Academic literature on the topic 'Speciation and extinction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Speciation and extinction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Speciation and extinction"
Bull, J. W., and M. Maron. "How humans drive speciation as well as extinction." Proceedings of the Royal Society B: Biological Sciences 283, no. 1833 (June 29, 2016): 20160600. http://dx.doi.org/10.1098/rspb.2016.0600.
Full textValentine, James W., and Timothy D. Walker. "Extinctions in a model taxonomic hierarchy." Paleobiology 13, no. 2 (1987): 193–207. http://dx.doi.org/10.1017/s0094837300008745.
Full textHulbert, Richard C. "Taxonomic evolution in North American Neogene horses (subfamily Equinae): the rise and fall of an adaptive radiation." Paleobiology 19, no. 2 (1993): 216–34. http://dx.doi.org/10.1017/s0094837300015888.
Full textMagañón-Puebla, Susana. "Diferentes tasas evolutivas entre grupos de angiospermas. Eudicotiledóneas." Botanical Sciences, no. 58 (April 27, 2017): 137. http://dx.doi.org/10.17129/botsci.1494.
Full textChen, Youhua. "An island biogeography model for beta diversity and endemism: The roles of speciation, extinction and dispersal." International Journal of Biomathematics 08, no. 01 (January 2015): 1550011. http://dx.doi.org/10.1142/s1793524515500114.
Full textArchibald, J. David. "The importance of phylogenetic analysis for the assessment of species turnover: a case history of Paleocene mammals in North America." Paleobiology 19, no. 1 (1993): 1–27. http://dx.doi.org/10.1017/s0094837300012288.
Full textJohn Sepkoski, J. "Rates of speciation in the fossil record." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 353, no. 1366 (February 28, 1998): 315–26. http://dx.doi.org/10.1098/rstb.1998.0212.
Full textBennett, Dominic J., Mark D. Sutton, and Samuel T. Turvey. "Evolutionarily distinct “living fossils” require both lower speciation and lower extinction rates." Paleobiology 43, no. 1 (November 24, 2016): 34–48. http://dx.doi.org/10.1017/pab.2016.36.
Full textStanley, Steven M. "Population size, extinction, and speciation: the fission effect in Neogene Bivalvia." Paleobiology 12, no. 1 (1986): 89–110. http://dx.doi.org/10.1017/s0094837300003006.
Full textStanley, Steven M., Karen L. Wetmore, and James P. Kennett. "Macroevolutionary differences between the two major clades of Neogene planktonic foraminifera." Paleobiology 14, no. 3 (1988): 235–49. http://dx.doi.org/10.1017/s0094837300011970.
Full textDissertations / Theses on the topic "Speciation and extinction"
Stadler, Tanja. "Evolving trees: models for speciation and extinction in phylogenetics." kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/672309/672309.pdf.
Full textKirchman, Jeremy J. "Speciation and extinction of flightless rails (Aves: Gallirallus) in Oceania." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0015121.
Full textWaldron, Anthony Simon. "Geographic range size : speciation, extinction and what happens in-between." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31706.
Full textScience, Faculty of
Zoology, Department of
Graduate
Smart, Christopher W. "Ecological controls on patterns of speciation and extinction in deep-sea benthic forminifera." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332824.
Full textMonroe, Melanie. "The tempo and mode of evolution : a neontological reappraisal." Doctoral thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-49761.
Full textTeorin om "punkterad jämvikt" säger att arter utvecklas snabbt under och omedelbart efter artbildning, vilket "punkterar" långa perioder med lite eller ingen morfologisk föränding. I den här avhandlingen visar jag att skillnader i kroppsstorlek inom klader (grupp med gemensam förfader) hos fåglar och däggdjur förklaras bäst när man använder en modell med punkterad evolution. Detta gör i sin tur att jag kan föreslå att hastigheten var med artbildning och utdöende sker, förklarar varför det finns fler små däggdjur än stora, eftersom stora däggdjur sannolikt bildar nya arter och dör ut med en högre hastighet än små däggdjur. Likaså förefaller däggdjur i sin helhet att evolvera med en högre hastighet än fåglar, detta eftersom däggdjur bildar nya arter och dör ut med en högre hastighet än fåglar. Dessutom visar jag att massutdöenden och konkurrens (naturlig selektion) inte verkar förklara skillnader mellan arter över makroevolutionära skalor (över geologisk tid). Sammantaget motsäger dessa resultat inte bara idén om att skenbart olika hastighet på evolution främst beror på skillnader i selektionstryck utan understryker också vikten av artbildningsprocessen som en viktig faktor som styr evolutionens hastighet. Dessutom leder dessa resultat till frågan om vad som begränsar evolutionen hos redan etablerade arter. Här föreslår jag att fenotypiska karaktärsdrag som är beroende av varandra för sin funktion och utveckling kan begränsa evolutionen genom att utöva stabiliserande selektion inifrån organismen, i motsats till selektion från den omgivande miljön vilket har varit fokus för de flesta evolutionära studier hittills.
