To see the other types of publications on this topic, follow the link: Specific heat.

Journal articles on the topic 'Specific heat'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Specific heat.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pacheco, Matheus G., Reinaldo de Melo e. Souza, and Daniela Szilard. "Multivalued specific heat." American Journal of Physics 90, no. 3 (March 2022): 187–93. http://dx.doi.org/10.1119/10.0006899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gordon, J. E., R. A. Fisher, Y. X. Jia, N. E. Phillips, S. F. Reklis, D. A. Wright, and A. Zettl. "Specific heat ofNd0.67Sr0.33MnO3." Physical Review B 59, no. 1 (January 1, 1999): 127–30. http://dx.doi.org/10.1103/physrevb.59.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gordon, J. E., S. D. Bader, J. F. Mitchell, R. Osborn, and S. Rosenkranz. "Specific heat ofLa1.2Sr1.8Mn2O7." Physical Review B 60, no. 9 (September 1, 1999): 6258–61. http://dx.doi.org/10.1103/physrevb.60.6258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pizarro, C. A., C. A. Condat, P. W. Lamberti, and D. P. Prato. "Specific heat revisited." American Journal of Physics 64, no. 6 (June 1996): 736–44. http://dx.doi.org/10.1119/1.18171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bershadskii, A. "Multifractal specific heat." Physica A: Statistical Mechanics and its Applications 253, no. 1-4 (May 1998): 23–37. http://dx.doi.org/10.1016/s0378-4371(97)00663-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ramirez, A. P., B. Batlogg, and Z. Fisk. "Specific heat ofYbBe13." Physical Review B 34, no. 3 (August 1, 1986): 1795–96. http://dx.doi.org/10.1103/physrevb.34.1795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ito, M., H. Yamamoto, S. Nagata, and T. Suzuki. "Specific heat of." Physica B: Condensed Matter 383, no. 1 (August 2006): 22–23. http://dx.doi.org/10.1016/j.physb.2006.03.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yoshino, G., K. Katoh, Y. Niide, and A. Ochiai. "Specific heat of." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): e4-e5. http://dx.doi.org/10.1016/j.jmmm.2006.10.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ramirez, A. P., and W. P. Wolf. "Specific heat ofCsNiF3." Physical Review B 32, no. 3 (August 1, 1985): 1639–42. http://dx.doi.org/10.1103/physrevb.32.1639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dukenik, David Bared, Deborah Soong, Frank Scarpa, Julia Anderson, Hua Li, Viji Udayakuma, Justin M. Watts, et al. "Distinct SF3B1 Allele HEAT Repeat Location Is Associated with Co-Occurring Mutation Patterns in MDS." Blood 142, Supplement 1 (November 28, 2023): 3242. http://dx.doi.org/10.1182/blood-2023-181191.

Full text
Abstract:
Background: In 2022, the WHO classified a new subtype of myelodysplastic neoplasms (MDS) with low blast count and SF3B1 mutation called MDS- SF3B1. SF3B1 is the major subunit of the SF3B spliceosome complex and is responsible for recognizing 3' splice sites in pre-mRNA for processing into mature mRNA. Mutations in SF3B1 have also been observed in other myeloid neoplasms. While MDS- SF3B1 has been associated with a better survival outcome, allelic variants such as SF3B1 K666N are associated with higher-risk MDS, transformation to AML and decreased OS. Additionally, SF3B1 E592K is more likely to be co-mutated with RUNX1, with a worse prognosis. Thus, not all SF3B1 allelic variants should be treated the same. The IPSS-M model incorporates SF3B1 mutations with different weights depending on co-mutations (i.e. isolated del(5q) or BCOR, BCORL1, RUNX1, NRAS, STAG2, SRSF2 mutations) but did not find a difference based on SF3B1 hotspot mutation. However, these and other studies have focused on specific amino acid substitutions but have not taken into consideration the protein domain structure of SF3B1. Using a large cohort of SF3B1-mutant myeloid malignancies, we determined whether HEAT repeat domain location was associated with differences between SF3B1-mutant myeloid neoplasms when comparing co-mutations and clinical characteristics. Methods: Bone marrow, peripheral blood, or FFPE tissue samples from a cohort of 2,996 unique patients with a suspected myeloid neoplasm from 6/30/2020-5/30/2023 were sequenced using a DNA 297 gene myeloid panel. We also analyzed a separate cohort of 112 patients from Sylvester Comprehensive Cancer Center (SCCC) and the University of Texas Southwestern Medical Center (UTSW) from 06/01/2017-06/30/2023 to validate the findings and assess for associations with clinical parameters such as blast count, time to disease progression, and survival. Statistics were performed using Chi-Square. SF3B1 has 22 HEAT repeats with SF3B1 mutations occurring predominately in HEAT Domains 2-6. For this study, we used UniProt definitions of amino acids 569-603 (HEAT2), 604-641 (HEAT3), 643-677 (HEAT4), 680-718 (HEAT5), and 763-801 (HEAT6) as shown in Figure 1. Results: Out of 2,996 myeloid neoplasm patients with SF3B1 mutations, the SF3B1 allele with the highest prevalence was K700E, which falls into HEAT repeat number 5, followed by K666N/R/T and H662Q in HEAT repeat number 4, and R635C in HEAT repeat number 3. Mutations in HEAT repeat 2 and 6 were less common. Several genes were significantly co-mutated in different SF3B1 heat domains, including ASXL1 (11%, p-value =<0.00001), CUX1 (4.7%, p-value = <0.00001), DNMT3A (22.5%, p-value = <0.00001), EZH2 (4.3%, p-value = 0.07), JAK2 (11.2%, p-value= <0.00001), RUNX1 (7.8%, p-value = <0.00001), STAG2 (3.2%, p-value = <0.00001), and TET2 (28.2%, p-value = 0.003) shown in Table 1. The most common co-mutations within each HEAT domain were: HEAT2- ASXL1 (80.0%), RUNX1 (55%), and STAG2 (25%); HEAT3- TET2 (29.5%), DNMT3A (17.5%), and ASXL1 (12.6%); HEAT4- TET2 (24%), D NMT3A (15.2%), and JAK2 (16.9%); HEAT5- TET2 (31.4%) and DNMT3A (31%);and HEAT6- TET2 (28.9%), ASXL1 (15.8%), DMNT3A (14.5%), and EZH2(10.5%). In a separate cohort of 112 patients with clinical follow-up, 97 were diagnosed with MDS- SF3B1: 53 (55%) were male and the average age at diagnosis of 70 years (range: 27-89 years old). A total of 88 patients had 297 gene myeloid panel information, which revealed a similar HEAT repeat distribution: HEAT3 (19%), HEAT4 (27%), HEAT5 (45%), and HEAT6 (6%). The median OS of the entire cohort was 10.5 years (CI 95% 4.93-NE). With a median follow-up of 2 years; 75, 81, 63 and 80% of patients were alive in HEAT 3, 4, 5 and 6, respectively. Conclusion: Distinct SF3B1 alleles defined by HEAT repeat location reflect distinct co-mutation patterns and may play a role in the biology of myeloid disorders. The relatively most enriched co-mutation patterns included: ASXL1 and RUNX1 in HEAT2, JAK2 in HEAT4, and EZH2 in HEAT6. Despite numerical differences in survival larger multicenter patient cohorts are needed to further define how distinct SF3B1 allelic variants and their HEAT repeat location correlate with prognosis and outcome in MDS and other myeloid neoplasms. In addition, further research is need into whether distinct SF3B1 alleles result in differences in RNA splicing signatures that may influence interactions with co-occurring mutations and disease biology.
APA, Harvard, Vancouver, ISO, and other styles
11

