Journal articles on the topic 'Spent catalytic cracking catalyst'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Spent catalytic cracking catalyst.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Chuansheng, Xiaolong Tian, Baishun Zhao, Lin Zhu, and Shaoming Li. "Experimental Study on Spent FCC Catalysts for the Catalytic Cracking Process of Waste Tires." Processes 7, no. 6 (2019): 335. http://dx.doi.org/10.3390/pr7060335.
Full textSun, D., X. Z. Li, M. Brungs, and D. Trimm. "Encapsulation of heavy metals on spent fluid catalytic cracking catalyst." Water Science and Technology 38, no. 4-5 (1998): 211–17. http://dx.doi.org/10.2166/wst.1998.0625.
Full textFu, Haihui, Yan Chen, Tingting Liu, Xuemei Zhu, Yufei Yang, and Haitao Song. "Research on Hazardous Waste Removal Management: Identification of the Hazardous Characteristics of Fluid Catalytic Cracking Spent Catalysts." Molecules 26, no. 8 (2021): 2289. http://dx.doi.org/10.3390/molecules26082289.
Full textNasution, A. S., and E. Jasjfi. "THE MANAGEMENT OF SPENT CATALYST IN RCC/FCC UNITS IN ASEAN REFINERIES." Scientific Contributions Oil and Gas 28, no. 3 (2022): 10–15. http://dx.doi.org/10.29017/scog.28.3.1041.
Full textMusa, Mohd Lukman, Ramli Mat, and Tuan Amran Tuan Abdullah. "Catalytic Conversion of Residual Palm Oil in Spent Bleaching Earth (SBE) By HZSM-5 Zeolite based-Catalysts." Bulletin of Chemical Reaction Engineering & Catalysis 13, no. 3 (2018): 456. http://dx.doi.org/10.9767/bcrec.13.3.1929.456-465.
Full textAl-Zubaidi, Isam, and Congning Yang. "Waste Management of Spent Petroleum Refinery Catalyst." European Journal of Engineering Research and Science 5, no. 8 (2020): 938–47. http://dx.doi.org/10.24018/ejers.2020.5.8.1929.
Full textAl-Zubaidi, Isam, and Congning Yang. "Waste Management of Spent Petroleum Refinery Catalyst." European Journal of Engineering and Technology Research 5, no. 8 (2020): 938–47. http://dx.doi.org/10.24018/ejeng.2020.5.8.1929.
Full textIstadi, Istadi, Luqman Buchori, Didi Dwi Anggoro, et al. "Effects of Ion Exchange Process on Catalyst Activity and Plasma-Assisted Reactor Toward Cracking of Palm Oil into Biofuels." Bulletin of Chemical Reaction Engineering & Catalysis 14, no. 2 (2019): 459. http://dx.doi.org/10.9767/bcrec.14.2.4257.459-467.
Full textWang, Guangjian, Kai Lu, Chaoqun Yin та ін. "One-Step Fabrication of PtSn/γ-Al2O3 Catalysts with La Post-Modification for Propane Dehydrogenation". Catalysts 10, № 9 (2020): 1042. http://dx.doi.org/10.3390/catal10091042.
Full textChen, Xiaopeng, Lu Ren, Muhammad Yaseen, et al. "Synthesis, characterization and activity performance of nickel-loaded spent FCC catalyst for pine gum hydrogenation." RSC Advances 9, no. 12 (2019): 6515–25. http://dx.doi.org/10.1039/c8ra07943a.
Full textJanowska-Renkas, Elżbieta, Michał Cisiński, and Paweł Niewiadomski. "The possibility of partial substitution of cement in cement mortars with the use of spent fluid catalytic cracking catalyst from polish oil refinery: mechanical performances and impact of the addition of superplasticizer." Inżynieria i Budownictwo LXXX, no. 4 (2024): 202–6. http://dx.doi.org/10.5604/01.3001.0054.6405.
Full textNiewiadomski, Paweł, Elżbieta Janowska-Renkas, and Michał Cisiński. "The impact of spent fluid catalytic cracking catalyst on the selected mechanical and physical performances of cement mortars." Inżynieria i Budownictwo LXXX, no. 6 (2024): 431–34. http://dx.doi.org/10.5604/01.3001.0054.7483.
Full textRahmawati, Rahmawati, Hutwan Syarifuddin, and Nazarudin Nazarudin. "Processing Mixture Of Polyethylene Terephthalate (PET) Plastic Waste and Oil Palm Empty Fruit Bunches by The Cracking Method." Jurnal Pembangunan Berkelanjutan 5, no. 2 (2022): 11–20. http://dx.doi.org/10.22437/jpb.v5i2.19852.
Full textFerella, Francesco, Simona Leone, Valentina Innocenzi, Ida De Michelis, Giuliana Taglieri, and Katia Gallucci. "Synthesis of zeolites from spent fluid catalytic cracking catalyst." Journal of Cleaner Production 230 (September 2019): 910–26. http://dx.doi.org/10.1016/j.jclepro.2019.05.175.
Full textNazarova, Galina Y., Elena N. Ivashkina, Emiliya D. Ivanchina, and Maria Y. Mezhova. "A Model of Catalytic Cracking: Catalyst Deactivation Induced by Feedstock and Process Variables." Catalysts 12, no. 1 (2022): 98. http://dx.doi.org/10.3390/catal12010098.
Full textMadeti, Madhavi, Sharad V. Lande, Kalpana G, R. K. Mewada, and R. V. Jasra. "A Green Approach." International Journal of Green Nanotechnology 1 (January 1, 2013): 194308921350702. http://dx.doi.org/10.1177/1943089213507024.
Full textZhao, Baishun, Chuansheng Wang, and Huiguang Bian. "A “Wastes-Treat-Wastes” Technology: Role and Potential of Spent Fluid Catalytic Cracking Catalysts Assisted Pyrolysis of Discarded Car Tires." Polymers 13, no. 16 (2021): 2732. http://dx.doi.org/10.3390/polym13162732.
Full textKosa, Samia A., and Eman Z. Hegazy. "Extraction of Nanosized Cobalt Sulfide from Spent Hydrocracking Catalyst." Journal of Nanomaterials 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/471210.
Full textLeonel, Raquel Folmann, Renata B. G. Valt, L. Godoi, M. J. J. S. Ponte, and Haroldo A. Ponte. "Efeito da aplicação da eletrorremediação na estrutura e nos contaminantes de catalisador desativado. Avaliação por técnicas de RMN, RPE, DRX e FRX." Eclética Química Journal 40, no. 1 (2015): 86. http://dx.doi.org/10.26850/1678-4618eqj.v40.1.2015.p86-94.
Full textTorres Castellanos, Nancy, and Janneth Torres Agredo. "Using spent fluid catalytic cracking (FCC) catalyst as pozzolanic addition - a review." Ingeniería e Investigación 30, no. 2 (2010): 35–42. http://dx.doi.org/10.15446/ing.investig.v30n2.15728.
Full textShan, Tilun, Huiguang Bian, Donglin Zhu, Kongshuo Wang, Chuansheng Wang, and Xiaolong Tian. "Study on the Mechanism and Experiment of Styrene Butadiene Rubber Reinforcement by Spent Fluid Catalytic Cracking Catalyst." Polymers 15, no. 4 (2023): 1000. http://dx.doi.org/10.3390/polym15041000.
Full textGarcés, Pedro, Fred P. Glasser, Daniel R. M. Brew, Emilio Zornoza, and Jordi Payá. "Pozzolanic activity of a spent fluid catalytic cracking catalyst residue." Advances in Cement Research 23, no. 3 (2011): 105–11. http://dx.doi.org/10.1680/adcr.9.00036.
Full textAung, Khin Moh Moh, and Yen-Peng Ting. "Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger." Journal of Biotechnology 116, no. 2 (2005): 159–70. http://dx.doi.org/10.1016/j.jbiotec.2004.10.008.
Full textZakariyaou, Seybou Yacouba, Hua Ye, Abdoulaye Dan Makaou Oumarou, Mamane Souley Abdoul Aziz, and Shixian Ke. "Characterization of Equilibrium Catalysts from the Fluid Catalytic Cracking Process of Atmospheric Residue." Catalysts 13, no. 12 (2023): 1483. http://dx.doi.org/10.3390/catal13121483.
Full textTran, Huu Thinh, Nguyen Le-Phuc, Nhat Huy Nguyen, et al. "Green biofuel production via cracking process of waste cooking oil using spent fluid catalytic cracking (SFCC) catalyst." Vietnam Journal of Catalysis and Adsorption 11, no. 1 (2021): 79–87. http://dx.doi.org/10.51316/jca.2022.012.
Full textZheng, Dalong, Yimin Zhang, Tao Liu, Jing Huang, Zhenlei Cai, and Ruobing Zhang. "Selective Leaching of Valuable Metals from Spent Fluid Catalytic Cracking Catalyst with Oxalic Acid." Minerals 12, no. 6 (2022): 748. http://dx.doi.org/10.3390/min12060748.
Full textHuseynova, G. A., G. A. Gasimova, N. M. Aliyeva, and S. N. Osmanova. "Technological Features of Producing High-Index Oils in the Alkylation Process." Eurasian Chemico-Technological Journal 27, no. 2 (2025): 149–58. https://doi.org/10.18321/ectj1662.
Full textKhabib, Imam, Sri Kadarwati, and Sri Wahyuni. "Deactivation and Regeneration of Ni/ZA Catalyst in Hydrocracking of Polypropylene." Indonesian Journal of Chemistry 14, no. 2 (2014): 192–98. http://dx.doi.org/10.22146/ijc.21258.
Full textRijo, Bruna, Ana Paula Soares Dias, Nicole de Jesus, and Manuel Francisco Pereira. "Home Trash Biomass Valorization by Catalytic Pyrolysis." Environments 10, no. 10 (2023): 186. http://dx.doi.org/10.3390/environments10100186.
Full textFals, Jayson, Esneyder Puello-Polo, and Edgar Márquez. "Effect of Residual Cuts on Deactivation of Hierarchical Y Zeolite-Based Catalysts during Co-Processing of Vacuum Gas Oil (VGO) with Atmospheric Residue (ATR)." Molecules 29, no. 19 (2024): 4753. http://dx.doi.org/10.3390/molecules29194753.
Full textArsyad, Rudi. "ANALISIS VARIASI PERENDAMAN SPENT CATALYST RCC (LIMBAH PERTAMINA) SEBAGAI FILLER PADA CAMPURAN ASPAL PANAS AC-WC." Gorontalo Journal of Infrastructure and Science Engineering 3, no. 1 (2020): 15. http://dx.doi.org/10.32662/gojise.v3i1.833.
Full textIstadi, I., Teguh Riyanto, Luqman Buchori, Didi Dwi Anggoro, Roni Ade Saputra, and Theobroma Guntur Muhamad. "Effect of Temperature on Plasma-Assisted Catalytic Cracking of Palm Oil into Biofuels." International Journal of Renewable Energy Development 9, no. 1 (2020): 107–12. http://dx.doi.org/10.14710/ijred.9.1.107-112.
Full textOloruntoba, Adefarati, Yongmin Zhang, and Chang Samuel Hsu. "State-of-the-Art Review of Fluid Catalytic Cracking (FCC) Catalyst Regeneration Intensification Technologies." Energies 15, no. 6 (2022): 2061. http://dx.doi.org/10.3390/en15062061.
Full textGong, Jing. "Study on Spent Lubricating Oil from Catalytic Cracking of Al/SO42-/AL-MCM-41 Molecular Sieve." Journal of Physics: Conference Series 2463, no. 1 (2023): 012048. http://dx.doi.org/10.1088/1742-6596/2463/1/012048.
Full textLIU, Xinmei, Haining LIANG, Liang LI, Tingting YANG, and Zifeng YAN. "Preparation of Ultrafine Y Zeolite from Spent Fluid Catalytic Cracking Catalyst Powders." CHINESE JOURNAL OF CATALYSIS (CHINESE VERSION) 31, no. 7 (2010): 833–38. http://dx.doi.org/10.3724/sp.j.1088.2010.91245.
Full textRuiz, G., R. Aguilar, J. Nakamatsu, and S. Kim. "Synthesis of a Geopolymer Binders Using Spent Fluid Catalytic Cracking (FCC) Catalyst." IOP Conference Series: Materials Science and Engineering 660 (December 4, 2019): 012009. http://dx.doi.org/10.1088/1757-899x/660/1/012009.
Full textDas, Sutapa, Narendra Naik Deshavath, V. V. Goud, and V. Venkata Dasu. "Bioleaching of Al from spent fluid catalytic cracking catalyst using Aspergillus species." Biotechnology Reports 23 (September 2019): e00349. http://dx.doi.org/10.1016/j.btre.2019.e00349.
Full textDOKUCHAEV, I. S., M. MAXIMOV N., and A. TYSHCHENKO V. "INVESTIGATION OF THE TRANSFORMATION OF MODEL PETROLEUM RAW MATERIALS UNDER CRACKING CONDITIONS OVER A REGENERATED SPENT HYDROTREATMENT CATALYST." Chemistry for Sustainable Development 32, no. 1 (2024): 24–31. http://dx.doi.org/10.15372/csd2024526.
Full textSong, Kyoung Ho, Soon Kwan Jeong, Byung Hun Jeong, Kwan-Young Lee, and Hak Joo Kim. "Effect of the Ni/Al Ratio on the Performance of NiAl2O4 Spinel-Based Catalysts for Supercritical Methylcyclohexane Catalytic Cracking." Catalysts 11, no. 3 (2021): 323. http://dx.doi.org/10.3390/catal11030323.
Full textIrawan, Rahmat Aldi, and Annasit Annasit. "Optimasi Regenerator 15R-103/104 Dengan Variasi Water Supply Pada Catalys Cooler System di Residue Catalityc Cracker Unit PT. AAA." Indonesian Journal of Energy and Mineral 3, no. 2 (2023): 97–115. http://dx.doi.org/10.53026/ijoem/2023/3.2/1160.
Full textLow, Ching Wei, Andrei Veksha, Rupendra Aryal, Wei Ping Chan, and Grzegorz Lisak. "Catalytic reforming of biomass pyrolysis gas over Ni catalysts: Alumina, spent fluid catalytic cracking catalyst and char as supports." Applied Catalysis A: General 691 (February 2025): 120074. https://doi.org/10.1016/j.apcata.2024.120074.
Full textWang, Qinghong, Yi Li, Chelsea Benally, et al. "Spent fluid catalytic cracking (FCC) catalyst enhances pyrolysis of refinery waste activated sludge." Journal of Cleaner Production 295 (May 2021): 126382. http://dx.doi.org/10.1016/j.jclepro.2021.126382.
Full textSun, D. D., J. H. Tay, C. E. G. Qian, and D. Lai. "Stabilization of heavy metals on spent fluid catalytic cracking catalyst using marine clay." Water Science and Technology 44, no. 10 (2001): 285–91. http://dx.doi.org/10.2166/wst.2001.0642.
Full textAlonso-Fariñas, Bernabé, Mónica Rodríguez-Galán, Celia Arenas, Fátima Arroyo Torralvo, and Carlos Leiva. "Sustainable management of spent fluid catalytic cracking catalyst from a circular economy approach." Waste Management 110 (June 2020): 10–19. http://dx.doi.org/10.1016/j.wasman.2020.04.046.
Full textGarcía de Lomas, M., M. I. Sánchez de Rojas, and M. Frías. "Pozzolanic reaction of a spent fluid catalytic cracking catalyst in FCC-cement mortars." Journal of Thermal Analysis and Calorimetry 90, no. 2 (2007): 443–47. http://dx.doi.org/10.1007/s10973-006-7921-7.
Full textRodríguez, Erich D., Susan A. Bernal, John L. Provis, et al. "Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process." Fuel 109 (July 2013): 493–502. http://dx.doi.org/10.1016/j.fuel.2013.02.053.
Full textLu, Guojian, Xinyu Lu, and Pei Liu. "Reactivation of spent FCC catalyst by mixed acid leaching for efficient catalytic cracking." Journal of Industrial and Engineering Chemistry 92 (December 2020): 236–42. http://dx.doi.org/10.1016/j.jiec.2020.09.011.
Full textStellato, Michael J., Giada Innocenti, Andreas S. Bommarius, and Carsten Sievers. "Pore Blocking by Phenolates as Deactivation Path during the Cracking of 4-Propylphenol over ZSM-5." Catalysts 11, no. 6 (2021): 721. http://dx.doi.org/10.3390/catal11060721.
Full textWan, Qian, Ruobing Zhang, and Yimin Zhang. "Structure and Properties of Phosphate-Based Geopolymer Synthesized with the Spent Fluid Catalytic-Cracking (SFCC) Catalyst." Gels 8, no. 2 (2022): 130. http://dx.doi.org/10.3390/gels8020130.
Full textIstadi, Istadi, Teguh Riyanto, Didi Dwi Anggoro, Cokorda Satrya Pramana, and Amalia Rizqi Ramadhani. "High Acidity and Low Carbon-Coke Formation Affinity of Co-Ni/ZSM-5 Catalyst for Renewable Liquid Fuels Production through Simultaneous Cracking-Deoxygenation of Palm Oil." Bulletin of Chemical Reaction Engineering & Catalysis 18, no. 2 (2023): 222–37. http://dx.doi.org/10.9767/bcrec.17974.
Full text