To see the other types of publications on this topic, follow the link: Spectroscopie Raman.

Journal articles on the topic 'Spectroscopie Raman'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Spectroscopie Raman.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Luong, M. S., M. P. Luong, and L. Durand. "Spectroscopie RAMAN et eczéma." Annales de Dermatologie et de Vénéréologie 139, no. 12 (December 2012): B242—B243. http://dx.doi.org/10.1016/j.annder.2012.10.431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Felidj, Nordin. "Introduction à la spectroscopie Raman classique et à la diffusion Raman exaltée de surface." Photoniques, no. 96 (May 2019): 39–42. http://dx.doi.org/10.1051/photon/20199639.

Full text
Abstract:
Parmi les méthodes analytiques instrumentales, les techniques de spectroscopie vibrationnelle se sont imposées depuis longtemps. Elles permettent d’identifier la composition chimique de substances et de les quantifier. Parmi ces techniques, la spectroscopie Raman exploite un effet qui tient son nom d’un physicien Indien, Sir Raman, qui, le premier en 1928, mit en évidence ce phénomène (il obtint le prix Nobel pour cela en 1930).
APA, Harvard, Vancouver, ISO, and other styles
3

Boubekeur-Lecaque, Leïla, Nordin Felidj, and Marc Lamy de la Chapelle. "Comprendre. La diffusion Raman exaltée de surface." Photoniques, no. 90 (January 2018): 41–44. http://dx.doi.org/10.1051/photon/20189041.

Full text
Abstract:
La spectroscopie Raman est une spectroscopie vibrationnelle très peu sensible qui limite l’analyse d’espèces chimiques aux fortes concentrations. Néanmoins, lorsque des molécules sont placées au voisinage d’une surface métallique nanostructurée, il est possible d’exalter considérablement leur signature Raman. On parle alors de diffusion Raman exaltée de surface. Les remarquables potentialités de cette technique ont nourri de nombreux champs d’étude tant pour le design de substrats dits SERS-actifs, que pour l’exploration d’applications en médecine, pharmacologie, défense ou le monde de l’art.
APA, Harvard, Vancouver, ISO, and other styles
4

Tardivel, Morgan, Florent Colas, and Emmanuel Rinnert. "La spectroscopie Raman pour l’environnement marin." Photoniques, no. 96 (May 2019): 30–33. http://dx.doi.org/10.1051/photon/20199630.

Full text
Abstract:
L’analyse des composés chimiques est au coeur de nombreuses applications en sciences marines et environnementales : surveillance dans le cadre de la Directive cadre sur l’eau (Directive 2000/60/CE) et la Directive cadre stratégie milieu marin (2008/56/CE), études d’impact des activités industrielles marines, surveillance de l’état sanitaire des eaux et produits de la mer, études écosystémiques ou biogéochimiques...
APA, Harvard, Vancouver, ISO, and other styles
5

Luong, M. S., M. P. Luong, and L. Durand. "Spectroscopie RAMAN et nævus de Spitz." Annales de Dermatologie et de Vénéréologie 139, no. 12 (December 2012): B243—B244. http://dx.doi.org/10.1016/j.annder.2012.10.433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

HERLIN, N., M. LEFEBVRE, M. PÉALAT, and M. PARLIER. "SPECTROSCOPIE RAMAN COHÉRENTE DANS UN RÉACTEUR CVD." Le Journal de Physique Colloques 50, no. C5 (May 1989): C5–13—C5–13. http://dx.doi.org/10.1051/jphyscol:1989503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fabre, Cécile, and Bruno Bousquet. "De chemcam à supercam : L’apport de la LIBS pour le spatial." Photoniques, no. 103 (July 2020): 38–41. http://dx.doi.org/10.1051/photon/202010338.

Full text
Abstract:
Suite aux succès de l’outil ChemCam, le prochain rover martien Perseverance comprend un nouvel instrument franco-américain, SuperCam, qui couple la LIBS à la spectroscopie Raman ainsi qu’à la spectroscopie infrarouge passive. Grâce à la corrélation des données atomiques et moléculaires obtenues, SuperCam permettra de caractériser la chimie des sols et des roches et d’y rechercher des bio-signatures.
APA, Harvard, Vancouver, ISO, and other styles
8

GAMOT, A., G. VERGOTEN, and G. FLEURY. "Etude par spectroscopie raman du chlorhydrate de cocaine." Talanta 32, no. 5 (May 1985): 363–72. http://dx.doi.org/10.1016/0039-9140(85)80100-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rigneault, Hervé, and Sandro Heuke. "Comprendre les processus raman cohérents." Photoniques, no. 121 (2023): 52–56. http://dx.doi.org/10.1051/photon/202312152.