Alireza, Sepehri, Shoorvazi Somayyeh, and Moradi Marjaneh Aliakbar. "Calculating the Specific Heat of DNA by using Phononic Model." Greener Journal of Biological Sciences 3, no. 5 (July 13, 2013): 187–91. http://dx.doi.org/10.15580/gjbs.2013.5.051613617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wen, Hai-Hu. "Specific heat in superconductors." Chinese Physics B 29, no. 1 (January 2020): 017401. http://dx.doi.org/10.1088/1674-1056/ab5a3d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Seixas, T. M., M. A. Salgueiro da Silva, O. F. de Lima, J. Lopez, H. F. Braun, and G. Eska. "Specific heat of Gd4Co3." Journal of Physics: Condensed Matter 22, no. 13 (March 12, 2010): 136002. http://dx.doi.org/10.1088/0953-8984/22/13/136002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Azhar, A. A., C. D. Mitescu, W. R. Johanson, C. B. Zimm, and J. A. Barclay. "Specific heat of GdRh." Journal of Applied Physics 57, no. 8 (April 15, 1985): 3235–37. http://dx.doi.org/10.1063/1.335162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zwanzig, Robert. "Frequency dependent specific heat." Journal of Chemical Physics 88, no. 9 (May 1988): 5831–33. http://dx.doi.org/10.1063/1.454543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

de Wette, F. W., A. D. Kulkarni, J. Prade, U. Schröder, and W. Kress. "Lattice specific heat ofYBa2Cu3O7." Physical Review B 42, no. 10 (October 1, 1990): 6707–10. http://dx.doi.org/10.1103/physrevb.42.6707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kim, J. S., K. Zhao, C. Q. Jin, and G. R. Stewart. "Specific heat of Ca0.33Na0.67Fe2As2." Solid State Communications 193 (September 2014): 34–36. http://dx.doi.org/10.1016/j.ssc.2014.05.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Fisher, R. A., Guangtao Li, J. C. Lashley, F. Bouquet, N. E. Phillips, D. G. Hinks, J. D. Jorgensen, and G. W. Crabtree. "Specific heat of Mg11B2." Physica C: Superconductivity 385, no. 1-2 (March 2003): 180–91. http://dx.doi.org/10.1016/s0921-4534(02)02316-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Javorský, P., F. Jutier, P. Boulet, F. Wastin, E. Colineau, and J. Rebizant. "Specific heat in system." Physica B: Condensed Matter 378-380 (May 2006): 1007–8. http://dx.doi.org/10.1016/j.physb.2006.01.386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lin, X. N., V. A. Bondarenko, G. Cao, and J. W. Brill. "Specific heat of Sr4Ru3O10." Solid State Communications 130, no. 3-4 (April 2004): 151–54. http://dx.doi.org/10.1016/j.ssc.2004.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

El-Hagary, M., H. Michor, C. Jambrich, R. Hauser, M. Galli, E. Bauer, and G. Hilscher. "Specific heat of HoNi2B2C." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 551–52. http://dx.doi.org/10.1016/s0304-8853(97)00290-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Suzuki, T., Y. Matsumoto, F. Masaki, K. Izawa, M. Ito, K. Katoh, T. Takabatake, and T. Fujita. "Specific heat of YbPtSn." Physica B: Condensed Matter 259-261 (January 1999): 146–47. http://dx.doi.org/10.1016/s0921-4526(98)00631-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kim, J. S., and G. R. Stewart. "Specific Heat of YbIr2." Journal of Low Temperature Physics 152, no. 5-6 (July 2, 2008): 186–91. http://dx.doi.org/10.1007/s10909-008-9813-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fisher, R. A., J. E. Gordon, S. Kim, N. E. Phillips, and A. M. Stacy. "Specific heat of YBa2Cu3O7." Physica C: Superconductivity 153-155 (June 1988): 1092–95. http://dx.doi.org/10.1016/0921-4534(88)90207-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kim-Ngan, N. H., R. J. Radwański, F. E. Kayzel, and J. J. M. Franse. "Specific heat of PrNi5." Journal of Magnetism and Magnetic Materials 140-144 (February 1995): 863–64. http://dx.doi.org/10.1016/0304-8853(94)01494-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Phillips, N. E., J. P. Emerson, R. A. Fisher, J. E. Gordon, B. F. Woodfield, and D. A. Wright. "Specific heat of YBa2Cu3O7." Journal of Superconductivity 7, no. 1 (February 1994): 251–55. http://dx.doi.org/10.1007/bf00730406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

DESHPANDE, S. D., and SATISH BAL. "SPECIFIC HEAT OF SOYBEAN." Journal of Food Process Engineering 22, no. 6 (December 1999): 469–77. http://dx.doi.org/10.1111/j.1745-4530.1999.tb00500.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

RADWAŃSKI, R. J., and J. J. M. FRANSE. "SPECIFIC HEAT OF UPd2Al3." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 38–41. http://dx.doi.org/10.1142/s021797929300010x.

Full text
Abstract:
Particularities in the specific heat of UPd 2 Al 3, a λ-type of peak with a maximum at 14.5 K and a Schottky-type of peak with a broad maximum at 55 K, has been attributed to the 5f-subsystem of the U atoms. The U-5f contribution has been found to be described surprisingly well within a single-ion Hamiltonian that includes the charge multipolar (CMP) interactions and the antiferromagnetic (AF) exchange interaction between the U 3+ ions. The AF exchange parameter and the full set of the CMP parameters associated with the hexagonal symmetry have been evaluated. The energy-level scheme (ELS) of this Kramers ion is constructed. The ground-state function Γ8 of the 5f 3 electrons is highly anisotropic. This state results from higher-order charge multipolar interactions. Magnetic properties resulting from this scheme including the metamagnetic-like transition at 18 T, the strongly-reduced value for the U-ion moment and its field dependence are found to be in good agreement with experimental observations.
APA, Harvard, Vancouver, ISO, and other styles
29

Shrivastava, Keshav N. "Specific Heat of Nanocrystals." Nano Letters 2, no. 1 (January 2002): 21–24. http://dx.doi.org/10.1021/nl010064n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Piekara-Sady, L., and J. Stankowski. "Specific heat of hexammines." Physica B: Condensed Matter 152, no. 3 (September 1988): 347–51. http://dx.doi.org/10.1016/0921-4526(88)90003-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Avramov, I., and M. Michailov. "Specific heat of nanocrystals." Journal of Physics: Condensed Matter 20, no. 29 (July 1, 2008): 295224. http://dx.doi.org/10.1088/0953-8984/20/29/295224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Grivei, E., M. Cassart, J. P. Issi, L. Langer, B. Nysten, J. P. Michenaud, C. Fabre, and A. Rassat. "Anomalous specific heat ofC60." Physical Review B 48, no. 11 (September 15, 1993): 8514–16. http://dx.doi.org/10.1103/physrevb.48.8514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Moler, Kathryn A., David L. Sisson, Jeffrey S. Urbach, Malcolm R. Beasley, Aharon Kapitulnik, David J. Baar, Ruixing Liang, and Walter N. Hardy. "Specific heat ofYBa2Cu3O7−δ." Physical Review B 55, no. 6 (February 1, 1997): 3954–65. http://dx.doi.org/10.1103/physrevb.55.3954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wosnitza, J., H. v. Löhneysen, and W. Zinn. "Specific heat of multilayers." Solid State Communications 65, no. 6 (February 1988): 509–12. http://dx.doi.org/10.1016/0038-1098(88)90444-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Romero, F. J., M. C. Gallardo, J. Jiménez, J. Del Cerro, E. K. H. Salje, and A. Gibaud. "Specific heat and latent heat of KMnF3ferroelastic crystal." Phase Transitions 68, no. 3 (April 1999): 523–31. http://dx.doi.org/10.1080/01411599908224531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hidden, Frits, Jorn Boomsma, Anton Schins, and Ed van den Berg. "Cappuccino and Specific Heat Versus Heat of Vaporization." Physics Teacher 50, no. 2 (February 2012): 103–4. http://dx.doi.org/10.1119/1.3677286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Beyermann, W. P., M. F. Hundley, J. D. Thompson, F. N. Diederich, and G. Grüner. "Low-temperature specific heat ofC60." Physical Review Letters 68, no. 13 (March 30, 1992): 2046–49. http://dx.doi.org/10.1103/physrevlett.68.2046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Procházková, K., S. Daniš, and P. Svoboda. "Specific Heat Study of PrNi4Si." Acta Physica Polonica A 113, no. 1 (January 2008): 299–302. http://dx.doi.org/10.12693/aphyspola.113.299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Falkowski, M., A. Kowalczyk, and T. Toliński. "Specific Heat of YbNi4Si Compound." Acta Physica Polonica A 113, no. 2 (February 2008): 641–44. http://dx.doi.org/10.12693/aphyspola.113.641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pietri, R., and B. Andraka. "Specific heat ofCePb3in magnetic fields." Physical Review B 62, no. 13 (October 1, 2000): 8619–21. http://dx.doi.org/10.1103/physrevb.62.8619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nahm, Kyun, Chul Koo Kim, M. Mittag, and Yoon Hee Jeong. "Specific heat of YCo12B6and GdCo12B6intermetallics." Journal of Applied Physics 78, no. 6 (September 15, 1995): 3980–82. http://dx.doi.org/10.1063/1.360747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

THAKUR, RASNA, RAJESH K. THAKUR, and N. K. GAUR. "SPECIFIC HEAT OF Tb0.5Sr0.5CoO3 CERAMICS." International Journal of Modern Physics: Conference Series 22 (January 2013): 391–96. http://dx.doi.org/10.1142/s2010194513010428.

Full text
Abstract:
We have investigated the thermal and allied properties of Tb0.5Sr0.5CoO3 for the temperature range 1K≤T≤300K using the Modified Rigid Ion Model (MRIM). The calculated bulk modulus, specific heat, and other thermodynamic properties obtained from MRIM have presented proper interpretation of the experimental data, for Sr ions doped TbCoO3 . In addition, the results on the cohesive energy (φ), Debye temperature (θD) and Gruneisen parameter (γ) are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
43

Akiba, Akira, Hitoshi Yamada, Ryuji Matsuo, Yasushi Kanke, Tetsuji Haeiwa, and Eiji Kita. "Specific Heat of NaV6O11Single Crystals." Journal of the Physical Society of Japan 67, no. 4 (April 15, 1998): 1303–5. http://dx.doi.org/10.1143/jpsj.67.1303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Andraka, B., G. Fraunberger, J. S. Kim, C. Quitmann, and G. R. Stewart. "High-field specific heat ofCeCu2Si2andCeAl3." Physical Review B 39, no. 10 (April 1, 1989): 6420–24. http://dx.doi.org/10.1103/physrevb.39.6420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lasjaunias, J. C., M. Saint-Paul, O. Laborde, O. Thomas, J. P. Sénateur, and R. Madar. "Low-temperature specific heat ofMoSi2." Physical Review B 37, no. 17 (June 15, 1988): 10364–66. http://dx.doi.org/10.1103/physrevb.37.10364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hilscher, G., N. Pillmayr, C. Schmitzer, and E. Gratz. "Specific-heat measurements ofHoxY1−xCo2." Physical Review B 37, no. 7 (March 1, 1988): 3480–88. http://dx.doi.org/10.1103/physrevb.37.3480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Malinovskaya, T. D., and V. I. Sachkov. "Specific Heat of Nanocrystalline Materials." Russian Physics Journal 46, no. 12 (December 2003): 1280–82. http://dx.doi.org/10.1023/b:rupj.0000028157.40453.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Y., C. Senatore, V. Abächerli, D. Uglietti, and R. Flükiger. "Specific heat of Nb3Sn wires." Superconductor Science and Technology 19, no. 4 (January 31, 2006): 263–66. http://dx.doi.org/10.1088/0953-2048/19/4/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fischer, Johann, Berthold Saager, Michael Bohn, Harald Oelschläger, and James M. Haile. "Specific heat of simple liquids." Molecular Physics 62, no. 5 (December 10, 1987): 1175–85. http://dx.doi.org/10.1080/00268978700102881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lawless, W. N. "Specific heat properties of KH2PO4." Ferroelectrics 71, no. 1 (January 1987): 149–60. http://dx.doi.org/10.1080/00150198708224835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography