Academic literature on the topic 'Specialty optical fibers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Specialty optical fibers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Specialty optical fibers"
Hu, Dora Juan Juan, Georges Humbert, Hui Dong, Hailiang Zhang, Jianzhong Hao, and Qizhen Sun. "Review of Specialty Fiber Based Brillouin Optical Time Domain Analysis Technology." Photonics 8, no. 10 (September 30, 2021): 421. http://dx.doi.org/10.3390/photonics8100421.
Full textLiu, Zhengyong, Zhi Zhang, Hwa-Yaw Tam, and Xiaoming Tao. "Multifunctional Smart Optical Fibers: Materials, Fabrication, and Sensing Applications." Photonics 6, no. 2 (May 6, 2019): 48. http://dx.doi.org/10.3390/photonics6020048.
Full textSHIMA, Kensuke, Tomoharu KITABAYASHI, Masahiro KASHIWAGI, Katsuhiro TAKENAGA, Michihiro NAKAI, and Kuniharu HIMENO. "Evolution of Fiber Lasers by Specialty Optical Fibers." Review of Laser Engineering 38, no. 11 (2010): 864–68. http://dx.doi.org/10.2184/lsj.38.864.
Full textKhisamov, Damir V., Anna N. Smirnova, and Irina S. Azanova. "Influence of the bend radius for PANDA PM Specialty optical fibers reliability." Вестник Пермского университета. Физика, no. 4 (2021): 52–57. http://dx.doi.org/10.17072/1994-3598-2021-4-52-57.
Full textBallato, J., and A. F. Abouraddy. "Feature issue introduction: specialty optical fibers." Optical Materials Express 2, no. 11 (October 29, 2012): 1680. http://dx.doi.org/10.1364/ome.2.001680.
Full textStolov, Andrei A., Debra A. Simoff, and Jie Li. "Thermal Stability of Specialty Optical Fibers." Journal of Lightwave Technology 26, no. 20 (October 2008): 3443–51. http://dx.doi.org/10.1109/jlt.2008.925698.
Full textBaker, J. D., H. P. Lentz, D. G. Kritikos, F. H. Schamber, and R. J. Lee. "Wool and Cashmere Fiber Identification Study Using Scanning Electron Microscopy." Microscopy and Microanalysis 4, S2 (July 1998): 264–65. http://dx.doi.org/10.1017/s1431927600021449.
Full textDragic, Peter, and John Ballato. "A Brief Review of Specialty Optical Fibers for Brillouin-Scattering-Based Distributed Sensors." Applied Sciences 8, no. 10 (October 20, 2018): 1996. http://dx.doi.org/10.3390/app8101996.
Full textOhishi, Yasutake, and Takenobu Suzuki. "Soft glass based specialty optical fibers and their applications - INVITED." EPJ Web of Conferences 287 (2023): 10001. http://dx.doi.org/10.1051/epjconf/202328710001.
Full textAleshkina, Svetlana, Regina Gumenyuk, and Serafima Filatova. "Special Issue “Specialty Optical Fibers, Fiber Lasers and Their Applications”." Photonics 9, no. 5 (April 19, 2022): 274. http://dx.doi.org/10.3390/photonics9050274.