Full text
Abstract:
Nous présentons les bases physiques pour comprendre les processus Raman cohérents qui sont à l’origine de nombreuses applications en spectroscopie et en imagerie. Ces processus de mélange d’ondes sont résonnants avec les niveaux vibratoires des molécules et rapportent une information chimique sur la matière sondée par les ondes optiques. Ils se développent dans les domaines fréquentiel et spatial avec des spécificités que nous précisons.
APA, Harvard, Vancouver, ISO, and other styles
10

Gallais, Yann, Alexandr Alekhin, and Stéphanie Devineau. "Spectroscopie et imagerie raman : des matériaux quantiques à la matière vivante." Photoniques, no. 121 (2023): 31–35. http://dx.doi.org/10.1051/photon/202312131.

Full text
Abstract:
La spectroscopie Raman a déjà une longue histoire dans les études vibrationnelles des structures moléculaires et cristallines. Après une brève introduction historique, nous décrivons quelques développements récents de cette technique dans l’étude des matériaux quantiques comme les supraconducteurs. Nous abordons ensuite l’extension de cette technique à l’imagerie Raman confocale qui est maintenant devenue son application principale et que nous illustrons sur l’exemple des matériaux 2D et du vivant.
APA, Harvard, Vancouver, ISO, and other styles
11

Boujelbene, M., and T. Mhiri. "Polarized Raman Spectra of NH4Al(SO4)2⋅12H2O." International Journal of Spectroscopy 2011 (May 19, 2011): 1–6. http://dx.doi.org/10.1155/2011/128401.

Full text
Abstract:
The study by spectroscopie Raman relave to compound NH4Al(SO4)2⋅12H2O was interpreted and attributed one being based Theory of group and by comparison with others composed. The current studies of the polarised Raman spectra of NH4Al(SO4)2⋅12H2O give evidence that the disorder is indeed present in the ammonium alum. This is best manifested through the appearance of surplus bands in the spectral regions of vibrations of the sulphate anion.
APA, Harvard, Vancouver, ISO, and other styles
12

Cinotti, E., B. Labeille, J. L. Perrot, A. Boukenter, Y. Ouerdane, M. Espinasse, and F. Cambazard. "Spectroscopie RAMAN pour identifier la nature des corps étrangers." Annales de Dermatologie et de Vénéréologie 139, no. 12 (December 2012): B222—B223. http://dx.doi.org/10.1016/j.annder.2012.10.385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Saviot, L., H. Portales, E. Duval, and B. Champagnon. "Vibrations basses fréquences dans des nanomatériaux étudiés par spectroscopie Raman." Le Journal de Physique IV 10, PR8 (May 2000): Pr8–71. http://dx.doi.org/10.1051/jp4:2000809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Scherman, Michael, Joanna Barros, Rosa Santagata, Alexandre Bresson, and Brigitte Attal-Tretout. "Thermométrie Raman cohérente pour l'étude de la combustion." Photoniques, no. 96 (May 2019): 23–29. http://dx.doi.org/10.1051/photon/20199623.

Full text
Abstract:
La combustion est un sujet d’intérêt pour une large variété de domaines d’applications civils ou militaires. Comprendre les phénomènes physico-chimiques à l’oeuvre dans ces milieux complexes, et les décrire à l’aide de modèles éprouvés, sont des enjeux majeurs qui requièrent des mesures fiables et quantitatives. La spectroscopie par diffusion Raman anti-Stokes cohérente (DRASC ou CARS en anglais) a démontré des performances inégalées pour la mesure de température. Cette technique a été implémentée avec de nombreuses architectures laser, et appliquée avec succès à un large éventail de milieux.
APA, Harvard, Vancouver, ISO, and other styles
15

Felidj, Nordin. "Introduction à… La spectroscopie Raman et la diffusion exaltée de surface." Photoniques, no. 81 (April 2016): 46–49. http://dx.doi.org/10.1051/photon/20168146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bernard, M. C., A. Hugot-Le-Goff, and S. Cordoba-Torresi. "Étude par spectroscopie Raman des phénomènes de dégradation dans la polyaniline." Matériaux & Techniques 80, no. 9-10 (1992): 56–58. http://dx.doi.org/10.1051/mattech/199280090056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Courtois, Jean-Yves. "Spectroscopie Raman et Rayleigh stimulée des mélasses optiques unidimensionnelles (partie I)." Annales de Physique 21, no. 1 (1996): 1–91. http://dx.doi.org/10.1051/anphys:199601001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Courtois, Jean-Yves. "Spectroscopie Raman et Rayleigh stimulée des mélasses optiques unidimensionnelles (partie II)." Annales de Physique 21, no. 2 (1996): 93–265. http://dx.doi.org/10.1051/anphys:199602001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bergmann, Uwe, Rafaella Georgiou, Pierre Gueriau, Jean-Pascal Rueff, and Loïc Bertrand. "Nouvelles spectroscopies Raman X du carbone pour les matériaux anciens." Reflets de la physique, no. 63 (October 2019): 22–25. http://dx.doi.org/10.1051/refdp/201963022.

Full text
Abstract:
L’identification des composés à base de carbone, bien que difficile, est une source d’information essentielle dans de nombreuses études archéologiques et paléontologiques. La diffusion Raman de rayons X est une méthode de spectroscopie sur synchrotron qui permet d’identifier des signatures organiques, de retracer l’origine chimique des systèmes étudiés et de comprendre l’altération des composés organiques dans le temps. Cette technique, conduite de manière non destructive, dans l’air, avec une sensibilité en profondeur afin de fournir des informations non compromises par la contamination superficielle, surmonte ainsi plusieurs contraintes fondamentales à la caractérisation des matériaux organiques anciens.
APA, Harvard, Vancouver, ISO, and other styles
20

Herzog-Cance, Marie-Hélène, Antoine Potier, and Jacqueline Potier. "Étude, par spectroscopie de vibration, de l'autoprotolyse de l'acide nitrique absolu. Nouvelle interprétation." Canadian Journal of Chemistry 63, no. 7 (July 1, 1985): 1492–501. http://dx.doi.org/10.1139/v85-256.

Full text
Abstract:
The ir and Raman spectra of solid and liquid anhydrous HNO3 have been investigated for the purpose of solving the self-dissociation problem. Identified species are: the oligomer (HNO3), (chains), NO2+ and (NO3•3HNO3)− ions, two monohydrate forms: the ionic pair H2OH+… ONO2− and the molecular association H2O … HONO2, and, finally, some free H3O+ ions.
APA, Harvard, Vancouver, ISO, and other styles
21

Boyer, M. I., S. Quillard, G. Louarn, S. Lefrant, E. Rebourt, and A. Monkman. "Étude par spectroscopie Raman de résonance de composés modèles de la polyaniline." Journal de Chimie Physique et de Physico-Chimie Biologique 95, no. 6 (June 1998): 1461–64. http://dx.doi.org/10.1051/jcp:1998305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jacquot, Bruno, Jean-Cédric Durand, Hugues Fouquet, Hamideh Salehi, Perrine Marguet-Gaudin, Bernard Levallois, and Frédéric Cuisinier. "La spectroscopie confocale Raman en odontologie. De la recherche fondamentale aux applications cliniques." Actualités Odonto-Stomatologiques, no. 259 (September 2012): 207–18. http://dx.doi.org/10.1051/aos/2012302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Khelifi, M. "Structure cristalline, étude par DSC, spectroscopie IR et diffusion Raman du composé NH3(CH2)5NH3HgCl4." Annales de Chimie Science des Matériaux 27, no. 2 (April 2002): 37–46. http://dx.doi.org/10.1016/s0151-9107(02)80030-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Martin, J., P. Bourson, J. M. Hiver, and A. Dahoun. "Étude de l'influence des paramètres d'extrusion sur la morphologie du polypropylène isotactique par spectroscopie Raman." Matériaux & Techniques 97, no. 4 (2009): 273–81. http://dx.doi.org/10.1051/mattech/2009040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kamoun, S., M. Kamoun, A. Daoud, and F. Romain. "Etude par spectroscopie (IR et Raman) de l'éthylène diammonium bis dihydrogénomonophosphate NH3(CH2)2NH3(H2PO4)2." Spectrochimica Acta Part A: Molecular Spectroscopy 47, no. 8 (January 1991): 1051–59. http://dx.doi.org/10.1016/0584-8539(91)80035-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

BASTIANELLI, Denis, Laurent BONNAL, Philippe BARRE, Serge NABENEZA, Paulo SALGADO, and Donato ANDUEZA. "La spectrométrie dans le proche infrarouge pour la caractérisation des ressources alimentaires." INRA Productions Animales 31, no. 3 (January 18, 2019): 237–54. http://dx.doi.org/10.20870/productions-animales.2018.31.2.2330.

Full text
Abstract:
Le pilotage des systèmes d’élevage en vue d’une optimisation technique, économique et environnementale passe par une formulation des rations de plus en plus précise et nécessite donc une connaissance fine des aliments consommés par les animaux. La spectrométrie dans le proche infrarouge (SPIR), utilisée de façon croissante depuis les années 60, est une technique analytique permettant de caractériser rapidement des échantillons d’aliments ou de fourrages. Les premières applications concernaient la composition chimique des fourrages, mais il est également possible de développer des étalonnages pour une estimation de la valeur nutritive et de l’ingestion. Au-delà de ces mesures directes sur l’aliment, la SPIR peut être appliquée sur les fèces afin de caractériser l’alimentation d’animaux sur parcours. Le traitement conjoint des spectres des aliments et des fèces peut donner une vision de l’utilisation réellement faite des aliments par les animaux. D’autres utilisations possibles de la SPIR comme la traçabilité ou la classification des aliments ainsi que la reconnaissance botanique des végétaux dans les prairies sont aussi décrites. Les développements techniques actuels, et notamment la miniaturisation des spectromètres, permettent d’amener les instruments sur le terrain pour produire l’information au plus près de son utilisation. D’autres techniques spectroscopiques alternatives ou complémentaires à la SPIR comme la spectroscopie dans le moyen infrarouge, la spectroscopie Raman ou l’imagerie hyperspectrale permettront d’autres conditions de mesures et d’autres applications.
APA, Harvard, Vancouver, ISO, and other styles
27

Colomban, Philippe, Isabelle Robert, Cécile Roche, Gérard Sagon, and Véronique Milande. "Identification des porcelaines «tendres» du 18e siècle par spectroscopie Raman : Saint-Cloud, Chantilly, Mennecy et Vincennes/Sèvres." Revue d'Archéométrie 28, no. 1 (2004): 153–67. http://dx.doi.org/10.3406/arsci.2004.1070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dorado Cortez, C., M. Ayadh, L. Waszczuk, E. Cinotti, K. Vélia, J. Berset de vaufleury, and J. L. Perrot. "Combinaison de la spectroscopie confocale Raman et de la LC-OCT pour le diagnostic des maladies cutanées." Annales de Dermatologie et de Vénéréologie - FMC 4, no. 8 (December 2024): A192. http://dx.doi.org/10.1016/j.fander.2024.09.179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pradere, B., I. Lucas, D. Abi Haidar, D. Bazin, S. Doizi, M. Daudon, and O. Traxer. "Analyse par spectroscopie Raman des lithiases urinaires en milieux biologique (ARALUB) : résultats préliminaires de l’étude de faisabilité." Progrès en Urologie 27, no. 13 (November 2017): 749. http://dx.doi.org/10.1016/j.purol.2017.07.144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Berge, Marion, Laetitia minh mai Lê, Ali Tfayli, Jiangyan Zhou, Patrice Prognon, Arlette Baillet-Guffroy, and Eric Caudron. "Analyse discriminante et quantitative de 5 anti-cancéreux par spectroscopie Raman pour le contrôle de préparations en milieu hospitalier." Le Pharmacien Hospitalier et Clinicien 52, no. 4 (December 2017): 393–94. http://dx.doi.org/10.1016/j.phclin.2017.10.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tabard, A., G. Lagrange, R. Guilard, M. Jouan, and N. Q. Dao. "Etude par spectroscopie raman de resonance du schema de coordination du fer de derives ferriporphyriniques a liaison σ metal-carbone." Journal of Organometallic Chemistry 308, no. 3 (July 1986): 335–44. http://dx.doi.org/10.1016/s0022-328x(00)99732-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lorösch, Jürgen, Wolfgang Haase, and Pham V. Huong. "Resonance Raman spectroscopie investigations on phenolate bridged binuclear Cu(II) complexes: A basis for the identification of the endogenous bridging." Journal of Inorganic Biochemistry 27, no. 1 (May 1986): 53–63. http://dx.doi.org/10.1016/0162-0134(86)80108-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chaussard, F., N. Le Cong, B. Lavorel, V. Renard, O. Faucher, H. Tran, P. Joubert, and L. Bonamy. "Spectroscopie Raman Anti-Stokes Cohérente femtoseconde (DRASC – fs) : expériences et modélisation dans le cas du mélange H2 – N2 à basse pression." Journal de Physique IV (Proceedings) 135, no. 1 (October 2006): 155–56. http://dx.doi.org/10.1051/jp4:2006135038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Niemczyk, T. M., M. Delgado-Lopez, F. S. Allen, J. T. Clay, and D. L. Arneberg. "Quantitative Assay of Bucindolol in Gel Capsules Using Infrared and Raman Spectroscopy." Applied Spectroscopy 52, no. 4 (April 1998): 513–18. http://dx.doi.org/10.1366/0003702981944049.

Full text
Abstract:
The methods most commonly employed to determine active ingredient content in solid drug formulations involve dissolution of the sample. While these methods are capable of accurate and precise performance, the sample preparation required limits their use in quality-control applications to an occasional sample. There is a need for nondestructive methods capable of rapidly determining the active ingredient content in drug formulations. Spectroscopic methods of analysis have the potential for making the determinations with little or no sample preparation; hence these methods might be applied as at-line product quality monitors. We have investigated the use of diffuse reflectance infrared and Raman spectroscopies for the determination of bucindolol content in solid drug formulations. In experiments on formulations containing 0 to 100 mg of the active ingredient, the standard error of prediction with the use of either spectroscopic method was about 2.0 mg. The Raman spectroscopic method involved virtually no sample preparation, and the spectroscopic data can be collected rapidly; hence Raman spectroscopy shows very good potential as an at-line quality control monitor.
APA, Harvard, Vancouver, ISO, and other styles
35

Amin, A., C. Merlette, F. Vidal, P. Troude, O. Corriol, and P. Bourget. "La spectroscopie Raman appliquée au contrôle de qualité analytique des médicaments injectables : évaluation technique et économique versus CLHP et UV/visible-IRTF." Le Pharmacien Hospitalier et Clinicien 49, no. 2 (June 2014): e23. http://dx.doi.org/10.1016/j.phclin.2014.04.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Maissara, M., and J. Devaure. "Étude par spectroscopie Raman de l'influence de la solubilisation de gaz sous haute pression sur les équilibres conformationnels de quelques alcanes normaux." Journal de Chimie Physique 82 (1985): 565–69. http://dx.doi.org/10.1051/jcp/1985820565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Guillaume, François, Michel Perrot, and Jean Lascombe. "Étude par spectroscopie de diffusion raman de la relaxation vibrationnelle de l'ion nitrate en solution aqueuse dans les états liquides et vitreux." Journal de Chimie Physique 82 (1985): 949–56. http://dx.doi.org/10.1051/jcp/1985820949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Dzurendová, Simona, Volha Shapaval, Valeria Tafintseva, Achim Kohler, Dana Byrtusová, Martin Szotkowski, Ivana Márová, and Boris Zimmermann. "Assessment of Biotechnologically Important Filamentous Fungal Biomass by Fourier Transform Raman Spectroscopy." International Journal of Molecular Sciences 22, no. 13 (June 23, 2021): 6710. http://dx.doi.org/10.3390/ijms22136710.

Full text
Abstract:
Oleaginous filamentous fungi can accumulate large amount of cellular lipids and biopolymers and pigments and potentially serve as a major source of biochemicals for food, feed, chemical, pharmaceutical, and transport industries. We assessed suitability of Fourier transform (FT) Raman spectroscopy for screening and process monitoring of filamentous fungi in biotechnology. Six Mucoromycota strains were cultivated in microbioreactors under six growth conditions (three phosphate concentrations in the presence and absence of calcium). FT-Raman and FT-infrared (FTIR) spectroscopic data was assessed in respect to reference analyses of lipids, phosphorus, and carotenoids by using principal component analysis (PCA), multiblock or consensus PCA, partial least square regression (PLSR), and analysis of spectral variation due to different design factors by an ANOVA model. All main chemical biomass constituents were detected by FT-Raman spectroscopy, including lipids, proteins, cell wall carbohydrates, and polyphosphates, and carotenoids. FT-Raman spectra clearly show the effect of growth conditions on fungal biomass. PLSR models with high coefficients of determination (0.83–0.94) and low error (approximately 8%) for quantitative determination of total lipids, phosphates, and carotenoids were established. FT-Raman spectroscopy showed great potential for chemical analysis of biomass of oleaginous filamentous fungi. The study demonstrates that FT-Raman and FTIR spectroscopies provide complementary information on main fungal biomass constituents.
APA, Harvard, Vancouver, ISO, and other styles
39

Petersen, Marlen, Zhilong Yu, and Xiaonan Lu. "Application of Raman Spectroscopic Methods in Food Safety: A Review." Biosensors 11, no. 6 (June 8, 2021): 187. http://dx.doi.org/10.3390/bios11060187.

Full text
Abstract:
Food detection technologies play a vital role in ensuring food safety in the supply chains. Conventional food detection methods for biological, chemical, and physical contaminants are labor-intensive, expensive, time-consuming, and often alter the food samples. These limitations drive the need of the food industry for developing more practical food detection tools that can detect contaminants of all three classes. Raman spectroscopy can offer widespread food safety assessment in a non-destructive, ease-to-operate, sensitive, and rapid manner. Recent advances of Raman spectroscopic methods further improve the detection capabilities of food contaminants, which largely boosts its applications in food safety. In this review, we introduce the basic principles of Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and micro-Raman spectroscopy and imaging; summarize the recent progress to detect biological, chemical, and physical hazards in foods; and discuss the limitations and future perspectives of Raman spectroscopic methods for food safety surveillance. This review is aimed to emphasize potential opportunities for applying Raman spectroscopic methods as a promising technique for food safety detection.
APA, Harvard, Vancouver, ISO, and other styles
40

Sahu, Sumit Ranjan, Mayanglambam Manolata Devi, Puspal Mukherjee, Pratik Sen, and Krishanu Biswas. "Optical Property Characterization of Novel Graphene-X (X=Ag, Au and Cu) Nanoparticle Hybrids." Journal of Nanomaterials 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/232409.

Full text
Abstract:
The present investigation reports new results on optical properties of graphene-metal nanocomposites. These composites were prepared by a solution-based chemical approach. Graphene has been prepared by thermal reduction of graphene oxide (GO) at 90°C by hydrazine hydrate in an ammoniacal medium. This ammoniacal solution acts as a solvent as well as a basic medium where agglomeration of graphene can be prevented. This graphene solution has further been used for functionalization with Ag, Au, and Cu nanoparticles (NPs). The samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, UV-Vis spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to reveal the nature and type of interaction of metal nanoparticles with graphene. The results indicate distinct shift of graphene bands both in Raman and UV-Vis spectroscopies due to the presence of the metal nanoparticles. Raman spectroscopic analysis indicates blue shift of D and G bands in Raman spectra of graphene due to the presence of metal nanoparticles except for the G band of Cu-G, which undergoes red shift, reflecting the charge transfer interaction between graphene sheets and metal nanoparticles. UV-Vis spectroscopic analysis also indicates blue shift of graphene absorption peak in the hybrids. The plasmon peak position undergoes blue shift in Ag-G, whereas red shift is observed in Au-G and Cu-G.
APA, Harvard, Vancouver, ISO, and other styles
41

Anderson, T. Anthony, Jeon Woong Kang, Tatyana Gubin, Ramachandra R. Dasari, and Peter T. C. So. "Raman Spectroscopy Differentiates Each Tissue from the Skin to the Spinal Cord." Anesthesiology 125, no. 4 (October 1, 2016): 793–804. http://dx.doi.org/10.1097/aln.0000000000001249.

Full text
Abstract:
Abstract Background Neuraxial anesthesia and epidural steroid injection techniques require precise anatomical targeting to ensure successful and safe analgesia. Previous studies suggest that only some of the tissues encountered during these procedures can be identified by spectroscopic methods, and no previous study has investigated the use of Raman, diffuse reflectance, and fluorescence spectroscopies. The authors hypothesized that real-time needle-tip spectroscopy may aid epidural needle placement and tested the ability of spectroscopy to distinguish each of the tissues in the path of neuraxial needles. Methods For comparison of detection methods, the spectra of individual, dissected ex vivo paravertebral and neuraxial porcine tissues were collected using Raman spectroscopy (RS), diffuse reflectance spectroscopy, and fluorescence spectroscopy. Real-time spectral guidance was tested using a 2-mm inner-diameter fiber-optic probe-in-needle device. Raman spectra were collected during the needle’s passage through intact paravertebral and neuraxial porcine tissue and analyzed afterward. The RS tissue signatures were verified as mapping to individual tissue layers using histochemical staining and widefield microscopy. Results RS revealed a unique spectrum for all ex vivo paravertebral and neuraxial tissue layers; diffuse reflectance spectroscopy and fluorescence spectroscopy were not distinct for all tissues. Moreover, when accounting for the expected order of tissues, real-time Raman spectra recorded during needle insertion also permitted identification of each paravertebral and neuraxial porcine tissue. Conclusions This study demonstrates that RS can distinguish the tissues encountered during epidural needle insertion. This technology may prove useful during needle placement by providing evidence of its anatomical localization.
APA, Harvard, Vancouver, ISO, and other styles
42

Frosch, Timea, Andreas Knebl, and Torsten Frosch. "Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy." Nanophotonics 9, no. 1 (December 9, 2019): 19–37. http://dx.doi.org/10.1515/nanoph-2019-0401.

Full text
Abstract:
AbstractInnovations in Raman spectroscopic techniques provide a potential solution to current problems in pharmaceutical drug monitoring. This review aims to summarize the recent advances in the field. The developments of novel plasmonic nanoparticles continuously push the limits of Raman spectroscopic detection. In surface-enhanced Raman spectroscopy (SERS), these particles are used for the strong local enhancement of Raman signals from pharmaceutical drugs. SERS is increasingly applied for forensic trace detection and for therapeutic drug monitoring. In combination with spatially offset Raman spectroscopy, further application fields could be addressed, e.g. in situ pharmaceutical quality testing through the packaging. Raman optical activity, which enables the thorough analysis of specific chiral properties of drugs, can also be combined with SERS for signal enhancement. Besides SERS, micro- and nano-structured optical hollow fibers enable a versatile approach for Raman signal enhancement of pharmaceuticals. Within the fiber, the volume of interaction between drug molecules and laser light is increased compared with conventional methods. Advances in fiber-enhanced Raman spectroscopy point at the high potential for continuous online drug monitoring in clinical therapeutic diagnosis. Furthermore, fiber-array based non-invasive Raman spectroscopic chemical imaging of tablets might find application in the detection of substandard and counterfeit drugs. The discussed techniques are promising and might soon find widespread application for the detection and monitoring of drugs in various fields.
APA, Harvard, Vancouver, ISO, and other styles
43

Hu, Kaiyue, Luigi Brambilla, Patrizia Sartori, Claudia Moscheni, Cristiana Perrotta, Lucia Zema, Chiara Bertarelli, and Chiara Castiglioni. "Development of Tailored Graphene Nanoparticles: Preparation, Sorting and Structure Assessment by Complementary Techniques." Molecules 28, no. 2 (January 5, 2023): 565. http://dx.doi.org/10.3390/molecules28020565.

Full text
Abstract:
We present a thorough structural characterization of Graphene Nano Particles (GNPs) prepared by means of physical procedures, i.e., ball milling and ultra-sonication of high-purity synthetic graphite. UV-vis absorption/extinction spectroscopy, Dynamic Light Scattering, Transmission Electron Microscopy, IR and Raman spectroscopies were performed. Particles with small size were obtained, with an average lateral size <L> = 70–120 nm, formed by few <N> = 1–10 stacked layers, and with a small number of carboxylic groups on the edges. GNPs relatively more functionalized were separated by centrifugation, which formed stable water dispersions without the need for any surfactant. A critical reading and unified interpretation of a wide set of spectroscopic data was provided, which demonstrated the potential of Specular Reflectance Infrared Spectroscopy for the diagnosis and quantification of chemical functionalization of GNPs. Raman parameters commonly adopted for the characterization of graphitic materials do not always follow a monotonic trend, e.g., with the particle size and shape, thus unveiling some limitations of the available spectroscopic metrics. This issue was overcome thanks to a comparative spectra analysis, including spectra deconvolution by means of curve fitting procedures, experiments on reference materials and the exploitation of complementary characterization techniques.
APA, Harvard, Vancouver, ISO, and other styles
44

Pchelkina, V. A., I. M. Chernukha, L. V. Fedulova, and N. A. Ilyin. "Raman spectroscopic techniques for meat analysis: A review." Theory and practice of meat processing 7, no. 2 (July 24, 2022): 97–111. http://dx.doi.org/10.21323/2414-438x-2022-7-2-97-111.

Full text
Abstract:
Raman spectroscopy (vibrational spectroscopy) proved to be an effective analytical approach in the field of geology, semiconductors, materials and polymers. Over the past decade, Raman spectroscopy has attracted the attention of researchers as a non-destructive, highly sensitive, fast and eco-friendly method and has demonstrated the unique capabilities of food analysis. The use of Raman spectroscopic methods (RSMs) to assess the quality of meat and finished products is rapidly expanding. From the analysis of one sample, you can get a large amount of information about the structure of proteins, the composition of fatty acids, organoleptic parameters, autolysis and spoilage indicators, authentication of raw materials, technological properties. An important advantage of the method is the comparability of the results obtained with the data of traditional analytical methods. Traditional methods of determining the quality of meat are often time-consuming, expensive and lead to irreversible damage to a sample. It is difficult to use them in production conditions directly on the meat processing lines. Technological advances have made it possible to develop portable Raman spectroscopes to use directly in production. The article presents the basic principles of Raman spectroscopy, system atizes the results of the use of RSMs for the analysis of meat quality from different types of slaughter animals and provides tools for analyzing the data of the obtained spectra. Raman spectra have many dependent variables, so chemometric assays are used to work with them. Literature analysis has shown that currently there is no unified database of meat spectra in the world, standardized protocols for conducting research and processing the obtained results. In Russia, the use of RSMs is a new,
APA, Harvard, Vancouver, ISO, and other styles
45

Wilkosz, Natalia, Michał Czaja, Sara Seweryn, Katarzyna Skirlińska-Nosek, Marek Szymonski, Ewelina Lipiec, and Kamila Sofińska. "Molecular Spectroscopic Markers of Abnormal Protein Aggregation." Molecules 25, no. 11 (May 27, 2020): 2498. http://dx.doi.org/10.3390/molecules25112498.

Full text
Abstract:
Abnormal protein aggregation has been intensively studied for over 40 years and broadly discussed in the literature due to its significant role in neurodegenerative diseases etiology. Structural reorganization and conformational changes of the secondary structure upon the aggregation determine aggregation pathways and cytotoxicity of the aggregates, and therefore, numerous analytical techniques are employed for a deep investigation into the secondary structure of abnormal protein aggregates. Molecular spectroscopies, including Raman and infrared ones, are routinely applied in such studies. Recently, the nanoscale spatial resolution of tip-enhanced Raman and infrared nanospectroscopies, as well as the high sensitivity of the surface-enhanced Raman spectroscopy, have brought new insights into our knowledge of abnormal protein aggregation. In this review, we order and summarize all nano- and micro-spectroscopic marker bands related to abnormal aggregation. Each part presents the physical principles of each particular spectroscopic technique listed above and a concise description of all spectral markers detected with these techniques in the spectra of neurodegenerative proteins and their model systems. Finally, a section concerning the application of multivariate data analysis for extraction of the spectral marker bands is included.
APA, Harvard, Vancouver, ISO, and other styles
46

Polisetti, Sneha, Amber N. Bible, Jennifer L. Morrell-Falvey, and Paul W. Bohn. "Raman chemical imaging of the rhizosphere bacterium Pantoea sp. YR343 and its co-culture with Arabidopsis thaliana." Analyst 141, no. 7 (2016): 2175–82. http://dx.doi.org/10.1039/c6an00080k.

Full text
Abstract:
Raman micro-spectroscopy and confocal Raman imaging are used to study the rhizosphere bacterial isolate, Pantoea sp. YR343, and its co-culture with model plant Arabidopsis thaliana by combining enhanced Raman spectroscopies with electron microscopy and principal component analysis.
APA, Harvard, Vancouver, ISO, and other styles
47

Marques, M. P. M., and L. A. E. Batista de Carvalho. "Vibrational spectroscopy studies on linear polyamines." Biochemical Society Transactions 35, no. 2 (March 20, 2007): 374–80. http://dx.doi.org/10.1042/bst0350374.

Full text
Abstract:
Vibrational spectroscopy [both Raman and INS (inelastic neutron scattering)], coupled to quantum mechanical calculations, was used in order to perform a thorough structural analysis of linear polyamines and polynuclear polyamine metal chelates [e.g. with Pt(II) and Pd(II)] with potential anticancer activity. The complementarity of the Raman and INS spectroscopies was exploited in order to gain a better knowledge of the conformational behaviour of these systems. Moreover, the conjugation of the experimental spectroscopic data to the theoretical results allows us to obtain valuable information on the structural preferences of this kind of system, which may lead to the establishment of SARs (structure–activity relationships) ruling their biological activity. Some of the most significant results obtained by the ‘Molecular Physical-Chemistry’ Research Group of the University of Coimbra (Portugal) are reviewed here.
APA, Harvard, Vancouver, ISO, and other styles
48

Kim, Hyung Hun. "Endoscopic Raman Spectroscopy for Molecular Fingerprinting of Gastric Cancer: Principle to Implementation." BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/670121.

Full text
Abstract:
Currently, positive endoscopic biopsy is the standard criterion for gastric cancer diagnosis but is invasive, often inconsistent, and delayed although early detection and early treatment is the most important policy. Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light. Raman spectrum represents molecular composition of the interrogated volume providing a direct molecular fingerprint. Several investigations revealed that Raman spectroscopy can differentiate normal, dysplastic, and adenocarcinoma gastric tissue with high sensitivity and specificity. Moreover, this technique can indentify malignant ulcer and showed the capability to analyze the carcinogenesis process. Automated on-line Raman spectral diagnostic system raised possibility to use Raman spectroscopy in clinical field. Raman spectroscopy can be applied in many fields such as guiding a target biopsy, optical biopsy in bleeding prone situation, and delineating the margin of the lesion. With wide field technology, Raman spectroscopy is expected to have specific role in our future clinical field.
APA, Harvard, Vancouver, ISO, and other styles
49

Carpentier, Philippe, Antoine Royant, Jérémy Ohana, and Dominique Bourgeois. "Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy." Journal of Applied Crystallography 40, no. 6 (November 10, 2007): 1113–22. http://dx.doi.org/10.1107/s0021889807044202.

Full text
Abstract:
A Raman microspectrophotometer is described that allows the spectroscopic investigation of protein crystals under exactly the same conditions as those used for X-ray data collection. The concept is based on the integration of the Raman excitation/collection optics into a microspectrophotometer built around a single-axis diffractometer and a cooling device. It is shown that Raman spectra of outstanding quality can be recorded from crystallized macromolecules under non-resonant conditions. It is proposed that equipment developed in the context of macromolecular cryocrystallography, such as commonly used cryoloops, can be advantageously used to improve the quality of Raman spectra. In a few examples, it is shown that Raman microspectrophotometry provides crucial complementary information to X-ray crystallography,e.g.identifying the chemical nature of unknown features discovered in electron-density maps, or following ligand-binding kinetics in biological crystals. The feasibility of `online' Raman measurements performed directly on the ESRF macromolecular crystallography beamlines has been investigated and constitutes a promising perspective for the routine implementation of combined spectroscopic and crystallographic methods.In crystalloRaman spectroscopy efficiently complements absorption/fluorescence microspectrophotometry for the study of biological crystals and opens up new avenues for difficult structural projects with mechanistic perspectives in the field of protein crystallography.
APA, Harvard, Vancouver, ISO, and other styles
50

Shaikh, Rubina, Valeria Tafintseva, Ervin Nippolainen, Vesa Virtanen, Johanne Solheim, Boris Zimmermann, Simo Saarakkala, Juha Töyräs, Achim Kohler, and Isaac O. Afara. "Characterisation of Cartilage Damage via Fusing Mid-Infrared, Near-Infrared, and Raman Spectroscopic Data." Journal of Personalized Medicine 13, no. 7 (June 24, 2023): 1036. http://dx.doi.org/10.3390/jpm13071036.

Full text
Abstract:
Mid-infrared spectroscopy (MIR), near-infrared spectroscopy (NIR), and Raman spectroscopy are all well-established analytical techniques in biomedical applications. Since they provide complementary chemical information, we aimed to determine whether combining them amplifies their strengths and mitigates their weaknesses. This study investigates the feasibility of the fusion of MIR, NIR, and Raman spectroscopic data for characterising articular cartilage integrity. Osteochondral specimens from bovine patellae were subjected to mechanical and enzymatic damage, and then MIR, NIR, and Raman data were acquired from the damaged and control specimens. We assessed the capacity of individual spectroscopic methods to classify the samples into damage or control groups using Partial Least Squares Discriminant Analysis (PLS-DA). Multi-block PLS-DA was carried out to assess the potential of data fusion by combining the dataset by applying two-block (MIR and NIR, MIR and Raman, NIR and Raman) and three-block approaches (MIR, NIR, and Raman). The results of the one-block models show a higher classification accuracy for NIR (93%) and MIR (92%) than for Raman (76%) spectroscopy. In contrast, we observed the highest classification efficiency of 94% and 93% for the two-block (MIR and NIR) and three-block models, respectively. The detailed correlative analysis of the spectral features contributing to the discrimination in the three-block models adds considerably more insight into the molecular origin of cartilage damage.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography