Academic literature on the topic 'Spheroïdal graphite cast iron'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spheroïdal graphite cast iron.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spheroïdal graphite cast iron"
Dierickx, Pierre, Catherine Verdu, Alain Reynaud, and Roger Fougeres. "A study of physico-chemical mechanisms responsible for damage of heat treated and as-cast ferritic spheroïdal graphite cast irons." Scripta Materialia 34, no. 2 (January 1996): 261–68. http://dx.doi.org/10.1016/1359-6462(95)00496-3.
Full textAlonso, G., D. M. Stefanescu, P. Larrañaga, and R. Suarez. "Graphite Nucleation in Compacted Graphite Cast Iron." International Journal of Metalcasting 14, no. 4 (March 11, 2020): 1162–71. http://dx.doi.org/10.1007/s40962-020-00441-2.
Full textGumienny, G., B. Kurowska, T. Szymczak, and J. Gawroński. "Nickel in Compacted Graphite Iron." Archives of Metallurgy and Materials 62, no. 2 (June 1, 2017): 657–62. http://dx.doi.org/10.1515/amm-2017-0096.
Full textMuhmond, Haji Muhammad, and Hasse Fredriksson. "Graphite Growth Morphologies in Cast Iron." Materials Science Forum 790-791 (May 2014): 458–63. http://dx.doi.org/10.4028/www.scientific.net/msf.790-791.458.
Full textCochard, V., R. A. Harding, J. Campbell, and R. Hérold. "Inoculation of Spheroidal Graphite Cast Iron." Advanced Materials Research 4-5 (October 1997): 277–84. http://dx.doi.org/10.4028/www.scientific.net/amr.4-5.277.
Full textCembrero, J., and M. Pascual. "Weldability of spheroidal graphite cast iron." Welding International 14, no. 11 (January 2000): 881–88. http://dx.doi.org/10.1080/09507110009549286.
Full textMironova, M. V. "Graphite flake cast iron surface hardening." IOP Conference Series: Materials Science and Engineering 966 (November 14, 2020): 012064. http://dx.doi.org/10.1088/1757-899x/966/1/012064.
Full textEl-Baradie, Z. M., M. M. Ibrahim, I. A. El-Sisy, and A. A. Abd El-Hakeem. "Austempering of spheroidal graphite cast iron." Materials Science 40, no. 4 (July 2004): 523–28. http://dx.doi.org/10.1007/s11003-005-0071-4.
Full textDawson, S. "Compacted graphite iron: Cast iron makes a comeback." JOM 46, no. 8 (August 1994): 44–47. http://dx.doi.org/10.1007/bf03220775.
Full textCastro, M., M. Herrera-Trejo, J. L. Alvarado-Reyna, C. L. Martínez-Tello, and M. Méndez-Nonell. "Characterization of graphite form in nodular graphite cast iron." International Journal of Cast Metals Research 16, no. 1-3 (August 2003): 83–86. http://dx.doi.org/10.1080/13640461.2003.11819563.
Full textDissertations / Theses on the topic "Spheroïdal graphite cast iron"
Wang, Shuyan. "Formation des microstructures dans la fonte à graphite spheroïdal aux premiers instants de la solidification." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0338/document.
Full textThe thermal conditions and the treatment of the liquid metal for centrifugal casting of pipes lead to the solidification of the melt in the form of spheroidal graphite (SG) iron throughout the thickness. However it is sometimes observed zones that are solidified within the white mode (eutectic austenite / cementite) mainly in the skin of the product. These areas lead to differences which could be problematic. Further characterization of the microstructure of pipes shows that competition between the nucleation and growth of stable and metastable eutectic growth exists from the beginning of solidification. To clarify the thermal conditions of this competition an experimental device has been used. Liquid metal droplet fall on a cold substrate. Rapid directionnal solidification occurs and the temperature evolution of the lower surface of the droplet is recorded during the very first moment of solidification (< 200 ms). Characterization of droplet microstructures obtained in as-cast state and after heat treatment showed that the device is able to froze the solidified microstructure in an earlier stage of formation than in the as cast pipe. A physical model describing the first instants of the solidification under very high thermal gradient of a cast iron which is inoculated and treated with Mg is presented, taking into account the kinetics of nucleation and growth of graphite nodules in competition with the solidification of the metastable eutectic. The comparison between the calcluated results and microstructural characterizations allows to specify microstructures devlopment scenarios by decoupling the influence of the thermal gradient and solidification rate
Westphal, Mark Emil. "Fracture toughness of coral graphite cast iron." Thesis, Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/16892.
Full textFranklin, Steven E. "A study of graphite morphology control in cast iron." Thesis, Loughborough University, 1986. https://dspace.lboro.ac.uk/2134/32998.
Full textCastillo-Bozzo, Ricardo N. "A fracture mechanics study of flake graphite cast iron." Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37651.
Full textHernando, Juan Carlos. "Morphological characterization of primary austenite in cast iron." Licentiate thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Material och tillverkning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-35585.
Full textBobyliov, Konstantin. "Casting voids influence on spheroid graphite cast iron high-cycle fatigue strength." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2008. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20081128_120950-42235.
Full textNagrinėjamas liejimo tuštumų poveikis stipriojo ketaus pleišėjimo slenksčiui. Pateikiami eksperimentiniai rezultatai ir jų analitinė bei skaitinė analizė, remiantis tiesine irimo mechanika.
Исследуется влияние литейных пустот на порог трещиностойкости чугуна с шаровидным графитом. Представлены результаты экспериментального исследования и их аналитический и численный анализ, опираясь на линейную механику разрушения.
Velichko, Alexandra. "Quantitative 3D characterization of graphite morphologiesin cast iron using FIB microstructure tomography." Aachen Shaker, 2008. http://d-nb.info/992480035/04.
Full textYe, Jianchang. "Roles of graphite in the reduction of azo-aromatic compounds with elemental iron." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 137 p, 2006. http://proquest.umi.com/pqdweb?did=1172118261&sid=5&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textHellström, Kristina. "Density variations during solidification of lamellar graphite iron." Licentiate thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Material och tillverkning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-37869.
Full textYeliyur, Siddegowda Darshan. "Gray-cast iron classification based on graphite flakes using image morphology and neural networks." Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10017846.
Full textGray-cast iron is an iron carbon alloy which is regularly used in manufacturing processes. Carbon is distributed in the iron material in the form of graphite. The distribution of the graphite flakes in the alloy contributes greatly towards the chemical and physical properties of the metal alloy. Thus it is important to identify and classify the Gray-cast iron based on the morphological parameters of the graphite flakes. Gray-Cast iron is classified into five types in ISO-945 represented with the letters A through E. These five classes possess different structures or distributions of the graphite flakes. The current project presents an automated classification method using image processing and machine learning algorithms. The method presented here obtains the required parameters from the microstructure through image morphological operations. The image information is subsequently fed through a supervised machine learning algorithm which is trained using parameters such as area of the flakes, perimeter, minimum inter-particle distance and chord length from over twenty samples. The algorithm calculates the percentage of the type of the flakes present in the given image. The simulation is done in MATLAB and was tested for six images in each class. Class C and D were classified with 100 percent accuracy, Class A and B were classified with accuracy of 82 percent and Class E was identified with accuracy of 68 percent.
Books on the topic "Spheroïdal graphite cast iron"
Cochard, Valéry. Inoculation of spheroidal graphite cast iron. Birmingham: University of Birmingham, 1995.
Find full textRimmer, Arron Laurance. Austempering of an unalloyed compacted graphite cast iron. Manchester: University of Manchester, 1993.
Find full textArifin, Ir Bustanul. The role of aluminium in inoculation of spheroidal graphite cast iron. Birmingham: University of Birmingham, 1987.
Find full textV, Kalaĭda V., ed. Prochnostʹ i treshchinostoĭkostʹ chugunov s sharovidnym grafitom. Kiev: Nauk. dumka, 1989.
Find full textBook chapters on the topic "Spheroïdal graphite cast iron"
Pero-Sanz Elorz, José Antonio, Daniel Fernández González, and Luis Felipe Verdeja. "Spheroidal Graphite Cast Irons (or Ductile Cast Iron)." In Physical Metallurgy of Cast Irons, 105–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97313-5_7.
Full textMuhmond, H. M., and H. Fredriksson. "Graphite Growth Morphologies in High Al Cast Iron." In Advances in the Science and Engineering of Casting Solidification, 323–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093367.ch38.
Full textMuhmond, H. M., and H. Fredriksson. "Graphite Growth Morphologies in High Al Cast Iron." In Advances in the Science and Engineering of Casting Solidification, 323–30. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48117-3_38.
Full textGórny, Marcin. "General Characteristic of the Ductile and Compacted Graphite Cast Iron." In Microstructure and Properties of Ductile Iron and Compacted Graphite Iron Castings, 109–23. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14583-9_6.
Full textRastegar, Vahid. "Characterization of the Microstructure of Compacted Graphite Cast Iron." In Characterization of Minerals, Metals, and Materials, 1–10. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118371305.ch1.
Full textMatsumoto, Akikazu, and Naoyuki Kanetake. "Improvement of Magnetic Characteristic in Spheroidal Graphite Cast Iron." In Materials Science Forum, 1123–26. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.1123.
Full textTakamichi, Hara, Kitagawa Takahiro, Ikeno Susumu, Saikawa Seiji, Terayama Kiyoshi, and Matsuda Kenji. "Tem Observation of Spheroidal Graphite in Ductile Cast Iron." In Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, 3459–64. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-48764-9_428.
Full textHara, Takamichi, Takahiro Kitagawa, Susumu Ikeno, Seiji Saikawa, Kiyoshi Terayama, and Kenji Matsuda. "TEM Observation of Spheroidal Graphite in Ductile Cast Iron." In PRICM, 3459–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118792148.ch428.
Full textLedbetter, Hassel, and Subhendu Datta. "Effect of Graphite Aspect Ratio on Cast-iron Elastic Constants." In Nondestructive Characterization of Materials, 361–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-84003-6_42.
Full textBaranov, A. A., and D. A. Baranov. "To the Theory of Formation in Cast Iron of Spherical Graphite." In Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, 283–90. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2669-2_29.
Full textConference papers on the topic "Spheroïdal graphite cast iron"
Kruger, S. E. "Measuring cast iron graphite size by ultrasonic attenuation." In QUANTITATIVE NONDESTRUCTIVE EVALUATION. AIP, 2002. http://dx.doi.org/10.1063/1.1472975.
Full textShinohara, M., and N. Uchida. "Evaluation for the Quality of Flake Graphite Cast Iron and Spheroidal Graphite Cast Iron by Tapping Test with Using Artificial Intelligence." In MS&T19. TMS, 2019. http://dx.doi.org/10.7449/2019mst/2019/mst_2019_804_805.
Full textShinohara, M., and N. Uchida. "Evaluation for the Quality of Flake Graphite Cast Iron and Spheroidal Graphite Cast Iron by Tapping Test with Using Artificial Intelligence." In MS&T19. TMS, 2019. http://dx.doi.org/10.7449/2019/mst_2019_804_805.
Full textYamaguchi, T., and Y. Kimura. "Compression characteristics of spheroidal graphite cast iron pipe members." In HPSM/OPTI 2014. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/hpsm140421.
Full textDurán, G. A. "Growth of Ferrite Needles in Compacted Graphite Cast Iron." In INDUSTRIAL APPLICATIONS OF THE MOSSBAUER EFFECT: International Symposium on the Industrial Applications of the Mossbauer Effect. AIP, 2005. http://dx.doi.org/10.1063/1.1923681.
Full textLin, Yhu-Tin. "Machinability of Compacted Graphite Iron in Honing." In ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72083.
Full textBon, Douglas, Waldek Wladimir Bose Filho, and Wilson Luiz Guesser. "THERMOMECHANICAL FATIGUE LIFE OF GRAY AND COMPACTED GRAPHITE CAST IRON ALLOYS." In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-1431.
Full textМакаренко, Константин, Konstantin Makarenko, Екатерина Зенцова, Ekaterina Zentsova, Александр Никитин, and Alexander Nikitin. "Determination of the Size-topological Parameters the Structure of Cast Iron." In 29th International Conference on Computer Graphics, Image Processing and Computer Vision, Visualization Systems and the Virtual Environment GraphiCon'2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/graphicon-2019-2-244-247.
Full textSun, Z. D., and C. Bathias. "High Frequency Fatigue Crack Propagation Behavior of a Spheroidal Graphite Cast Iron." In SAE 2001 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-0831.
Full textmarcondes, paulo victor, Paulo Soares, Ricardo Torres, and Sergio Manenti. "Graphite size and distribution of nodular cast iron obtained by continuous casting." In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-2428.
Full text