of the biosynthetic gene cluster of the pyrrolamide anthelvencin constitutes the first part of this thesis, and provided us with new genes for our study. The second part involved the construction of modular integrative vectors, essential tools for the construction and assembly of gene cassettes. The final part presents the successful refactoring of the congocidine pyrrolamide gene cluster, based on the construction and assembly of synthetic gene cassettes. Altogether, this work paves the way for future combinatorial biosynthesis experiments that should help deciphering the detailed functioning of NRPSs
Erland, Lauren Alexandra Elizabeth. "Enhancement of specialized metabolism, regeneration efficiency and biological activity in lavandin (Lavandula x intermedia cv 'Grosso')." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/52707.
Full textIrving K. Barber School of Arts and Sciences (Okanagan)
Biology, Department of (Okanagan)
Graduate
Muchlinski, Andrew Joseph. "Identification, Characterization, and Functional Analysis of Terpenoid Specialized Metabolism in Switchgrass (Panicum virgatum) and Carrot (Daucus carota)." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/102778.
Full textDoctor of Philosophy
Jorge, Letícia Galhardo. "Desempenho fotossintético, perfil e atividade do óleo essencial de Xylopia aromatica (Lam.) Mart. nas fases vegetativa e reprodutiva no cerrado paulista." Botucatu, 2020. http://hdl.handle.net/11449/192182.
Full textResumo: Espécies vegetais são capazes de produzir diversidade de substâncias, que desempenham funções importantes para sua sobrevivência e adaptação ao ecossistema. O metabolismo primário, é essencial para o crescimento, desenvolvimento, maturação e reprodução de qualquer espécie. O metabolismo especializado, dependente do primário, é responsável por originar o óleo essencial, que são misturas de metabólitos especializados voláteis, representados principalmente por monoterpenos e sesquiterpenos. Cada espécie vegetal produz um óleo essencial de composição característica específica, podendo ser influenciado por fatores bióticos e abióticos. A fenologia pode influenciar processos bioquímicos e rotas metabólicas capazes de modificar a formação de substâncias biologicamente ativas, alterando diretamente o conteúdo e a qualidade dos óleos essenciais. Sendo assim, o objetivo deste trabalho foi avaliar se as fases fenológicas, vegetativa e reprodutiva modificam o desempenho fotossintético e o perfil do óleo essencial de Xylopia aromatica (Lam.) Mart., influenciando sua atividade biológica na defesa antioxidante e ação antifúngica. As variáveis, fluorescência da clorofila a, trocas gasosas, carboidratos, atividade enzimática e peroxidação lipídica, potencial água, conteúdo relativo de água das folhas, extração, rendimento, caracterização química e atividade antifúngica do óleo essencial de Xylopia aromatica foram avaliadas em 24 plantas, 12 no estádio vegetativo e 12 no reprodutivo, coletadas... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Research aimed at the knowledge of plant species allows the elaboration of projects that aim at the understanding of development, conservation of biodiversity and sustainable exploitation of natural resources. The primary metabolism, represented by photosynthesis and the specialized one, that synthesizes the essential oil, can be influenced by the environmental and phenological conditions, which can influence the chemical profile of the essential oil and the biological activity in the vegetal defense, including against fungi, bacteria and virus. Compounds from the specialized metabolism present biological activity and potential for the production of bactericides and fungicides. Therefore, it is necessary to know the stage of development of plant species in which the substances of interest, with economic potential, are more concentrated, thus orienting, if appropriate, the collection period, aiming at the conservation and sustainable use. There are scientific studies that reveal biological activity of essential oils, as observed for the genus Xylopia, but none of them relates the primary and specialized metabolism to the stage of development in which the species is found. In this way, the objective of this research was to evaluate if the phenological, vegetative and reproductive phases of Xylopia aromatica (Lam.) Mart. modify the photosynthetic performance and the profile of the essential oil, which may influence its biological activity in the antioxidant defense and antifunga... (Complete abstract click electronic access below)
Mestre
Books on the topic "Specialized metabolite"
Arimura, Gen-ichiro, and Massimo Maffei, eds. Plant Specialized Metabolism. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2016. http://dx.doi.org/10.1201/9781315370453.
Full textMoore, Bradley S. Marine Enzymes and Specialized Metabolism - Part A. Elsevier Science & Technology, 2018.
Find full textMarine Enzymes and Specialized Metabolism - Part A. Elsevier, 2018. http://dx.doi.org/10.1016/s0076-6879(18)x0006-8.
Full textMarine Enzymes and Specialized Metabolism - Part B. Elsevier, 2018. http://dx.doi.org/10.1016/s0076-6879(18)x0007-x.
Full textMoore, Bradley S. Marine Enzymes and Specialized Metabolism - Part B. Elsevier Science & Technology, 2018.
Find full textPlant Specialized Metabolism: Genomics, Biochemistry, and Biological Functions. Taylor & Francis Group, 2016.
Find full textSuzuki, Hideyuki, and Tomonobu Kusano. Polyamines: A Universal Molecular Nexus for Growth, Survival, and Specialized Metabolism. Springer, 2015.
Find full textHollak, Carla E. M., and Robin Lachmann, eds. Inherited Metabolic Disease in Adults. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.001.0001.
Full textShaffu, Shireen, and James Taylor. Normal function of the musculoskeletal system. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0263.
Full textEllison, Aaron M., and Lubomír Adamec. Introduction: what is a carnivorous plant? Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198779841.003.0001.
Full textBook chapters on the topic "Specialized metabolite"
Kautsar, Satria A., Hernando G. Suarez Duran, and Marnix H. Medema. "Genomic Identification and Analysis of Specialized Metabolite Biosynthetic Gene Clusters in Plants Using PlantiSMASH." In Methods in Molecular Biology, 173–88. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7874-8_15.
Full textGonzalez, Orland, and Alberto Sanguino. "Specialized Metabolic Component Databases." In Encyclopedia of Systems Biology, 1963–66. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1050.
Full textCluzet, S., Jean-Michel Mérillon, and Kishan Gopal Ramawat. "Specialized Metabolites and Plant Defence." In Progress in Biological Control, 45–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51034-3_2.
Full textTissier, Alain, Jörg Ziegler, and Thomas Vogt. "Specialized Plant Metabolites: Diversity and Biosynthesis." In Ecological Biochemistry, 14–37. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527686063.ch2.
Full textFalara, Vasiliki, and Eran Pichersky. "Plant Volatiles and Other Specialized Metabolites: Synthesis, Storage, Emission, and Function." In Signaling and Communication in Plants, 109–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23047-9_6.
Full textMoody, Matthew J., Stephanie E. Jones, David A. Crisante, and Marie A. Elliot. "Streptomyces Bacteria: Specialized Metabolism, Inter-species Interations and Non-coding RNAs." In Non-coding RNAs and Inter-kingdom Communication, 83–101. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39496-1_5.
Full textShadkami, Farzad, and A. Daniel Jones. "Nontargeted Profiling of Specialized Metabolites ofDigitalis purpureawith a Focus on Cardiac Glycosides." In ACS Symposium Series, 185–205. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1093.ch011.
Full textD’Amelia, Vincenzo, Alessandra Ruggiero, Valentina Tranchida-Lombardo, Antonietta Leone, Marina Tucci, and Teresa Docimo. "Biosynthesis of Salvia Specialized Metabolites and Biotechnological Approaches to Increase Their Production." In Salvia Biotechnology, 241–70. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73900-7_7.
Full textVázquez-Flota, Felipe A., and María de Lourdes Miranda-Ham. "Induction of Specialized Metabolism in In Vitro Cultures of Capsicum chinense Jacq." In Plant Cell Culture Protocols, 429–35. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8594-4_30.
Full textHartmann, Thomas, and Dietrich Ober. "Biosynthesis and Metabolism of Pyrrolizidine Alkaloids in Plants and Specialized Insect Herbivores." In Biosynthesis, 207–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-48146-x_5.
Full textConference papers on the topic "Specialized metabolite"
van der Hooft, Justin, Madeleine Ernst, Ricardo da Silva, Mingxun Wang, Kyo Bin Kang, Joe Wandy, Simon Rogers, Marnix Medema, and Pieter Dorrestein. "Integrated metabolome mining and annotation pipeline accelerates elucidation and prioritisation of specialised metabolites." In 3rd International Electronic Conference on Metabolomics. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/iecm-3-05843.
Full textTokhiriyon, Boisjoni, Valery Poznyakovsky, and Svetlana Andrievskikh. "Industrialization issues in the production of specialized products for complex body metabolism support." In Proceedings of the 2nd International Scientific conference on New Industrialization: Global, national, regional dimension (SICNI 2018). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/sicni-18.2019.23.
Full textElrayess, Mohamed, Fatima Al-Khelaifi, Noha Yousri, and Omar Al-Bagha. "Genome-Wide Association study Identifies a Novel Association Between a Cardiovascular Gene Polymorphism and Superior Athletic Performance." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0111.
Full textCalvo-Aranda, Enrique, Fernando Manuel Sanchez-Aranda, Laura Cebrian, Maria Angeles Matias de la Mano, Elena Garcia-Lorenzo, and Maria Teresa Navio Marco. "AB0866 METABOLIC SYNDROME IN PATIENTS WITH GOUT ATTENDED IN A SPECIALIZED OUTPATIENT UNIT IN SPAIN. COMPARISON WITH GENERAL POPULATION AND CARDIOVASCULAR IMPLICATIONS." In Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.5034.
Full textLai, Heather, Chin An Tan, and Yong Xu. "Dielectric Elastomer Energy Harvesting and its Application to Human Walking." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65973.
Full text