Full textDissertations / Theses on the topic "Specialty optical fibers"
Osório, Jonas Henrique 1989. "Specialty optical fibers for sensing = Fibras ópticas especiais para sensoriamento." [s.n.], 2017. http://repositorio.unicamp.br/jspui/handle/REPOSIP/330348.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-09-02T14:50:23Z (GMT). No. of bitstreams: 1 Osorio_JonasHenrique_D.pdf: 57449332 bytes, checksum: 92f06bf0e96b31630478243a818a7fd6 (MD5) Previous issue date: 2017
Resumo: Nesta tese, fibras ópticas especiais são estudadas para fins de sensoriamento. Primei-ramente, propomos a estrutura denominada fibra capilar com núcleo embutido (embedded-core capillary fibers) para realização de sensoriamento de pressão. Estudos numéricos e analíticos foram realizados e mostraram que altas sensibilidades a variações de pressão poderiam ser al-cançadas com esta estrutura simplificada, que consiste de um capilar dotado de um núcleo, dopado com germânio, em sua parede. Experimentos permitiram medir uma sensibilidade de (1.04 ± 0.01) nm/bar, que é um valor alto quando comparado a outros sensores de pressão ba-seados em fibras microestruturadas. Ademais, estudamos fibras do tipo surface-core, que são fibras cujos núcleos são colocados na superfície externa da fibra. Nesta abordagem, redes de Bragg foram utilizadas para obter sensores de índice de refração ¿ fazendo-se uso da interação entre o campo evanescente do modo guiado no núcleo e o ambiente externo à fibra ¿ e de cur-vatura ¿ ao se explorar o fato de que, nestas fibras, o núcleo se encontra fora do centro geomé-trico da mesma. As sensibilidades a variações de índice de refração e curvatura medidas, 40 nm/RIU em torno de 1.41 e 202 pm/m-1 comparam-se bem a outros sensores baseados em redes de Bragg. Outrossim, fibras capilares poliméricas foram investigadas como sensores de temperatura e pressão. Para a descrição do sensor de temperatura, usou-se um modelo analítico para simular o espectro de transmissão dos capilares e a sua dependência com as variações de temperatura. No que tange à aplicação de sensoriamento de pressão, variações nas espessuras dos capilares devido à ação da pressão foram calculadas e relacionadas à sensibilidade da me-dida de monitoramento. Nestas duas aplicações, realizações experimentais também são repor-tadas. Finalmente, oportunidades adicionais de sensoriamento ao se utilizar fibras ópticas es-peciais são apresentadas, a saber, um sensor de pressão para dois ambientes baseados em fibras de cristal fotônico, um sensor de três parâmetros baseado em redes de Bragg, fibras afinadas e interferência multimodal, um sensor de nível de líquido baseado em redes de Bragg e interfe-rência multimodal e um sensor de temperatura baseado em fibras embedded-core preenchidas com índio. Os resultados aqui reportados demonstram o potencial das fibras ópticas em forne-cerem plataformas de sensoriamento para alcançar medidas de diferentes tipos de parâmetros com alta sensibilidade e resolução adequada
Abstract: In this thesis, specialty optical fibers for sensing applications are investigating. Firstly, we propose the embedded-core capillary fiber structure for acting as a pressure sensor. Analyt-ical and numerical studies were performed and showed that high pressure sensitivity could be achieved with this simplified fiber structure, which consists of a capillary structure with a germanium-doped core placed within the capillary wall. Experiments allowed measuring a sensitivity of (1.04 ± 0.01) nm/bar, which is high when compared to other microstructured optical fiber-based pressure sensors. Moreover, we studied the so-called surface-core optical fibers, which are fibers whose cores are placed at the external boundary of the fiber. In this approach, Bragg gratings were used to obtain refractive index ¿ making use of the interaction between the guided mode evanescent field and the external medium ¿ and directional curva-ture sensors ¿ by exploring the off-center core position. The measured refractive index and the curvature sensitivities, respectively 40 nm/RIU around 1.41 and 202 pm/m-1, compares well to other fiber Bragg grating-based sensors. Additionally, antiresonant polymer capillary fibers were investigated as temperature and pressure sensors. For the temperature sensing descrip-tion, one used an analytical model to simulate the transmission spectra of such fibers and the dependence on temperature variations. Regarding the pressure sensing application, pressure-induced capillary wall thickness variations were analytically accounted and related to the sys-tem pressure sensitivity. In both these applications, experimental data were presented. Finally, additional opportunities using specialty optical fibers were presented, namely, a photonic-crystal fiber-based dual-environment pressure sensor, a three parameters sensor using Bragg gratings, tapered fibers and multimode interference, a liquid-level sensor based on Bragg grat-ings and multimode interference, and a temperature sensor based in an embedded-core fiber filled with indium. The results reported herein demonstrates the potential of optical fibers for providing sensing platforms to attain measurements of different sort of parameters with highly sensitivity and improved resolutions
Doutorado
Física
Doutor em Ciências
152993/2013-4
CNPQ
Mohammed, Waleed. "SELECTIVE MODE EXCITATION IN SPECIALTY WAVEGUIDES USING MICRO OPTICAL." Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3449.
Full textPh.D.
Other
Optics and Photonics
Optics
Oliveira, Rafael Euzebio Pereira de. "Fabricação e caracterização de fibras ópticas contendo nanopartículas de ouro e conversão de frequências em microrressonadores em anel." Universidade Presbiteriana Mackenzie, 2014. http://tede.mackenzie.br/jspui/handle/tede/1525.
Full textNonlinear effects are essential for the construction of photonic devices such as modulators, optical switches and frequency converters. Aiming at the development of devices for optical frequency conversion and the generation of nonclassical states of light in photonic chips, this thesis presents the design and simulation of a frequency converter based on second harmonic generation controlled by static electric field in a silicon nitride ring resonator. The developed simulation appraises conversion efficiencies up to -8.25 dB with the advantage to provide an electrical interface to control the conversion. Optical fiber based devices are also within the scope of the thesis and a new technique is presented for manufacturing optical fibers with enhanced nonlinear response by the presence of metallic gold nanoparticles. The manufactured fibers are based on silica that is doped with aluminum and gold in the core, offering full compatibility and integration with conventional optical fibers. The nanoparticles were created by annealing in an oven or by heating with a CO2 laser beam, which offers unprecedented control over particle size and density in optical fibers. Compared to previously reported fibers with gold nanoparticles, higher concentration of nanoparticles were obtained which was estimated by the plasmonic absorption peak exceeding 800 dB/m and by a consequent increasing in the nonlinear refractive index of at least 50x under continuous wave excitation, achieving values of n2=(6,75±0,55)×10-15 m²/W. The development of these fibers and the design of the on chip frequency converter provide platforms for the development of efficient and integrated devices in fiber based optical systems and in photonic chips.
Efeitos não lineares são essenciais para construção de dispositivos fotônicos como moduladores, chaves ópticas e conversores de frequências. Esta tese apresenta o projeto e a simulação de um conversor de frequências baseado na geração de segundo harmônico controlado por campo elétrico estático em um ressonador em anel de nitreto de silício, visando o desenvolvimento de dispositivos para conversão de frequências ópticas e geração de estados não clássicos da luz em chips fotônicos. A simulação desenvolvida prevê eficiência de conversão de até -8,25 dB com o diferencial de oferecer uma interface elétrica no controle de conversão. Dispositivos baseados em fibras ópticas também são visados nesta tese e uma nova técnica para fabricação de fibras ópticas com resposta não linear aumentada pela presença de nanopartículas metálicas de ouro é apresentada. As fibras fabricadas são baseadas em sílica com dopagem de alumínio e ouro no núcleo, possuindo total compatibilidade de integração com fibras ópticas convencionais. As nanopartículas foram sintetizadas através de tratamentos térmicos em forno ou aquecimento com feixe laser de CO2, obtendo-se um controle sem precedentes das dimensões e densidade de nanopartículas em fibras ópticas. Comparadas às fibras previamente reportadas na literatura, foram obtidas maiores concentrações de nanopartículas estimadas por picos de absorções plasmônicas maiores que 800 dB/m e por um consequente aumento no índice de refração não linear de pelo menos 50x no regime de onda contínua, obtendo-se valores de n2=(6,75±0,55)×10-15 m²/W. O desenvolvimento dessas fibras e o projeto do ressonador em anel para conversão de frequências oferecem plataformas para o desenvolvimento de dispositivos eficientes e integrados para sistemas ópticos baseados em fibras ópticas e em chips fotônicos.
Ren, Yundong. "Specially Shaped Optical Fiber Probes: Understanding and Their Applications in Integrated Photonics, Sensing, and Microfluidics." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/569.
Full textDe, Matos Christiano Jose Santiago. "Nonlinear optics in specialty optical fibres." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419770.
Full textJollivet, Clemence. "Specialty Fiber Lasers and Novel Fiber Devices." Doctoral diss., University of Central Florida, 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6295.
Full textPh.D.
Doctorate
Optics and Photonics
Optics and Photonics
Optics and Photonics
Fermann, Martin. "Characterisation techniques for special optical fibres." Thesis, University of Southampton, 1988. https://eprints.soton.ac.uk/404728/.
Full textBeffara, Flavien. "SERS biosensors based on special optical fibers for clinical diagnosis." Thesis, Limoges, 2021. http://www.theses.fr/2021LIMO0009.
Full textDespite important breakthroughs in biosensing, we are still in need of new sensors that would facilitate the early detection of severe diseases such as cancer. Classical tissue biopsy remains the gold standard in many cases. Although this approach has shown its potential, it remains invasive for the patients and the detection techniques are either tedious or lack the sensitivity to detect the disease at an early stage. Raman spectroscopy has demonstrated its interests for biosensing. Its ability to characterize the chemical nature, structure and the orientation of an analyte makes it an ideal candidate. The sharp Raman peaks of a molecule can be seen as a true fingerprint. Regrettably, Raman scattered signal is extremely weak. This limitation was overcome by surface enhanced Raman spectroscopy (SERS), since it drastically increases the Raman scattered signal while maintaining the sharp peak of the fingerprint spectrum of a molecule. Unfortunately, most of the current SERS substrates are 2D nano-roughened metal surfaces or colloidal nanoparticles, which lack the sensitivity and reliability in measurement with poor repeatability and reproducibility in the data. In the recent years, special optical fibers have been used as SERS platforms. They feature holes that run along their entire length. These holes allow for the analyte to be incorporated inside the fiber. Thus, such platform represents a promising alternative to planar substrates since the analyte and the excitation light can interact for longer length inside the fibers. In addition, optical fibers are very flexible, compact and allow for low-loss light guiding. Therefore, such fiber sensors exhibit the outstanding detection abilities of SERS, the advantages of optical fibers and improved sensitivity and reliability. In this manuscript, we aim to create a biosensing platform that could be routinely used in a clinical setting. For that, we propose to optimize the features of an already reported fiber topology. This allows us to increase its sensitivity while simultaneously improving its reliability and practicability. With this improved sensor, for the first time, we could detect the biomarker for ovarian cancer in clinical cyst fluids, which allowed us to differentiate the stage of the cancer. Subsequently, we propose a novel fiber topology, specifically designed to further increase the sensitivity of SERS-based fiber probes. This is achieved by increasing the surface of interaction compared to standard fiber sensors. For that, the core diameter is significantly increased and the amount of light that interacts with the analyte is precisely controlled. We envision that such functionalized fiber sensors could be incorporated inside a biopsy needle to create a two-in-one sensor for body fluid collection and readout that can eventually overcome the limitations associated with existing biopsy needle platforms, which demands for two-step sample collection and readout
Alvi, Bilal Ahmad. "Fabrication and light guiding of special optical fibres." Thesis, University of Salford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333980.
Full textZhang, Huijia. "Utilization of powder method for the realization of special optical fibers." Limoges, 2012. https://aurore.unilim.fr/theses/nxfile/default/c1310238-dca3-4100-a20a-da9f7575552b/blobholder:0/2012LIMO4023.pdf.
Full textLes fibres optiques « multimatériaux », sont définies comme des guides optiques où le cœur et la gaine de la fibre optique sont composés de matériaux de composition ou de nature différentes. Ces fibres attirent l'attention de plus en plus de chercheurs, et ce dans de nombreux pays, car selon les différentes compositions des verres, ces fibres optiques peuvent présenter des propriétés originales. Dans cette thèse , après une présentation des procédés de fabrication bien connus et d'autres plus originaux, nous proposons de développer le procédé « poudre » pour fabriquer deux fibres multimatériaux originales. La première est une fibre à bande interdite photonique composée d'un cœur de silice et d'un cristal photonique bidimensionnel d'inclusions d'un verre de Silice Aluminium Lanthane. Ce verre permet de développer ce type de fibre avec des inclusions dont l'indice de réfraction est plus important que la plupart des fibres à bande interdite rapportées. Les propriétés de ces fibres ont été étudiées ce qui à conduit à la conception et la fabrication d'une fibre optimisée. La deuxième fibre étudiée comprend des fils métalliques de cuivre. Nous avons étendu le procédé de fabrication aux fibres verre / métal. Un câble coaxial de taille micrométrique a été modélisé, optimisé et réalisé pour démontrer l'intérêt d'une telle structure pour guider des signaux micro-ondes à 100 GHz. Les procédés développés pour la fabrication des ces deux fibres associent le procédé « poudre » et le procédé « stack-and-draw »
Books on the topic "Specialty optical fibers"
Alexis, Méndez, and Morse T. F, eds. Specialty optical fibers handbook. Amsterdam: Academic Press, 2007.
Find full text1942-, Harrington James A., Katzir Abraham, International Biomedical Optics Society, and Society of Photo-optical Instrumentation Engineers., eds. Proceedings of specialty fiber optics for medical applications: 24-25 January 1999, San Jose, California. Bellingham, Wash., USA: SPIE, 1999.
Find full textWorkshop on Specialty Optical Fibers and Their Applications (1st 2008 São Pedro, São Paulo, Brazil). 1st Workshop on Specialty Optical Fibers and Their Applications: São Pedro, SP, Brazil, 20-22 August 2008. Edited by Cordeiro Cristiano M. B and Matos, Christiano J. S. de. Melville, N.Y: American Institute of Physics, 2008.
Find full textOptical Fiber Communications/Optical Fiber Sensors Conference (1988 New Orleans). The 1988 Optical Fiber Communications/Optical FiberSensorsConference: Special issue. Edited by Linke R. A, Morrow A. J, Conference on Optical FiberCommunications, (11th : 1988 : NewOrleans), and International Conference on Optical Fiber Sensors, (5th : 1988 : New Orleans). New York: Institute of Electrical and Electronics Engineers, 1988.
Find full textAlvi, Bilal Ahmad. Fabrication and light guiding of special optical fibres. Salford: University of Salford, 1993.
Find full textNational Institute of Standards and Technology (U.S.), ed. TECHNICAL DIGEST SYMPOSIUM ON OPTICAL FIBER MEASUREMENTS, 2000... NIST SPECIAL PUBLICATION 953... U.S. DEPARTMENT OF COMMERCE. [S.l: s.n., 2001.
Find full text1953-, Renard J., ed. Fundamentals of fibre reinforced composite materials. Bristol: Institute of Physics Publishing, 2005.
Find full textNational Institute of Standards and Technology (U.S.), ed. Calibration Service For Spectral Responsivity Of Laser And Optical-Fiber Power Meters At Wavelengths Between 0.4 UM..., NIST Special Publication 250-43... U.S. Department Of Commerce. [S.l: s.n., 2000.
Find full text(Editor), Alexis Mendez, and T. F. Morse (Editor), eds. Specialty Optical Fibers Handbook. Academic Press, 2007.
Find full text(Editor), Alexis Mendez, and T. F. Morse (Editor), eds. Specialty Optical Fibers Handbook. Academic Press, 2007.
Find full textBook chapters on the topic "Specialty optical fibers"
Chai, Quan, Yushi Chu, and Jianzhong Zhang. "Characterization of Specialty Fibers." In Handbook of Optical Fibers, 1–59. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-1477-2_59-1.
Full textChai, Quan, Yushi Chu, and Jianzhong Zhang. "Characterization of Specialty Fibers." In Handbook of Optical Fibers, 1–50. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-1477-2_59-2.
Full textChai, Quan, Yushi Chu, and Jianzhong Zhang. "Characterization of Specialty Fibers." In Handbook of Optical Fibers, 1177–226. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-7087-7_59.
Full textQin, Guanshi. "Specialty Optical Fibers for Raman Lasers." In Raman Fiber Lasers, 205–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65277-1_5.
Full textBeugnot, Jean-Charles, and Thibaut Sylvestre. "Shaping Brillouin Light in Specialty Optical Fibers." In Shaping Light in Nonlinear Optical Fibers, 461–76. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119088134.ch16.
Full textPal, Bishnu P., A. Barh, S. Ghosh, R. K. Varshney, J. Sanghera, L. B. Shaw, and I. D. Aggarwal. "Specialty Optical Fibers for Mid-IR Photonics." In Springer Proceedings in Physics, 13–16. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2367-2_3.
Full textRomaniuk, Ryszard S. "Special Optical Fibres." In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 766–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48372-1_162.
Full textWeik, Martin H. "special optical fiber." In Computer Science and Communications Dictionary, 1627–28. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17841.
Full textWeik, Martin H. "special fiber optic cable." In Computer Science and Communications Dictionary, 1626–27. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17830.
Full textChattopadhyay, Rik, Arindam Haldar, Mukul C. Paul, and Shyamal K. Bhadra. "Noble Metal Doped Optical Fiber for Specialty Light Source." In Springer Proceedings in Physics, 95–105. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3908-9_12.
Full textConference papers on the topic "Specialty optical fibers"
Banerjee, Hritwick, Nicola Bartolomei, and Fabien Sorin. "Soft Microstructured Optical Fibers via Thermal Drawing." In Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.som2h.1.
Full textKhramov, I., and O. Ryabushkin. "Fiber Laser Power Measurements Using Optical Fibers with Metal Winding." In Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.soth3g.3.
Full textLyu, Zhouping, and Lyubov V. Amitonova. "Hollow-core fiber imaging." In Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.sotu4i.4.
Full textJiang, Shibin. "2 Micron Fiber Lasers Using Silicate Glass Fibers." In Specialty Optical Fibers. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/sof.2014.sotu2b.1.
Full textMelli, F., K. Vasko, L. Rosa, L. Vincetti, and F. Benabid. "Transverse Roughness Effect on Fundamental Mode Confinement Loss and Modal Content of Hollow-Core Inhibited Coupling Tube Lattice Fibers." In Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.sotu1i.3.
Full textVillatoro, Joel. "Coupled-core optical fiber sensing." In Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.soth1h.3.
Full textJiang, Shibin. "Multi-Component Glass Fibers for 2 Micron Fiber Lasers." In Specialty Optical Fibers. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/sof.2011.somb4.
Full textNaghdi, Behnam, Lixian Wang, Manish Sharma, and Zhiping Jiang. "Highly Dispersive yet Low Loss Hollow Core Fibers by Using a Combination of Anti-resonant and Resonant Elements." In Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.sotu1i.6.
Full textPayne, David N. "Special or Specialty Optical Fibres?" In Workshop on Specialty Optical Fibers and their Applications. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/wsof.2015.ww1a.1.
Full textSahu, Jayanta K., and Deepak Jain. "Novel large-mode area fibers for high power fiber lasers." In Specialty Optical Fibers. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/sof.2016.sow1h.1.
Full textReports on the topic "Specialty optical fibers"
Erdmann, Reinhard. Applications of Nonlinear Optic Effects in New Specialty Fibers. Fort Belvoir, VA: Defense Technical Information Center, June 1993. http://dx.doi.org/10.21236/ada268890.
Full textCrowley. L51778 Fiber Optic Strain Monitoring of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2000. http://dx.doi.org/10.55274/r0010621.
Full textColombo, Karina, Elisa Failache, and Martina Querejeta. High-Speed Internet and Socioemotional Wellbeing in Uruguayan Youth. Inter-American Development Bank, November 2023. http://dx.doi.org/10.18235/0005154.
Full textKwon, Heeseo Rain, HeeAh Cho, Jongbok Kim, Sang Keon Lee, and Donju Lee. International Case Studies of Smart Cities: Orlando, United States of America. Inter-American Development Bank, June 2016. http://dx.doi.org/10.18235/0007015.
Full text