Academic literature on the topic 'Spent filter backwash water'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spent filter backwash water.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spent filter backwash water"
Leible, Bob. "Optimize Spent-Filter Backwash Water." Opflow 34, no. 11 (November 2008): 16–17. http://dx.doi.org/10.1002/j.1551-8701.2008.tb02005.x.
Full textArora, Harish, George Di Giovanni, and Mark Lechevallier. "SPENT filter backwash water CONTAMINANTS AND TREATMENT STRATEGIES." Journal - American Water Works Association 93, no. 5 (May 2001): 100–112. http://dx.doi.org/10.1002/j.1551-8833.2001.tb09211.x.
Full textAdin, A., L. Dean, F. Bonner, A. Nasser, and Z. Huberman. "Characterization and destabilization of spent filter backwash water particles." Water Supply 2, no. 2 (April 1, 2002): 115–22. http://dx.doi.org/10.2166/ws.2002.0053.
Full textMueller, Uwe, Gerhard Biwer, and Guenther Baldauf. "Ceramic membranes for water treatment." Water Supply 10, no. 6 (December 1, 2010): 987–94. http://dx.doi.org/10.2166/ws.2010.536.
Full textEades, A., B. J. Bates, and M. J. MacPhee. "Treatment of spent filter backwash water using dissolved air flotation." Water Science and Technology 43, no. 8 (April 1, 2001): 59–66. http://dx.doi.org/10.2166/wst.2001.0465.
Full textLi, Wei, Xinran Liang, Jinming Duan, Simon Beecham, and Dennis Mulcahy. "Influence of spent filter backwash water recycling on pesticide removal in a conventional drinking water treatment process." Environmental Science: Water Research & Technology 4, no. 7 (2018): 1057–67. http://dx.doi.org/10.1039/c7ew00530j.
Full textReissmann, Florian G., and Wolfgang Uhl. "Ultrafiltration for the reuse of spent filter backwash water from drinking water treatment." Desalination 198, no. 1-3 (October 2006): 225–35. http://dx.doi.org/10.1016/j.desal.2006.03.517.
Full textSaravia, F., C. Zwiener, and F. H. Frimmel. "Application of submerged membranes for the treatment of spent filter backwash water." Water Supply 7, no. 5-6 (December 1, 2007): 157–65. http://dx.doi.org/10.2166/ws.2007.133.
Full textEbrahimi, Afshin, Mokhtar Mahdavi, Meghdad Pirsaheb, Fariborz Alimohammadi, and Amir Hossein Mahvi. "Dataset on the cost estimation for spent filter backwash water (SFBW) treatment." Data in Brief 15 (December 2017): 1043–47. http://dx.doi.org/10.1016/j.dib.2017.10.040.
Full textOsouleddini, Noushin, Mohammad Abdollahzadeh, Maryam Safaei, and Raheleh Sajadipoor. "Re-use of Spent Filter Backwash Water by Micro strainer in Water Treatment Plants." Eurasian Journal of Analytical Chemistry 12, no. 5b (July 5, 2017): 599–606. http://dx.doi.org/10.12973/ejac.2017.00194a.
Full textDissertations / Theses on the topic "Spent filter backwash water"
Reißmann, Florian. "Zur Behandlung und Verwertung von Rückständen aus der Oberflächenwasseraufbereitung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1241613891497-40254.
Full textIn most water treatment plants (WTPs), during the water purification process, residuals are generated that have to be disposed according to current regulations. Most of the residuals are derived from filter backwash processes (i. e. spent filter backwash water, SFBW) and contain substances that are removed from the raw water. In addition, in the spent filter backwash water, chemicals can be found that are required for the operation of the water treatment process and do not remain in the drinking water. Over recent decades, SFBW has been returned to the beginning of the water treatment plant (WTP) after a sedimentation process in order to reduce the amount of water being discharged. Concerns over the recycling of microorganisms, of heavy metals or precursors for disinfection by-products, have led to a significant reduction of the number of WTPs that directly return filter backwash water to the water treatment process. According to German technical standards, the reuse of SFBW might only be possible after the application of groundwater infiltration or an equivalent technique. Because of an almost complete recovery of particles and microorganisms, ultrafiltration treatment is a proven alternative to groundwater recharge of SFBW. In this work, different ultrafiltration modules for the treatment and reuse of SFBW are compared. Capillary as well as submerged membrane modules are suitable for the treatment of SFBW. If submerged membrane modules are used, no sedimentation period prior to ultrafiltration treatment is necessary. As a consequence of the accumulation of particulate matter including heavy metals and other compounds in the retentate during ultrafiltration treatment, threshold values of several regulations cannot be met, and either the discharge of retentate into the sewer will be charged or alternative disposal options must be considered. Mass balances for an entire WTP showed most of these contaminants to originate from non-point sources in the watershed. Lab-scale experiments are performed for the examination of the phosphate adsorption potential of SFBW derived from surface water treatment using aluminum-based coagulants. Besides a strong influence of the pH-value present in the SFBW, an influence of the TSS-concentration of SFBW on phosphate adsorption capacity could be demonstrated. Elevated TSS-concentrations resulted in a lower phosphate adsorption capacity of the investigated SFBW. While ultrafiltration treatment with subsequent reuse of SFBW might be cheaper than the discharge to the sewer system, the amount of SFBW required for a complete phosphate removal in the wastewater treatment plant is to large and therefore, no economic advantage of phosphate adsorption could be demonstrated
Brouckaert, Barbara Maria. "Hydrodynamic Detachment of Deposited Particles in Fluidized Bed Filter Backwashing." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5052.
Full textRichman, Marjorie Timmerly. "Particle and biomass detachment during biological filter backwashing : impact of water chemistry and backwash method." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/19519.
Full textHodkinson, Brenden James. "The sewage treatment capability of non-backwash biological aerated filter systems for small communities." Thesis, University of Portsmouth, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368839.
Full textEricsson, Emma-Helena. "Are organohalogen compounds in backwash water from swimming pool facilities treatable? : An experimental investigation of removal capacities by different filter materials." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284338.
Full textNär människor badar i bassänger hamnar vanligtvis naturligt organiskt material i dem, såsom urin, svett, hår och hudflagor. Desinfektionsmedlet som tillsätts (oftast klor) har som syfte att avlägsna mikroorganismer, men när naturligt organiskt material hamnar i vattnet kommer också oavsiktliga reaktioner ske och halogenerade organiska föreningar bildas. Dessa föreningar kan kvantifieras via AOX måttet (adsorberbar organisk halogen), vilket är den samlade förekomsten av alla bundna organiska halogener i ett prov. AOX består således av flera hundra olika föreningar, varav vissa är mer lipofila och benämns EOX (extraherbar organisk halogen). Många av de föreningar inkluderade i AOX är bioackumulativa, persistenta och giftiga för akvatiska organismer, även i låga koncentrationer. Förutom att vara miljöfarliga för akvatiska ekosystem, kan de också vara skadliga för människans hälsa. Filtret som renar badvattnet i simhallar behöver backspolas regelbundet och backspolvattnet, som innehåller AOX, skickas vanligen till spillvattennätet. Vid avloppsreningsverket är det visat i ett tidigare examensarbete samt i andra rapporter