Peart, Daniel Chad. "CONTINUOUS OR PULSE? SIMULATING SPECIATION AND EXTINCTION FROM EAST AND SOUTH AFRICAN FAUNA AT PLIO-PLEISTOCENE FOSSIL SITES." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429298292.
Full textFerreira, Gustavo Burin. "The roles of diet, speciation and extinction on the diversification of birds, and on the assembly of frugivory networks." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/41/41134/tde-22012018-105557/.
Full textPara entendermos como a biodiversidade varia no tempo e/ou no espaço precisamos entender a dinâmcia de especiação e extinção, e quais fatores (bióticos ou abióticos) afetam essa dinâmica. Acredita-se que as interações biológicas desempen- ham um papel importante na diversificação de organismos, porém estudos macroevolutivos usualmente adotam caracter- izações simples de interações entre espécies. Por outro lado, estudos ecológicos comumente focam na descrição detalhada de interações entre poucas espécies. Uma abordagem de re- des pode aumentar a compreensão dos papéis ecológicos de- sempenhados por diferentes espécies, mas a pouca ênfase em abordagens evolutivas em estudos de redes biológicas nos im- pedem de compreender completamente como essas redes são montadas. Usando a filogenia e dados de dieta disponíveis para virtualmente todas as espécies de aves (aprox. 9965 espécies), e uma grande coleção de redes de frugivoria, investigamos o efeito da dieta na diversificação de aves, e testamos a relação en- tre papéis ecológicos em redes de interação e a dinâmica da di- versificação de espécies frugívoras. Ainda, usando simulações computacionais, avaliamos a performance de dois métodos am- plamente utilizados para estimar taxas de diversificação usando filogenias moleculares. Sugerimos que onivoria atua como um ralo macroevolutivo, onde sua natureza efêmera é recuperada através de transições de outras guildas de dieta ao invés de através da especiação de espécies onívoras. Nós sugerimos que essa dinâmica resulta da competição intra- e entre guildas, in- fluenciada pela disponibilidade e previsibilidade de recursos em ampla escalas de tempo. Nós também observamos que em regiões temperadas, linhagens com uma dinâmica evolutiova mais rápida (maiores taxas de substituição de espécies) em geral não ocupam papéis centrais em redes de frugivoria, e que es- sas restrições são principalmente modificadas por disponibili- dade/previsibilidade hídricas. Por fim, observamos que ambos os métodos filogenéticos testados tem desempenho igualmente bom para estimar taxas atuais, porém ambos falham em detectar a trajetória da diversificação quando as taxas de extinção variam no tempo. Essa tese contribui para o conhecimento de mecanis- mos bióticos e abióticos que afetam tanto a diversificação quanto a montagem de redes de interação, e também provê informações importantes acerca da confiabilidade das estimativas de taxas de diversificação advindas dos métodos atuais amplamente utilizados
Gascuel, Fanny. "Processus d'émergence des patrons de diversité supra-spécifiques lors des radiations évolutives." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066124/document.
