Academic literature on the topic 'Spectral spaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spectral spaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Spectral spaces"

1

Tedd, Christopher. "Ring constructions on spectral spaces." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/ring-constructions-on-spectral-spaces(1ac96918-0515-447a-b404-f47065c0c90b).html.

Full text
Abstract:
In the paper [14] Hochster gave a topological characterisation of those spaces X which arise as the prime spectrum of a commutative ring: they are the spectral spaces, defined as those topological spaces which are T_0, quasi-compact and sober, whose quasi-compact and open subsets form a basis for the topology and are closed under finite intersections. It is well known that the prime spectrum of a ring is always spectral; Hochster proved the converse by describing a construction which, starting from such a space X, builds a ring having the desired prime spectrum; however the construction given
APA, Harvard, Vancouver, ISO, and other styles
2

Lapinski, Felicia. "Hilbert spaces and the Spectral theorem." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Blagojevic, Danilo. "Spectral families and geometry of Banach spaces." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/2389.

Full text
Abstract:
The principal objects of study in this thesis are arbitrary spectral families, E, on a complex Banach space X. The central theme is the relationship between the geometry of X and the p-variation of E. We show that provided X is super- reflexive, then given any E, there exists a value 1 · p < 1, depending only on E and X, such that var p(E) < 1. If X is uniformly smooth we provide an explicit range of such values p, which depends only on E and the modulus of convexity of X*, delta X*(.).
APA, Harvard, Vancouver, ISO, and other styles
4

Shams-Ul-Bari, Naveed. "Isospectral orbifold lens spaces." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/23981.

Full text
Abstract:
Spectral theory is the study of Mark Kac's famous question [K], "can one hear the shape of a drum?" That is, can we determine the geometrical or topological properties of a manifold by using its Laplace Spectrum? In recent years, the problem has been extended to include the study of Riemannian orbifolds within the same context. In this thesis, on the one hand, we answer Kac's question in the negative for orbifolds that are spherical space forms of dimension higher than eight. On the other hand, for the three-dimensional and four-dimensional cases, we answer Kac's question in the affirmative fo
APA, Harvard, Vancouver, ISO, and other styles
5

Linder, Kevin A. (Kevin Andrew). "Spectral multiplicity theory in nonseparable Hilbert spaces : a survey." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60478.

Full text
Abstract:
Spectral multiplicity theory solves the problem of unitary equivalence of normal operate on a Hilbert space ${ cal H}$ by associating with each normal operator N a multiplicity function, such that two operators are unitarily equivalent if and only if their multiplicity functions are equal. This problem was first solved in the classical case in which ${ cal H}$ is separable by Hellinger in 1907, and in the general case in which ${ cal H}$ is nonseparable by Wecken in 1939. This thesis develops the later versions of multiplicity theory in the nonseparable case given by Halmos and Brown, and give
APA, Harvard, Vancouver, ISO, and other styles
6

CELOTTO, DARIO. "Riesz transforms, spectral multipliers and Hardy spaces on graphs." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/118889.

Full text
Abstract:
In this thesis we consider a connected locally finite graph G that possesses the Cheeger isoperimetric property. We define a decreasing one parameter family of Hardy-type spaces associated with the standard nearest neighbour Laplacian on G. We show that the space with parameter ½ is the space of all integrable functions whose Riesz transform is integrable. We show that if G has bounded geometry and the parameter is an integer, the corresponding Hardy-type space admits an atomic decomposition. We also show that if G is a homogeneous tree and the parameter is not an integer, the corresponding Ha
APA, Harvard, Vancouver, ISO, and other styles
7

Garrisi, Daniele. "Ordinary differential equations in Banach spaces and the spectral flow." Doctoral thesis, Scuola Normale Superiore, 2008. http://hdl.handle.net/11384/85668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boulton, Lyonell. "Topics in the spectral theory of non adjoint operators." Thesis, King's College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rossi, Alfred Vincent III. "Temporal Clustering of Finite Metric Spaces and Spectral k-Clustering." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1500033042082458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghaemi, Mohammad B. "Spectral theory of linear operators." Thesis, Connect to e-thesis, 2000. http://theses.gla.ac.uk/998/.

Full text
Abstract:
Thesis (Ph.D.) - University of Glasgow, 2000.<br>Ph.D. thesis submitted to the Department of Mathematics, University of Glasgow, 2000. Includes bibliographical references. Print version also available.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!