att en del av de inkommande AOX ämnena även följer med det utgående, renade, vattnet ut i recipienten. Det är därmed av vikt att minimera ämnena redan vid källan, det vill säga på badanläggningen. I denna masteruppsats har behandlingstekniker för halogenerade organiska föreningar undersökts. Huvudfokus har varit på experimentella kolonntester för fyra filtermaterial (granulerat aktivt kol, naturliga zeoliter, PoloniteR och Zugol), men även andra tekniker har studerats teoretiskt. I testerna användes äkta backspolvatten från en simhall. Alla material reducerade AOX till viss del och visade på effektivare reducering efter hand. Det var dock tydligt att det aktiva kolet var mest effektivt och hade hög reducering redan i första mätningen, AOX-reduceringen låg på över 95 % (jämfört med det obehandlade backspolvattnet). Vad som dock var problematiskt med det aktiva kolet var att det släppte höga halter fosfor i början av kolonntestet, vilket också bekräftades med ett skaktest. Dessutom uppvisade materialet praktiska problem. Ur ett realistiskt perspektiv med dessa problem i åtanke, blir det inte hållbart i längden att använda detta specifika kol. Det finns dock många olika typer av aktivt kol, vilka förmodligen är mer lämpliga och som inte uppvisar dessa problem, och kan användas för detta ändamål. Vidare antyder det erhållna resultatet att de mer lipofila föreningarna av AOX (EOX) är bundet till partikulärt organiskt material och därmed påverkas väsentligt av mekanisk filtrering. Det är dock viktigt med en aktiv bindning. Projektet har påverkats av covid-19 pandemin med lägre antal folk på badhusen samt mindre tillgång till laboratoriet vid KTH. En föreslagen förbättring av metoden är att ha en kontinuerlig omblandning i förvaringskärlet med det obehandlade vattnet innan det tillförs kolonnerna. Vidare nämns det att modifierade zeoliter verkar lovande samt att nästa viktiga steg för projektet är att bestämma livstiden för filtermaterialen.
Crowe, Andrea L. "Assessment of the fate of manganese in oxide-coated filtration systems." Thesis, This resource online, 1997. http://scholar.lib.vt.edu/theses/available/etd-08222008-063718/.
Full textCanale, Ivan 1977. "Caracterização microbiológica, parasitológica e físico-química da água de lavagem de filtros recirculada em ETA de ciclo completo = Microbiological, parasitological and physico-chemical characterization of filter backwash water recirculated in full cycle WTP." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267710.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia
Made available in DSpace on 2018-08-26T04:53:56Z (GMT). No. of bitstreams: 1 Canale_Ivan_M.pdf: 7288933 bytes, checksum: 93678fbce9055e79b05000fd1cab8c23 (MD5) Previous issue date: 2014
Resumo: Estações de Tratamento de Água (ETA) de ciclo completo. Como o volume de ALF pode representar de 3 a 6% do volume de água tratada produzido na ETA, existe interesse cada vez maior no tratamento desse efluente para fins de recirculação junto com a água bruta aduzida à ETA. Entretanto, existe uma preocupação de que essa água residuária possa conter matéria orgânica, sólidos totais, metais, carbono orgânico, precursores de trihalometanos, cistos/oocistos de protozoários ou outras impurezas concentradas durante o processo de filtração. Este trabalho de pesquisa tem como objetivo caracterizar com base em parâmetros físico-químicos, microbiológicos e parasitológicos a água de lavagem de filtros gerada e recirculada na ETA Capim Fino, em Piracicaba / SP - Brasil. Foram avaliadas 12 amostras da água bruta do manancial que abastece a ETA (rio Corumbataí), ALF bruta, ALF clarificada (com o uso de polímeros auxiliares ou por simples sedimentação) e água filtrada da ETA. Para caracterização da ALF foram analisados os parâmetros físico-químicos: cloro residual, cor, turbidez, pH, alumínio solúvel, sólidos totais fixos, sólidos totais voláteis, sólidos sedimentáveis, carbono orgânico total e o potencial de formação de trihalometanos; os parâmetros microbiológicos: coliformes totais, Escherichia coli; e os protozoários patogênicos: Giardia spp. e Cryptosporidium spp. O monitoramento da ALF bruta apontou como principais características físico-químicas deste efluente elevados teores de turbidez, alumínio, carbono orgânico total, sólidos totais (fixos e voláteis), sólidos sedimentáveis e potencial de formação de THM. A clarificação da ALF com polímero aniônico possibilitou a redução na concentração dos diversos constituintes analisados. Giardia spp. foi detectada na água bruta (cinco resultados positivos e concentração de cistos variando de
Tecnologia e Inovação
Mestre em Tecnologia
Hanušová, Veronika. "Optimalizace využití vratné vody na úpravně vody." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-371920.
Full textLee, Wen-Shan, and 李文善. "Recovery of Spent Filter Backwash Water by Using Dead-end Coagulation-assisted Microfiltration." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/02628561078978894720.
Full text國立交通大學
環境工程系所
95
Spent filter backwash water (SFBW) is recycled into previous water treatment units for most water treatment plants (WTP) in Taiwan. The water treatment plants often encounter problems such as difficult control of optimal coagulant dosage and accumulated amounts of protozoa and chemical substances existed in SFBW. In order to solve these problems, the recovery of SFBW was facilitated by MF after the pre-coagulation process. The goal of this study is to investigate the effects of floc properties on membrane flux and the water quality of the filtrate. The SFBW was collected from a local WTP in Taiwan. A bench-scale MF (0.5μm) was set up to simulate a full-scale filtration of the SFBW. The trans-membrane pressure was controlled at 0.4 and 0.67 bar by a suction pump. The pre-cogulation conditions produce different floc properties. The different pre-coagulation mechanisms of electrostatic patch effect (EPE), charge neutralization (CN), and sweep flocculation (SW) were investigated to realize their effects on the formed cake sand PACl coagulants with three different contents of polyaluminum species (Alb) were used to produce different floc properties in this study. The results have showed that the pre-coagulation process can enhance membrane flux and reduce specific cake resistance for multiple filtrations. Ordering membrane flux performance from most effective to least effective was EPE, CN, SW. Regarding floc properties made of coagulants with different content of Alb (PACl-1, PACl-2 and PACl-3), Ordering membrane flux performance from most effective to least effective was PACl-3, PACl-2, PACl-1 The higher membrane flux was cause of the smaller sizes and greater strength flocs which produced more porous cake and lowered specific cake resistance. Regarding the water quality of filtrate, the removals of turbidity, DOC and UV254 were up to 99%, 50% and 65% respectively. As for filtration resistances, the cake resistance (Rc) was the mean portion (>75%) of total resistance (Rt). The floc properties make influence on cake properties, and then impact performances of membrane flux and fouling.
Wu, Cheng-Lun, and 吳政倫. "Recovery of Spent Filter Backwash Water by Using Dead-end Coagulation-assisted Microfiltration:Laboratory-scale Evaluation." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/66595039741097060070.
Full text國立交通大學
環境工程系所
94
Recycling of the spent filter backwash water (SFBW) has been a burden for water treatment plants due the difficulty in chemical dosing especially during the typhoon and heavy storms and the accumulation of protozoa. The objective of this investigation is to use membrane technology, a dead-end MF, to remove the suspended solids and the microorganism particularly Cryptosporidium and Giardia from the SFBW. The goal is to use the membrane permeate as drinking water after disinfection. Different pretreatment methods were performed to SFBW before the membrane filtration to enhance the membrane flux. In this investigation, the SFBW were collected from Hsinchu First Water Treatment Plant and Tonghsing Water Treatment Plant. The SFBW was filtered through a polyterafluoroethylene (PTFE) membrane of pore size 0.5 �慆 and 1.0 �慆 at low vacuum pressure (0.65 kgf/cm2). Sedimentation and coagulation/flocculation were used as pretreatments. The result indicates that the flux declined seriously when the size of the sub-micron particles in the SFBW is close to the pore size of the membrane due to pore blocking. The quality of membrane permeates of SFBW from both water treatment plants, namely, turbidity, total coliform and total bacteria counts, complies with the current Drinking Water Quality Standard of Taiwan EPA. The DOC was reduced slightly after membrane filtration. Sedimentation pretreatment improved the membrane permeate flux in the beginning, but it caused serious pore blocking in the long run. On the other hand, pretreatment by coagulation/flocculation improved the membrane permeate flux of the SFBW from Hsinchu First Water Treatment Plant. However, it did not improve the membrane flux of the SFBW collected from Tonghsing Water Treatment Plant due to the complex factors such as particle size, coagulation condition, and fractal dimension of floc.
Books on the topic "Spent filter backwash water"
Cornwell, David A. Innovative applications of treatment processes for spent filter backwash. Denver, Colo: Water Research Foundation, 2010.
Find full textAnderson, Robert J. Evaluation of the Dynasand continuous-backwash upflow filter for water supply applications. Davis, calif: Dept. of Civil Engineering, University of California, Davis, 1990.
Find full textUnited States. Environmental Protection Agency. Office of Water, ed. Filter backwash recycling rule: A quick reference guide. [Washington, D.C.?]: U.S. Environmental Protection Agency, Office of Water, 2001.
Find full textWater treatment plant filter backwash optimization study: Final report. Albany, N.Y: NYSERDA, 1999.
Find full textEdzwald, James K. Impacts of Filter Backwash Recycle on Clarification and Filtration. Amer Water Works Assn, 2001.
Find full textUsing DWSRF funds to comply with the filter backwash recycling rule. Washington, DC: U.S. Environmental Protection Agency, Office of Ground Water and Drinking Water, 2002.
Find full textA, Amirtharajah, and AWWA Research Foundation, eds. Optimum backwash of dual media filters and GAC filter-adsorbers with air scour. Denver, CO: AWWA Research Foundation, 1991.
Find full textBook chapters on the topic "Spent filter backwash water"
Chen, Y., J. Yin, H. Ying, L. Kuang, and S. Tong. "Pilot-scale study on treatment of spent filter backwash water by ultrafiltration." In Chemical Engineering III, 171–76. CRC Press, 2013. http://dx.doi.org/10.1201/b16125-30.
Full textSung Wang, Mu-Hao, Lawrence K. Wang, Nazih K. Shammas, and Milos Krofta. "Recycling of Filter Backwash Water and Alum Sludge from Water Utility for Reuse." In Handbook of Advanced Industrial and Hazardous Wastes Management, 49–74. CRC Press, 2017. http://dx.doi.org/10.1201/9781315117423-3.
Full textSung Wang, Mu-Hao, Lawrence K. Wang, Nazih K. Shammas, and Milos Krofta. "Chapter 3 Recycling of Filter Backwash Water and Alum Sludge from Water Utility for Reuse." In Advances in Industrial and Hazardous Wastes Treatment, 49–74. CRC Press, 2016. http://dx.doi.org/10.1201/9781315374536-4.
Full textConference papers on the topic "Spent filter backwash water"
Haber, Ludwig C., and James Smith. "Rotating Drum Raw Water Strainer Fluid Mechanics and Debris Cleanout." In ASME 2010 Power Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/power2010-27152.
Full textBoussouga, Youssef-Amine, Marina Valentukeviciene, and Ramune Zurauskiene. "Investigating Recycled Filter Media in order to Remove Fluoride Compounds from Groundwater." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.072.
Full textPrakash, Prakhar, Reid Concienne, Trevor Demayo, and Kirsten Towne. "Efficient Water Softening for Avoidance of Scales in Heavy Oil Steam Floods." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206115-ms.
Full textPorter, Jim. "Experience in Operating Mobile Solidification Plant for BNFL Environmental Services." In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4578.
Full textMukunoki, Atsushi, Tamotsu Chiba, Yasuhiro Suzuki, Kenji Yamaguchi, Tomofumi Sakuragi, and Tokuro Nanba. "Further Development of Iodine Immobilization Technique by Low Temperature Vitrification With BiPbO2I." In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16268.
Full textTakeda, Hirofumi, and Toshiari Saegusa. "Development of Salt Particle Collection Device to Prevent SCC of Canisters." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75122.
Full text