Full textEvolutionary radiations are phenomena of rapid diversification, and one of the major sources of biodiversity on Earth. Here, I explore the hypothesis that ecological and genetic mechanisms underpinning evolutionary radiations structure macroecological and macroevolutionary patterns of diversity. To this end, I analyse the predictions of several models in which radiations emerge from spatio-temporal dynamics at the scale of the individual. These analyses first show that spatial structure is a major driver of diversity and endemism on oceanic archipelagos due to interactions between dispersal and allopatric speciation. Second, by integrating landscape dynamics and the processes of competitive interactions, I reveal how these factors combine to shape phylogenetic trees, and in particular to beget trees that are unbalanced and exhibit a deceleration in branching tempo, which is often observed on molecular phylogenies. I then explore the mechanisms responsible for this deceleration. I show that it reflects a negative diversity-dependence of the speciation rate, itself linked to a reduction in the persistence and ecological differentiation of new populations. The extinction rate is, on the other hand, uninfluenced by species diversity, extinctions being here mainly caused by a combinaison of competitive exclusion and hybridization of incipient species. Finally, I show that during mass extinctions the ranked topology of phylogenetic trees and the distribution of extinctions among the tips have a strong impact on the loss of phylogenetic diversity, and hence on the potential for future evolution
Bokma, F. (Folmer). "Why most birds are small – a macro-ecological approach to the evolution of avian body size." Doctoral thesis, University of Oulu, 2004. http://urn.fi/urn:isbn:9514273451.
Full textTiivistelmä Maailman noin 10 000 lintulajin joukossa pienikokoisia lajeja on enemmän kuin suurikokoisia. Yleensä pienkokoiset lajit ovat myös yksilömääriltään suurempia kuin samalla paikalla esiintyvät suurikokoiset lajit. Koska sama ilmiö on havaittu monissa muissa suurissa eliöryhmissä (esim. nisäkkäät, käärmeet ja kukkakasvit), on ilmeistä, että on olemassa yhteinen syy, joka pätee niin linnuissa kuin muissakin eliöryhmissä. Tämän väitöskirjan tavoite on selvittää, mikä tämä yhteinen syy voisi olla. Ensinnäkin on mahdollista, että suurin osa lajeista on kehittynyt pienikokoisiksi aivan sattumalta. Ruumiin koon evoluution simulaatiot kuitenkin osoittavat, että on hyvin epätodennäköistä, että neutraali evoluutio olisi johtanut pienikokoisten lajien suuriin määrään havaitussa määrin. Toinen mahdollinen selitys ilmiölle on, että pienikokoiset lajit lajiutuvat nopeammin. Tilastolliset analyysit, jotka ottavat huomioon nykyisin elävien lajien sukulaisuussuhteet, osoittavat ettei ruumin koon ja lajiutumisen vauhdin välillä ole yhteyttä. Kolmas mahdollinen selitys pienikokoisten lajien suurelle määrällä on historiallinen. On mahdollista, että pienikokoisten lajien suhteellisen suuri määrä syntyi nopeasti noin 65 miljoonaa vuotta sitten tapahtuneen massasukupuuton seurauksena, joka fossiiliaineiston perusteella kohdistui erityisesti suurikokoisiin maaeläimiin (esimerkiksi dinosauruksiin). Vertaileva analyysi nykyään elävien lintulajien ruumiin koosta ja geneettisistä eroista osoittaa, että vaikka suuri osa lintulajeista hävisi massasukupuutossa, tämä katastrofi karsi lajeja riippumatta niiden ruumiin koosta. Näyttää siis siltä, etteivät erot lajiutumisen tai sukupuuttojen esiintymisessä selitä sitä, että suurin osa lajeista on pienikokoisia. Tämän tutkimuksen tulosten perusteella syy näyttäisi sen sijaan olevan ruumiin koon kehityksen vauhdissa ja siinä tavassa, jolla kehitys yleensä etenee. Analyysi nykyisten lajien ruumiin koosta paljasti, että suurin osa eroista lajien välillä syntyy (evolutiiviessa aikataulussa) suhteellisen nopeasti lajiutumistapahtuman yhteydessä (punktualismi) eikä vähitellen pitkien aikojen kuluessa (gradualismi), kuten yleensä oletetaan. Kehityslinjojen sisällä pienikokoisten lajien väliset erot ruumiin koossa olivat pienempiä kuin isokokoisten lajien väliset erot - ja todennäköisesti myöskin tämä ero syntyy lajiutumisen yhteydessä. Tämä johtaa evoluution kuluessa tilanteeseen, että alunperin pienikokoisista lajeista kehittyneet lajit ovat myös pienikokoisia, kun taas isokokoisten lajien kehityslinjoissa on nähtävissä huomattavasti paljon enemmän vaihtelua ruumiin koossa. Näiden seurauksena eliöstöissä suurin osa lajeista lopulta on pienikokoisia
Stadler, Tanja [Verfasser]. "Evolving trees : models for speciation and extinction in phylogenetics / Tanja Stadler." 2008. http://d-nb.info/992078377/34.
Full textBooks on the topic "Speciation and extinction"
Esler, Karen J., Anna L. Jacobsen, and R. Brandon Pratt. Evolution and Diversity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198739135.003.0005.
Full textBook chapters on the topic "Speciation and extinction"
Suzuki, Takao K., Motomu Matsui, Sira Sriswasdi, and Wataru Iwasaki. "Lifestyle Evolution Analysis by Binary-State Speciation and Extinction (BiSSE) Model." In Methods in Molecular Biology, 327–42. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2691-7_16.
Full textBennett, Peter M., Ian P. F. Owens, and Jonathan E. M. Baillie. "The History and Ecological Basis of Extinction and Speciation in Birds." In Biotic Homogenization, 201–22. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1261-5_10.
Full textMatzke, Nicholas J. "Science Without Species: Doing Science with Tree-Thinking." In Speciesism in Biology and Culture, 47–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99031-2_3.
Full text"Speciation and extinction." In Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics, 231–74. Cambridge University Press, 2005. http://dx.doi.org/10.1017/cbo9780511542633.009.
Full textRicklefs, Robert E. "Speciation, extinction and diversity." In Speciation and Patterns of Diversity, 257–77. Cambridge University Press, 2001. http://dx.doi.org/10.1017/cbo9780511815683.015.
Full textFowler, Charles W. "Selective extinction and speciation." In Systemic Management, 55–77. Oxford University Press, 2009. http://dx.doi.org/10.1093/acprof:oso/9780199540969.003.0003.
Full textWool, David. "Speciation, Extinction of Species and Phylogeny." In The Driving Forces of Evolution, 291–308. CRC Press, 2006. http://dx.doi.org/10.1201/b10758-23.
Full text"Speciation, Extinction of Species and Phylogeny." In The Driving Forces of Evolution, 291–308. Science Publishers, 2006. http://dx.doi.org/10.1201/b10758-27.
Full text"BIOGEOGRAPHICAL PROCESSES I: SPECIATION, DIVERSIFICATION, AND EXTINCTION." In Fundamentals of Biogeography, 26–51. Routledge, 2004. http://dx.doi.org/10.4324/9780203356586-11.
Full textCadotte, Marc W., and T. Jonathan Davies. "Speciation, Extinction, and the Distribution of Phylogenetic Diversity." In Phylogenies in Ecology. Princeton University Press, 2016. http://dx.doi.org/10.23943/princeton/9780691157689.003.0008.
Full textConference papers on the topic "Speciation and extinction"
Warnock, Rachel C. M. "A PHYLOGENETIC PERSPECTIVE TO ESTIMATING SPECIATION AND EXTINCTION RATES FROM STRATIGRAPHIC RANGES." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-322811.
Full textWarnock, Rachel C. M., Daniele Silvestro, Alexandra Gavryushkina, and Tanja Stadler. "CLOSING THE GAP BETWEEN PALEONTOLOGICAL AND NEONTOLOGICAL SPECIATION AND EXTINCTION RATE ESTIMATES." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-306182.
Full textJames, Derek. "A comparison of speciation, extinction, and complexification in neuroevolution with and without selection pressure." In the 10th annual conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1389095.1389196.
Full textWarnock, Rachel C. M., Tracy A. Heath, and Tanja Stadler. "ON THE IMPORTANCE OF INCOMPLETE SAMPLING IN PALAEONTOLOGICAL AND PHYLOGENETIC APPROACHES TO ESTIMATING SPECIATION AND EXTINCTION RATES." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-306236.
Full textErba, Elisabetta. "MASS EXTINCTIONS AND GREATEST SPECIATIONS: THE EMERGENCE OF CALCAREOUS PHYTOPLANKTON IN THE EARLIEST MESOZOIC." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-302897.
Full text