Academic literature on the topic 'Spider exoskeleton'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spider exoskeleton.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Spider exoskeleton"

1

Foll, Didier Le, Evelyne Brichet, Jean Louis Reyss, Claude Lalou, and Daniel Latrouite. "Age Determination of the Spider Crab Maja squinado and the European Lobster Homarus gammarus by 228Th/228Ra Chronology: Possible Extension to Other Crustaceans." Canadian Journal of Fisheries and Aquatic Sciences 46, no. 4 (1989): 720–24. http://dx.doi.org/10.1139/f89-091.

Full text
Abstract:
A method of age determination was developed on carapaces of the spider crab, Maja squinado Herbst and European lobster Homarus gammarus L., by measuring the natural radionuclides activity ratio, 228Th/228Ra in the exoskeleton. This method allows the determination of the time elapsed since the preceding molt of the animal. It was successfully tested on five spider crabs and four lobsters which had molted in captivity and therefore had a carapace of known age. It is probable that the method could, with some reservations, be extended to all marine Decapod Crustacea bearing a well calcified exoske
APA, Harvard, Vancouver, ISO, and other styles
2

Kariko, Sarah, Jaakko V. I. Timonen, James C. Weaver, et al. "Structural origins of coloration in the spider Phoroncidia rubroargentea Berland, 1913 (Araneae: Theridiidae) from Madagascar." Journal of The Royal Society Interface 15, no. 139 (2018): 20170930. http://dx.doi.org/10.1098/rsif.2017.0930.

Full text
Abstract:
This study investigates the structural basis for the red, silver and black coloration of the theridiid spider, Phoroncidia rubroargentea (Berland, 1913) from Madagascar. Specimens of this species can retain their colour after storage in ethanol for decades, whereas most other brightly pigmented spider specimens fade under identical preservation conditions. Using correlative optical, structural and chemical analysis, we identify the colour-generating structural elements and characterize their optical properties. The prominent silvery appearance of the spider's abdomen results from regularly arr
APA, Harvard, Vancouver, ISO, and other styles
3

Schaber, Clemens F., Stanislav N. Gorb, and Friedrich G. Barth. "Force transformation in spider strain sensors: white light interferometry." Journal of The Royal Society Interface 9, no. 71 (2011): 1254–64. http://dx.doi.org/10.1098/rsif.2011.0565.

Full text
Abstract:
Scanning white light interferometry and micro-force measurements were applied to analyse stimulus transformation in strain sensors in the spider exoskeleton. Two compound or ‘lyriform’ organs consisting of arrays of closely neighbouring, roughly parallel sensory slits of different lengths were examined. Forces applied to the exoskeleton entail strains in the cuticle, which compress and thereby stimulate the individual slits of the lyriform organs. (i) For the proprioreceptive lyriform organ HS-8 close to the distal joint of the tibia, the compression of the slits at the sensory threshold was a
APA, Harvard, Vancouver, ISO, and other styles
4

Gibbons, Alastair T., Alexander Idnurm, Michael Seiter, et al. "Amblypygid-fungal interactions: The whip spider exoskeleton as a substrate for fungal growth." Fungal Biology 123, no. 7 (2019): 497–506. http://dx.doi.org/10.1016/j.funbio.2019.05.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Panek, Izabela, Shannon Meisner, and Päivi H. Torkkeli. "Distribution and Function of GABAB Receptors in Spider Peripheral Mechanosensilla." Journal of Neurophysiology 90, no. 4 (2003): 2571–80. http://dx.doi.org/10.1152/jn.00321.2003.

Full text
Abstract:
The mechanosensilla in spider exoskeleton are innervated by bipolar neurons with their cell bodies close to the cuticle and dendrites attached to it. Numerous efferent fibers synapse with peripheral parts of the mechanosensory neurons, with glial cells surrounding the neurons, and with each other. Most of these efferent fibers are immunoreactive to γ-aminobutyric acid (GABA), and the sensory neurons respond to agonists of ionotropic GABA receptors with a rapid and complete inhibition. In contrast, little is known about metabotropic GABAB receptors that may mediate long-term effects. We investi
APA, Harvard, Vancouver, ISO, and other styles
6

Woods, Chris M. C., and Mike J. Page. "Sponge masking and related preferences in the spider crab Thacanophrys filholi (Brachyura : Majidae)." Marine and Freshwater Research 50, no. 2 (1999): 135. http://dx.doi.org/10.1071/mf98111.

Full text
Abstract:
Spider crabs, Thacanophrys filholi, collected from Kaikoura, New Zealand, were predominantly masked with four species of sponge: Lissodendoryx sp., Iophon laevistylis, Paresperella sp. and Dysidea sp. Other species of sponge, as well as ascidians, brachiopods, anomiid bivalves and tube-dwelling polychaetes, were also part of the extensive epifauna covering the crabs. The act of masking is described, and the location of the hooked setae that allow attachment of material to the crabs exoskeleton is mapped. When crabs in the laboratory were simultaneously offered equal volumes of the four main sp
APA, Harvard, Vancouver, ISO, and other styles
7

Templin, Julita, and Teresa Napiórkowska. "BIOMETRIC STUDIES ON OLIGOMELIC INDIVIDUALS OF THE SPIDER TEGENARIA ATRICA (ARTHROPODA, ARACHNIDA) / BADANIA BIOMETRYCZNE OSOBNIKÓW OLIGOMELICZNYCH PAJĄKA TEGENARIA ATRICA (ARTHROPODA, ARACHNIDA)." Zoologica Poloniae 58, no. 1-2 (2013): 19–28. http://dx.doi.org/10.2478/zoop-2013-0002.

Full text
Abstract:
Abstract Oligomely is a type of developmental anomaly occurring in embryos of the spider Tegenaria atrica C.L. Koch under the teratogenic influence of temperature. This anomaly is of metameric origin, as it results from a disorder of metamere formation on the germ band during embryogenesis, resulting in the absence of one half or the whole metamere. In such a case, one or more appendages are missing on one or both sides of the body in a spider leaving a chorion. This anomaly induces changes both in the anatomical structure and exoskeleton of a spider (deformation of carapace and sternum). Cara
APA, Harvard, Vancouver, ISO, and other styles
8

HOMOLA, ELLEN, AMIR SAGI, and HANS LAUFER. "Relationship of claw form and exoskeleton condition to reproductive system size and methyl farnesoate in the male spider crab,Libinia emarginata." Invertebrate Reproduction & Development 20, no. 3 (1991): 219–25. http://dx.doi.org/10.1080/07924259.1991.9672202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Blickhan, Reinhard, and Friedrich G. Barth. "Strains in the exoskeleton of spiders." Journal of Comparative Physiology A 157, no. 1 (1985): 115–47. http://dx.doi.org/10.1007/bf00611101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blickhan, Reinhard, Tom Weihmann, and Friedrich G. Barth. "Measuring strain in the exoskeleton of spiders—virtues and caveats." Journal of Comparative Physiology A 207, no. 2 (2021): 191–204. http://dx.doi.org/10.1007/s00359-020-01458-y.

Full text
Abstract:
AbstractThe measurement of cuticular strain during locomotion using foil strain gauges provides information both on the loads of the exoskeleton bears and the adaptive value of the specific location of natural strain detectors (slit sense organs). Here, we critically review available literature. In tethered animals, by applying loads to the metatarsus tip, strain and mechanical sensitivity (S = strain/load) induced at various sites in the tibia were determined. The loci of the lyriform organs close to the tibia–metatarsus joint did not stand out by high strain. The strains induced at various s
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!